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Abstract. This paper presents the Neural Network Verification (NNV)
software tool, a set-based verification framework for deep neural networks
(DNNs) and learning-enabled cyber-physical systems (CPS). The crux
of NNV is a collection of reachability algorithms that make use of a vari-
ety of set representations, such as polyhedra, star sets, zonotopes, and
abstract-domain representations. NNV supports both exact (sound and
complete) and over-approximate (sound) reachability algorithms for ver-
ifying safety and robustness properties of feed-forward neural networks
(FFNNs) with various activation functions. For learning-enabled CPS,
such as closed-loop control systems incorporating neural networks, NNV
provides exact and over-approximate reachability analysis schemes for
linear plant models and FFNN controllers with piecewise-linear activa-
tion functions, such as ReLUs. For similar neural network control systems
(NNCS) that instead have nonlinear plant models, NNV supports over-
approximate analysis by combining the star set analysis used for FFNN
controllers with zonotope-based analysis for nonlinear plant dynamics
building on CORA. We evaluate NNV using two real-world case stud-
ies: the first is safety verification of ACAS Xu networks, and the second
deals with the safety verification of a deep learning-based adaptive cruise
control system.
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1 Introduction

Deep neural networks (DNNs) have quickly become one of the most widely used
tools for dealing with complex and challenging problems in numerous domains,
such as image classification [10,16,25], function approximation, and natural lan-
guage translation [11,18]. Recently, DNNs have been used in safety-critical cyber-
physical systems (CPS), such as autonomous vehicles [8,9,52] and air traffic col-
lision avoidance systems [21]. Although utilizing DNNs in safety-critical applica-
tions can demonstrate considerable performance benefits, assuring the safety and
robustness of these systems is challenging because DNNs possess complex non-
linear characteristics. Moreover, it has been demonstrated that their behavior
can be unpredictable due to slight perturbations in their inputs (i.e., adversarial
perturbations) [36].

Fig. 1. An overview of NNV and its major modules and components.

In this paper, we introduce the NNV (Neural Network Verification) tool,
which is a software framework that performs set-based verification for DNNs
and learning-enabled CPS, known colloquially as neural network control systems
(NNCS) as shown in Fig. 21. NNV provides a set of reachability algorithms that
can compute both the exact and over-approximate reachable sets of DNNs and
NNCSs using a variety of set representations such as polyhedra [40,53–56], star
sets [29,38,39,41], zonotopes [32], and abstract domain representations [33]. The
reachable set obtained from NNV contains all possible states of a DNN from
bounded input sets or of a NNCS from sets of initial states of a plant model.
NNV declares a DNN or a NNCS to be safe if, and only if, their reachable sets do
not violate safety properties (i.e., have a non-empty intersection with any state
satisfying the negation of the safety property). If a safety property is violated,

1 The source code for NNV is publicly available: https://github.com/verivital/nnv/.
A CodeOcean capsule [43] is also available: https://doi.org/10.24433/CO.0221760.
v1.

https://github.com/verivital/nnv/
https://doi.org/10.24433/CO.0221760.v1
https://doi.org/10.24433/CO.0221760.v1
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Table 1. Overview of major features available in NNV. Links refer to relevant files/-
classes in the NNV codebase. BN refers to batch normalization layers, FC to fully-
connected layers, AvgPool to average pooling layers, Conv to convolutional layers, and
MaxPool to max pooling layers.

Feature Exact analysis Over-approximate analysis

Components FFNN, CNN, NNCS FFNN, CNN, NNCS

Plant dynamics (for

NNCS)

Linear ODE Linear ODE, Nonlinear ODE

Discrete/Continuous

(for NNCS)

Discrete Time Discrete Time, Continuous Time

Activation functions ReLU, Satlin ReLU, Satlin, Sigmoid, Tanh

CNN Layers MaxPool, Conv, BN, AvgPool, FC MaxPool, Conv, BN, AvgPool, FC

Reachability methods Star, Polyhedron, ImageStar Star, Zonotope, Abstract-domain, ImageStar

Reachable

set/Flow-pipe

Visualization

Yes Yes

Parallel computing Yes Partially supported

Safety verification Yes Yes

Falsification Yes Yes

Robustness

verification (for

FFNN/CNN)

Yes Yes

Counterexample

generation

Yes Yes

NNV can construct a complete set of counter-examples demonstrating the set
of all possible unsafe initial inputs and states by using the star-based exact
reachability algorithm [38,41]. To speed up computation, NNV uses parallel
computing, as the majority of the reachability algorithms in NNV are more
efficient when executed on multi-core platforms and clusters.

