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1 Introduction

This paper grew out of a seminar at the Department of Mathematics at
the ETH, Zürich during the Summer Semester of 1995 on the subject of
mathematical finance and insurance mathematics. It should be viewed as
a contribution towards bridging the existing methodological gap between
both fields, especially in the area of pricing derivative instruments. Both
insurance and finance are interested in the fair pricing of financial products.
For instance, in the case of car insurance, depending on the various char-
acteristics of the driver, a so-called net premium is calculated which should
cover the ecpected losses over the period of the contract. To this net pre-
mium, various loading factors (for costs, fluctuations, . . . ) are added. The
resulting gross premium is also subject to market forces which imply that a
market-conform premium is finally charged. The more an insurance market
is liquid (many potential offers of insurance, deregulated markets), the more
a “correct, fair” price may be expected to emerge. Very important in the
process of determining the above premium is the attitude of both parties
involved towards risk. Within the more economic literature this attitude
towards risk can be described through the notion of utility. Utility the-
ory enters as a tool to provide insight into decision making in the face of
uncertainty. For a very readable introduction within the context of insur-
ance, see Bowers et al. (1989). An alternative economic tool is equilibrium
theory. Depending on the economic theory used, a multitude of possible
premiums may result, one of which is the time-honoured Esscher principle.
Rather than being based on the expected loss itself, the Esscher principle
starts from the expectation of the loss under an exponentially transformed
distribution, properly normalised. In Bühlmann (1980, 1983), the Esscher
principle is discussed within the utility and equilibrium framework. Besides
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the pricing of individual risks (claims, say), more complicated insurance
products involve time and hence are based on specific stochastic processes.
The classical insurance risk processes are of the compound Poisson type or
their generalisations like mixed and doubly stochastic compound Poisson
processes. The main feature of such processes, making them distinct from
the typical diffusion type models in finance, is their jump structure. Indeed,
when we turn to fair pricing in finance, the standard reasoning uses the so-
called no-arbitrage (or no free lunch) approach which says that there is no
such thing as a riskless gain. The precise mathematical formulation of this
economic principle brings in the by now fundamental notion of risk neutral
martingale measure. In the case where the underlying stochastic process is
“nice” (geometric Brownian motion say), exactly one such measure exists
and the fair price of a contingent claim is the expectation with respect to
this measure, properly discounted. The latter, so-called complete case is
rare in insurance. Due to the jump structure of standard risk processes, we
are in the so-called incomplete case. As a consequence, risk cannot fully be
hedged away and in most cases, there will be infinitely many such equivalent
martingale measures so that pricing is directly linked to an attitude towards
risk. Whereas in classical insurance, the question becomes “which premium
principle to use,” within the (incomplete) finance context it becomes “which
equivalent martingale measure to use.” This is exactly the point where the
Esscher transform enters as one of the possible pricing candidates. Going
back to a fundamental paper of Esscher (1932), the Esscher transform is
by now standard methodology in insurance, gradually however its appear-
ance within mathematical finance is becoming more and more prominent:
see for instance the beautiful paper by Gerber and Shiu (1994) and the ref-
erences and discussions therein. An interesting paper, coming more from
the realm of mathematical finance is Grandits (1996). The present paper
should be looked at in conjunction with Bühlmann et. al. (1996) where
special attention is given to discrete models. As explained above, typical
insurance processes involve a jump component besides a possible diffusion
term. It is therefore natural to present the necessary mathematical method-
ology needed for discussing pricing within both insurance and finance within
the wider theory of semi-martingales. This is exactly what is done in the
present paper. The classical notion of Esscher transform for distribution
functions is generalised to stochastic processes. For a discussion of Esscher
transform in a distributional context, see Jensen (1995). In Embrechts et.
al. (1985) an application to the approximation of the total claim amount
distribution in the compound Poisson and negative binomial case is given.
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1.1 Some notation

Suppose that a financial process (stock returns, spot rates, zero coupon
bonds, value of a derivative instrument, . . . ) S = (St)t≥0 is given on a
filtered probability space (Ω,F , (F t)t≥0, P ) where F = (F t)t≥0 denotes the
“flow of information.” Mathematically the latter means that F consists of an
increasing family of sub σ- algebras, i.e. for all s ≤ t, Fs ⊂ Ft ⊂ F . Assume
further that S is of “exponential form,”