NNV has been successfully applied to safety verification and robustness anal-
ysis of several real-world DNNs, primarily feedforward neural networks (FFNNs)
and convolutional neural networks (CNNs), as well as learning-enabled CPS. To
highlight NNV’s capabilities, we present brief experimental results from two
case studies. The first compares methods for safety verification of the ACAS
Xu networks [21], and the second presents safety verification of a learning-based
adaptive cruise control (ACC) system.

2 Overview and Features

NNV is an object-oriented toolbox written in Matlab, which was chosen in part
due to the prevalence of Matlab/Simulink in the design of CPS. NNV uses the
MPT toolbox [26] for polytope-based reachability analysis and visualization [40],
and makes use of CORA [3] for zonotope-based reachability analysis of nonlinear
plant models [38]. NNV also utilizes the Neural Network Model Transformation
Tool (NNMT) for transforming neural network models from Keras and Tensor-
flow into Matlab using the Open Neural Network Exchange (ONNX) format,
and the Hybrid Systems Model Transformation and Translation tool (HyST) [5]

https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/cav2020/code/nnv/engine/nncs
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nncs/NonLinearODE.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/ReLU.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/SatLin.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/LogSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/fnn/TanSig.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/Conv2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/nn/cnn/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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Fig. 2. Architecture of a typical neural network control system (NNCS).

for plant configuration. NNV makes use of YALMIP [27] for some optimization
problems and MatConvNet [46] for some CNN operations.

The NNV toolbox contains two main modules: a computation engine and an
analyzer, shown in Fig. 1. The computation engine module consists of four sub-
components: 1) the FFNN constructor, 2) the NNCS constructor, 3) the reach-
ability solvers, and 4) the evaluator. The FFNN constructor takes a network
configuration file as an input and generates a FFNN object. The NNCS con-
structor takes the FFNN object and the plant configuration, which describes
the dynamics of a system, as inputs and then creates an NNCS object. Depend-
ing on the application, either the FFNN (or NNCS) object will be fed into a
reachability solver to compute the reachable set of the FFNN (or NNCS) from
a given initial set of states. Then, the obtained reachable set will be passed to
the analyzer module. The analyzer module consists of three subcomponents: 1)
a visualizer, 2) a safety checker, and 3) a falsifier. The visualizer can be called to
plot the obtained reachable set. Given a safety specification, the safety checker
can reason about the safety of the FFNN or NNCS with respect to the specifica-
tion. When an exact (sound and complete) reachability solver is used, such as the
star-based solver, the safety checker can return either “safe,” or “unsafe” along
with a set of counterexamples. When an over-approximate (sound) reachability
solver is used, such as the zonotope-based scheme or the approximate star-based
solvers, the safety checker can return either “safe” or “uncertain” (unknown).
In this case, the falsifier automatically calls the evaluator to generate simulation
traces to find a counterexample. If the falsifier can find a counterexample, then
NNV returns unsafe. Otherwise, it returns unknown. Table 1 shows a summary
of the major features of NNV.

3 Set Representations and Reachability Algorithms

NNV implements a set of reachability algorithms for sequential FFNNs and
CNNs, as well as NNCS with FFNN controllers as shown in Fig. 2. The reachable
set of a sequential FFNN is computed layer-by-layer. The output reachable set
of a layer is the input set of the next layer in the network.

3.1 Polyhedron [40]

The polyhedron reachability algorithm computes the exact polyhedron reach-
able set of a FFNN with ReLU activation functions. The exact reachability
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computation of layer L in a FFNN is done as follows. First, we construct the
affine mapping Ī of the input polyhedron set I, using the weight matrix W and
the bias vector b, i.e., Ī = W × I + b. Then, the exact reachable set of the
layer RL is constructed by executing a sequence of stepReLU operations, i.e.,
RL = stepReLUn(stepReLUn−1(· · · (stepReLU1(Ī)))). Since a stepReLU oper-
ation can split a polyhedron into two new polyhedra, the exact reachable set
of a layer in a FFNN is usually a union of polyhedra. The polyhedron reach-
ability algorithm is computationally expensive because computing affine map-
pings with polyhedra is costly. Additionally, when computing the reachable set,
the polyhedron approach extensively uses the expensive conversion between the
H-representation and the V-representation. These are the main drawbacks that
limit the scalability of the polyhedron approach. Despite that, we extend the
polyhedron reachability algorithm for NNCSs with FFNN controllers. However,
the propagation of polyhedra in NNCS may lead to a large degree of conserva-
tiveness in the computed reachable set [38].

3.2 Star Set [38,41] (code)

The star set is an efficient set representation for simulation-based verification of
large linear systems [6,7,42] where the superposition property of a linear system
can be exploited in the analysis. It has been shown in [41] that the star set is
also suitable for reachability analysis of FFNNs. In contrast to polyhedra, the
affine mapping and intersection with a half space of a star set is more easily com-
puted. NNV implements an enhanced version of the exact and over-approximate
reachability algorithms for FFNNs proposed in [41] by minimizing the number
of LP optimization problems that need to be solved in the computation. The
exact algorithm that makes use of star sets is similar to the polyhedron method
that makes use of stepReLU operations. However, it is much faster and more
scalable than the polyhedron method because of the advantage that star sets
have in affine mapping and intersection. The approximate algorithm obtains an
over-approximation of the exact reachable set by approximating the exact reach-
able set after applying an activation function, e.g., ReLU, Tanh, Sigmoid. We
refer readers to [41] for a detailed discussion of star-set reachability algorithms
for FFNNs.

We note that NNV implements enhanced versions of earlier star-based reach-
ability algorithms [41]. Particularly, we minimize the number of linear program-
ming (LP) optimization problems that must be solved in order to construct the
reachable set of a FFNN by quickly estimating the ranges of all of the states in
the star set using only the ranges of the predicate variables. Additionally, the
extensions of the star reachability algorithms to NNCS with linear plant mod-
els can eliminate the explosion of conservativeness in the polyhedron method
[38,39]. The reason behind this is that in star sets, the relationship between
the plant state variables and the control inputs is preserved in the computation
since they are defined by a unique set of predicate variables. We refer readers to
[38,39] for a detailed discussion of the extensions of the star-based reachability
algorithms for NNCSs with linear/nonlinear plant models.

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Star.m
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3.3 Zonotope [32] (code)

NNV implements the zonotope reachability algorithms proposed in [32] for
FFNNs. Similar to the over-approximate algorithm using star sets, the zono-
tope algorithm computes an over-approximation of the exact reachable set of a
FFNN. Although the zonotope reachability algorithm is very fast and scalable, it
produces a very conservative reachable set in comparison to the star set method
as shown in [41]. Consequently, zonotope-based reachability algorithms are usu-
ally only more efficient for very small input sets. As an example it can be more
suitable for robustness certification.

3.4 Abstract Domain [33]

NNV implements the abstract domain reachability algorithm proposed in [33]
for FFNNs. NNV’s abstract domain reachability algorithm specifies an abstract
domain as a star set and estimates the over-approximate ranges of the states
based on the ranges of the new introduced predicate variables. We note that
better ranges of the states can be computed by solving LP optimization. How-
ever, better ranges come with more computation time.