St = S0 e
Ht , H0 = 0, t ≥ 0, (1)

where H = (Ht)t≥0 is a semimartingale with respect to F andP . The latter
will be denoted by H ∈ Sem (F, P ) or H ∈ Sem (P ).We remark that the
notion of semimartingale does not depend on the measure P . More precisely,
if Q ∼ P are two equivalent probability measures, then Sem (P) = Sem
(Q). For a precise definition see for instance Jacod and Shiryaev (1987) and
Rogers and Williams (1987). Using Itô’s formula for f ∈ C2, one obtains:

f(Ht) = f(H0) +
∫ t

0
f ′(Hs−)dHs +

1
2

∫ t

0
f ′′(Hs−)d〈Hc〉s

+
∑

0<s≤ t

[
f(Hs)− f(Hs−)− f ′(Hs−)∆Hs

]
(2)

where ∆Hs = Hs −Hs− and 〈Hc〉 is a quadratic characteristic of the con-
tinuous martingale part Hc of H. Hence for the case (1) above:

dSt = St−dĤt (3)

with

Ĥt = Ht +
1
2
〈Hc〉t +

∑
0<s≤t

(e∆Hs − 1−∆Hs). (4)

In the class of semimartingales the linear equation (3) has a unique solution:

St = S0 E(Ĥ)t (5)

where E(Ĥ) is called the Doléans stochastic exponential

E(Ĥ)t = exp
{
Ĥt −

1
2
〈Ĥc〉t

} ∏
0<s≤t

(1 + ∆Ĥs)e−∆Ĥs . (6)

It should be remarked that for every semimartingale H = (Ht), with prob-
ability one, ∑

0<s≤ t
|∆Hs|2 < ∞, ∀t > 0. (7)

From (7) it immediately follows that for each t > 0, there are only finitely
many time points s ≤ t such that |∆Hs| > 1

2 . Consequently, the infinite
sums and products in (4) and (6) are absolutely convergent and hence Ĥ
and E(Ĥ) are well defined.
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1.2 Discrete time

Consider the set-up (1) but now in discrete time,

Sn = S0 e
Hn , H0 = 0, n = 0, 1, 2, · · · (8)

where H = (Hn)n≥ 0 is a stochastic sequence defined on a filtered probabil-
ity space (Ω,F , (Fn)n≥ 0, P ). Clearly, (8) can formally be considered as a
special case of (1) by defining

Ft = Fn , Ht = Hn , n ≤ t < n+ 1.

Put

Ĥn =
∑

0<k≤n
(e∆Hk − 1) (9)

(to be compared with (4)), then we obtain

Sn = S0

∏
0<k≤n

(1 + ∆Ĥk) = S0E(Ĥ)n. (10)

The latter should be compared with (5) and (6). In the sequel we denote

hk = ∆Hk(= Hk −Hk−1)

and

ĥk = ∆Ĥk(= Ĥk − Ĥk−1).

Recall that

hk = ln
Sk
Sk−1

and hence can be viewed as a compound return, whereas

ĥk =
Sk
Sk−1

− 1 =
∆Sk
Sk−1

= ehk − 1

stands for simple return. Using this terminology and the correspondances
stated above, (1) can be viewed as a continuous model for compound return,
whereas (5) is the continuous analogon of simple return. It is useful to
remark that the representation (1) lends itself naturally for statistical data
analysis. However, with respect to probabilistic analysis, the representation
(5) turns out to be more advantageous. An example of the latter is the
following: E(Ĥ) is a local martingale if Ĥ is a local martingale.
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1.3 No-arbitrage and equivalent martingale measures.

The “equivalence,” of the notions no-arbitrage, no free lunch and the exis-
tence of equivalent martingale measures belongs to the folklore of mathemat-
ical finance. The key underlying idea is the local equivalence of martingale
measures, i.e. P̃ loc∼ P on (Ω,F) meaning that for each t > 0, P̃t ∼ Pt (equiv-
alence of probability measures) where Pt = P |Ft, P̃t = P̃ |Ft and such that
S = (St) is a martingale or local martingale with respect to P̃.