3.5 ImageStar Set [37] (code)

NNV recently introduced a new set representation called the ImageStar for use
in the verification of deep convolutional neural networks (CNNs). Briefly, the
ImageStar is a generalization of the star set where the anchor and generator
vectors are replaced by multi-channel images. The ImageStar is efficient in the
analysis of convolutional layers, average pooling layers, and fully connected lay-
ers, whereas max pooling layers and ReLU layers consume most of the com-
putation time. NNV implements exact and over-approximate reachability algo-
rithms using the ImageStar for serial CNNs. In short, using the ImageStar, we
can analyze the robustness under adversarial attacks of the real-world VGG16
and VGG19 deep perception networks [31] that consist of >100 million param-
eters [37].

4 Evaluation

The experiments presented in this section were performed on a desktop with
the following configuration: Intel Core i7-6700 CPU @ 3.4 GHz 8 core Processor,
64 GB Memory, and 64-bit Ubuntu 16.04.3 LTS OS.

4.1 Safety Verification of ACAS Xu Networks

We evaluate NNV in comparison to Reluplex [22], Marabou [23], and ReluVal
[49], by considering the verification of safety property φ3 and φ4 of the ACAS Xu

https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/cav2020/code/nnv/engine/set/ImageStar.m
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neural networks [21] for all 45 networks.2 All the experiments were done using
4 cores for computation. The results are summarized in Table 2 where (SAT)
denotes the networks are safe, (UNSAT) is unsafe, and (UNK) is unknown.
We note that (UNK) may occur due to the conservativeness of the reachability
analysis scheme. Detailed verification results are presented in the appendix of
the extended version of this paper [44]. For a fast comparison with other tools,
we also tested a subset of the inputs for Property 1–4 on all the 45 networks. We
note that the polyhedron method [40] achieves a timeout on most of networks,
and therefore, we neglect this method in the comparison.

Verification Time. For property φ3, NNV’s exact-star method is about 20.7×
faster than Reluplex, 14.2× faster than Marabou, 81.6× faster than Marabou-
DnC (i.e., divide and conquer method). The approximate star method is 547×
faster than Reluplex, 374× faster than Marabou, 2151× faster than Marabou-
DnC, and 8× faster than ReluVal. For property φ4, NNV’s exact-star method
is 25.3× faster than Reluplex, 18.0× faster than Marabou, 53.4× faster than
Marabou-DnC, while the approximate star method is 625× faster than Reluplex,
445× faster than Marabou, 1321× faster than Marabou-DnC.

Table 2. Verification results of ACAS Xu networks.

ACAS XU φ3 SAT UNSAT UNK TIMEOUT TIME(s)

1 h 2 h 10 h

Reluplex 3 42 0 2 0 0 28454

Marabou 3 42 0 1 0 0 19466

Marabou DnC 3 42 0 3 3 1 111880

ReluVal 3 42 0 0 0 0 416

Zonotope 0 2 43 0 0 0 3

Abstract Domain 0 0 45 0 0 0 8

NNV Exact Star 3 42 0 0 0 0 1371

NNV Appr. Star 0 29 16 0 0 0 52

ACAS XU φ4

Reluplex 3 42 0 0 0 0 11880

Marabou 3 42 0 0 0 0 8470

Marabou DnC 3 42 0 2 2 0 25110

ReluVal 3 42 0 0 0 0 27

Zonotope 0 1 44 0 0 0 5

Abstract Domain 0 0 45 0 0 0 7

NNV Exact Star 3 42 0 0 0 0 470

NNV Appr. Star 0 32 13 0 0 0 19

2 We omit properties φ1 and φ2 for space and due to their long runtimes, but they
can be reproduced in the artifact.
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Conservativeness. The approximate star method is much less conservative
than the zonotope and abstract domain methods. This is illustrated since it can
verify more networks than the zonotope and abstract domain methods, and is
because it obtains a tighter over-approximate reachable set. For property φ3,
the zonotope and abstract domain methods can prove safety of 2/45 networks,
(4.44%) and 0/45 networks, (0%) respectively, while NNV’s approximate star
method can prove safety of 29/45 networks, (64.4%). For property φ4, the zono-
tope and abstract domain method can prove safety of 1/45 networks, (2.22%)
and 0/45 networks, (0.00%) respectively while the approximate star method can
prove safety of 32/45, (71.11%).

4.2 Safety Verification of Adaptive Cruise Control System

To illustrate how NNV can be used to verify/falsify safety properties of learning-
enabled CPS, we analyze a learning-based ACC system [1,38], in which the ego
(following) vehicle has a radar sensor to measure the distance to the lead vehicle
in the same lane, Drel, as well as the relative velocity of the lead vehicle, Vrel.
The ego vehicle has two control modes. In speed control mode, it travels at a
driver-specified set speed Vset = 30, and in spacing control mode, it maintains
a safe distance from the lead vehicle, Dsafe. We train a neural network with 5
layers of 20 neurons per layer with ReLU activation functions to control the ego
vehicle using a control period of 0.1 s.

We investigate safety of the learning-based ACC system with two types of
plant dynamics: 1) a discrete linear plant, and 2) a nonlinear continuous plant
governed by the following differential equations:

ẋlead(t) = vlead(t), v̇lead(t) = γlead, γ̇lead(t) = −2γlead(t) + 2alead − μv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego, γ̇ego(t) = −2γego(t) + 2aego − μv2
ego(t),

where xlead(xego), vlead(vego) and γlead(γego) are the position, velocity and accel-
eration of the lead (ego) vehicle respectively. alead(aego) is the acceleration con-
trol input applied to the lead (ego) vehicle, and μ = 0.0001 is a friction param-
eter. To obtain a discrete linear model of the plant, we let μ = 0 and discretize
the corresponding linear continuous model using a zero-order hold on the inputs
with a sample time of 0.1 s (i.e., the control period).

Verification Problem. The scenario we are interested in is when the two vehi-
cles are operating at a safe distance between them and the ego vehicle is in
speed control mode. In this state the lead vehicle driver suddenly decelerates
with alead = −5 to reduce the speed. We want to verify if the neural network
controller on the ego vehicle will decelerate to maintain a safe distance between
the two vehicles. To guarantee safety, we require that Drel = xlead − xego ≥
Dsafe = Ddefault + Tgap × vego where Tgap = 1.4 s and Ddefault = 10. Our anal-
ysis investigates whether the safety requirement holds during the 5 s after the
lead vehicle decelerates. We consider safety of the system under the following
initial conditions: xlead(0) ∈ [90, 92], vlead(0) ∈ [20, 30], γlead(0) = γego(0) = 0,
vego(0) ∈ [30, 30.5], and xego ∈ [30, 31].



NNV: The Neural Network Verification Tool 11

Table 3. Verification results for ACC system with different plant models, where V T
is the verification time (in seconds).

v lead(0) Linear plant Nonlinear plant

Safety V T (s) Safety V T (s)

[29, 30] SAFE 9.60 UNSAFE 346.62

[28, 29] SAFE 9.45 UNSAFE 277.50

[27, 28] SAFE 9.82 UNSAFE 289.70

[26, 27] UNSAFE 17.80 UNSAFE 315.60

[25, 26] UNSAFE 19.24 UNSAFE 305.56

[24, 25] UNSAFE 18.12 UNSAFE 372.00

Verification Results. For linear dynamics, NNV can compute both the exact
and over-approximate reachable sets of the ACC system in bounded time steps,
while for nonlinear dynamics, NNV constructs an over-approximation of the
reachable sets. The verification results for linear and nonlinear models using the
over-approximate star method are presented in Table 3, which shows that safety
of the ACC system depends on the initial velocity of the lead vehicle. When
the initial velocity of the lead vehicle is smaller than 27 (m/s), the ACC system
with the discrete plant model is unsafe. Using the exact star method, NNV can
construct a complete set of counter-example inputs. When the over-approximate
star method is used, if there is a potential safety violation, NNV simulates the
system with 1000 random inputs from the input set to find counter examples. If
a counterexample is found, the system is UNSAFE, otherwise, NNV returns a
safety result of UNKNOWN. Figure 3 visualizes the reachable sets of the relative
distance Drel between two vehicles versus the required safe distance Dsafe over
time for two cases of initial velocities of the lead vehicle: vlead(0) ∈ [29, 30] and
vlead(0) ∈ [24, 25]. We can see that in the first case, Dref ≥ Dsafe for all 50
time steps stating that the system is safe. In the second case, Dref < Dsafe in
some control steps, so the system is unsafe. NNV supports a reachLive method
to perform analysis and reachable set visualization on-the-fly to help the user
observe the behavior of the system during verification.