In discrete time, n = 0, 1, . . . , N , the precise formulation of the above
is as follows.
Equivalent are

(a) no-arbitrage, and

(b) there exists a probability measure P̃ on (Ω,F) so that P̃N ∼ PN and
S = (Sn)n≤N is a P̃N -martingale.

In the continuous time case, the situation is much more delicate. A solution
is to be found in Delbaen and Schachermayer (1994) and (1996) and the
references therein. Independent of the precise equivalence statements, the
construction of all equivalent martingale measures in a particular situation
is important. A slightly less ambitious goal would be the construction of
certain subclasses. The main aim of our paper is exactly the solution of this
technical problem. We shall also discover the so-called conditional Esscher
transform as a special case of the change of measure paradigm in stochastic
calculus.

2 Some facts about semimartingales

2.1 Definition

Below we summarise the basic definitions and results concerning semimartin-
gale theory of relevance in insurance and finance. The càdlàg (right-contin-
uous with left limits) stochastic process H = (Ht)t≥ 0 defined on a fil-
tered probability space (Ω,F , (Ft)t≥ 0, P ) is a semimartingale if H admits
a canonical decomposition

Ht = H0 +At +Mt, t ≥ 0, (11)

where A = (At) ∈ V (a process of bounded variation), M = (Mt) ∈ Mloc

(a local martingale). Furthermore, we have that for each t ≥ 0, At and Mt

are Ft-measurable.
We recall that M ∈ Mloc if and only if there exists a sequence of
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(F t)t≥ 0-stopping times (τn)n≥ 1 such that τn ↑ ∞ (P -a.s.) for n → ∞ and
for each n ≥ 1, the stopped process

M τn = (M τn
t ) with M τn

t = Mt∧ τ n , n ≥ 1,

is a martingale:

E|M τn
t | < ∞, E(M τn

t |Fs) = M τn
s (P − a.s.), s ≤ t.

We would like to stress that local martingales are more than just martingale
modulo boundedness conditions. Indeed, there exist local martingales pos-
sessing strong integrability properties which nonetheless are not martingales.
See for instance Revuz and Yor (1994), Chapter V , Exercise (2.13) where a
local martingale is given, bounded in L2, but which is not a martingale. In
the case of discrete time, we have the following nice characterisation
of local martingales; see for instance Jacod and Shiryaev (1987), Chap-
ter 1, 1.64 or Liptser and Shiryaev (1986), Chapter VII, §1. Let X =
(Xn)n≥ 0 be a stochastic sequence defined on a filtered probability space
(Ω,F , (Fn)n≥ 0, P ). X is assumed adapted, i.e. Xn is Fn-measurable for all
n ≥ 0 and E|X0| <∞. Then the following conditions are equivalent:

(1) X is a local martingale,

(2) X is a martingale transformation, i.e. there exists a martingale Y =
(Yn) and a predictable sequence V = (Vn) (meaning that for each
n ≥ 1, Vn is Fn−1-measurable) such that for n ≥ 1:

Xn = X0 +
∑

0<k≤n
Vk∆Yk, ∆Yk = Yk − Yk−1,

(3) X is a generalised martingale, i.e.

E(|Xn| |Fn−1) < ∞, n ≥ 1,

and
E(Xn| Fn−1) = Xn−1.

(The key point in the latter conditions is that we do not assume
integrability of Xn, n ≥ 1)

Remark : The condition (2) above can be interpreted as Xn is the value of a
trading strategy V on an underlying asset Y . This shows that the notion
of local martingales lies at the heart of stochastic processes in finance and
insurance. Unfortunately, the continuous time analogue of the above result
is false.
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2.2 Semimartingale representations

Denote by µ = µ(ω; ds, dx)(or dµ) the measure describing the jump struc-
ture of H:

µ(ω; (0, t, ]× A) =
∑

0<s≤ t
I(∆Hs(ω) ∈ A), t > 0.

where A ∈ B(R \ {0}),∆Hs = Hs −Hs− and I(·) stands for the indicator
function. By ν = ν(ω; ds, dx) (or dv) we denote a compensator of µ, i.e. a
predictable measure (see Jacod and Shiryaev (1987), Chapter II, 1.8) with
the property that µ− ν is a local martingale measure. This means that for
each A ∈ B(R \ {0}):(

µ(ω; (0, t] × A)− ν(ω; (0, t] × A)
)
t> 0

is a local martingale with value 0 for t = 0. The latter property is almost
equivalent to the local martingale property of the signed measure µ−ν. We
shall not enter into the subtle difference here.