The verification results for the ACC system with the nonlinear model are
all UNSAFE, which is surprising. Since the neural network controller of the
ACC system was trained with the linear model, it works quite well for the linear
model. However, when a small friction term is added to the linear model to form a
nonlinear model, the neural network controller’s performance, in terms of safety,
is significantly reduced. This problem raises an important issue in training neural
network controllers using simulation data, and these schemes may not work in
real systems since there is always a mismatch between the plant model in the
simulation engine and the real system.

Verification Times. As shown in Table 3, the approximate analysis of the ACC
system with discrete linear plant model is fast and can be done in 84 s. NNV
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Fig. 3. Two scenarios of the ACC system. In the first (top) scenario (vlead(0) ∈
[29, 30] m/s), safety is guaranteed, Drel ≥ Dsafe. In the second scenario (bottom)
(vlead(0) ∈ [24, 25] m/s), safety is violated since Dref < Dsafe in some control steps.

also supports exact analysis, but is computationally expensive as it constructs
all reachable states. Because there are splits in the reachable sets of the neu-
ral network controller, the number of star sets in the reachable set of the plant
increases quickly over time [38]. In contrast, the over-approximate method com-
putes the interval hull of all reachable sets at each time step, and maintains a
single reachable set of the plant throughout the computation. This makes the
over-approximate method faster than the exact method. In terms of plant mod-
els, the nonlinear model requires more computation time than the linear one. As
shown in Table 3, the verification for the linear model using the over-approximate
method is 22.7× faster on average than of the nonlinear model.

5 Related Work

NNV was inspired by recent work in the emerging fields of neural network and
machine learning verification. For the “open-loop” verification problem (verifica-
tion of DNNs), many efficient techniques have been proposed, such as SMT-based
methods [22,23,30], mixed-integer linear programming methods [14,24,28], set-
based methods [4,17,32,33,48,50,53,57], and optimization methods [51,58]. For
the “closed-loop” verification problem (NCCS verification), we note that the
Verisig approach [20] is efficient for NNCS with nonlinear plants and with Sig-
moid and Tanh activation functions. Additionally, the recent regressive polyno-
mial rule inference approach [34] is efficient for safety verification of NNCS with
nonlinear plant models and ReLU activation functions. The satisfiability mod-
ulo convex (SMC) approach [35] is also promising for NNCS with discrete linear



NNV: The Neural Network Verification Tool 13

plants, as it provides both soundness and completeness guarantees. ReachNN [19]
is a recent approach that can efficiently control the conservativeness in the reach-
ability analysis of NNCS with nonlinear plants and ReLU, Sigmoid, and Tanh
activation functions in the controller. In [54], a novel simulation-guided approach
has been developed to reduce significantly the computation cost for verifica-
tion of NNCS. In other learning-enabled systems, falsification and testing-based
approaches [12,13,45] have shown a significant promise in enhancing the safety
of systems where perception components and neural networks interact with the
physical world. Finally, there is significant related work in the domain of safe
reinforcement learning [2,15,47,59], and combining guarantees from NNV with
those provided in these methods would be interesting to explore.

6 Conclusions

We presented NNV, a software tool for the verification of DNNs and learning-
enabled CPS. NNV provides a collection of reachability algorithms that can be
used to verify safety (and robustness) of real-world DNNs, as well as learning-
enabled CPS, such as the ACC case study. For closed-loop systems, NNV can
compute the exact and over-approximate reachable sets of a NNCS with lin-
ear plant models. For NNCS with nonlinear plants, NNV computes an over-
approximate reachable set and uses it to verify safety, but can also automatically
falsify the system to find counterexamples.
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26. Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-parametric toolbox
(MPT). In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 448–
462. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 30
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