A semimartingale H = (Ht)t≥ 0 is called special if there exists a de-
composition (11) with a precticable process A = (At)t≥ 0. See Jacod and
Shiryaev (1987) where it is also shown that every semimartingale with
bounded jumps (|∆Ht(ω)| ≤ b <∞, ω ∈ Ω, t > 0) is special.

Let ϕ be a truncation function, e.g. ϕ(x) = xI(|x| ≤ 1). Then ∆Hs −
ϕ(∆Hs) 6= 0 if and only if |∆Hs| > b for some b > 0. Hence

∨
H(ϕ)t =

∑
0<s≤ t

(∆Hs − ϕ(∆Hs))

denotes the jump part of H corresponding to big jumps. The number of the
latter is still finite on [0, t], for all t > 0, because for all semimartingales∑

0<s≤ t
(∆Hs)2 <∞, P − a.s.

The process H(ϕ) = H−
∨
H(ϕ) is a semimartingale with bounded jumps and

hence it is special:

H(ϕ)t = H0 +B(ϕ)t +M(ϕ)t (12)

where B(ϕ) is a predictable process and M(ϕ) is a local martingale.
Every local martingale M(ϕ) can be decomposed as:

M(ϕ) = M c(ϕ) +Md(ϕ) (13)
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where M c(ϕ) is a continuous (martingale) part and Md(ϕ) is a purely dis-
continuous (martingale) part,

Md(ϕ)t =
∫ t

0

∫
ϕ(x)d(µ− ν). (14)

More details, including a proof of (14), are to be found in Jacod and Shiryaev
(1987), Chapter II, 2.34. It is clear that

∨
H(ϕ)t =

∫ t

0

∫
(x− ϕ(x))dµ. (15)

Consequently H has the following canonical representation:

Ht = H0 +B(ϕ)t +M c(ϕ)t +∫ t

0

∫
ϕ(x)d(µ− ν) +

∫ t

0

∫
(x− ϕ(x))dµ, (16)

a formula going back to Lévy and Khintchin.
The continuous martingale part M c(ϕ) does not depend on ϕ and will be
denoted by Hc (the continuous martingale part of H). Consequently,

Ht = H0 +B(ϕ)t +Hc
t +

∫ t

0

∫
ϕ(x)d(µ− ν)

+
∫ t

0

∫
(x− ϕ(x))dµ. (17)

Denote by 〈Hc〉 a predictable quadratic characteristic of Hc, i.e. (Hc)2 −
〈Hc〉 is a local martingale.

We finally arrive at the triplet of predictable characteristics of the semi-
martingale H:

T (ϕ) = (B(ϕ), 〈Hc〉, ν).

In the case ϕ(x) = xI(|x| ≤ 1) we denote B = B(ϕ). Then (17) takes on
the form:

Ht = H0 +Bt +Hc
t +

∫ t

0

∫
|x| ≤ 1

xd(µ− ν)

+
∫ t

0

∫
|x|> 1

xdµ. (18)

In Jacod and Shiryaev (1987), Chapter II, 2 it is shown that if H is a
semimartingale, then

∆B(ϕ)t(ω) =
∫
ϕ(x)ν(ω; {t} × dx),
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where
ν(ω; {t} × dx) = ν(ω; (0, t] × dx)− ν(ω; (0, t) × dx)

and
(x2 ∧ 1) ∗ ν ∈ Aloc,

i.e. the process (
∫ t

0

∫
(x2 ∧ 1)dν)t≥ 0 is locally integrable in so far that there

exist stopping times τn ↑ ∞ as n→∞, such that for n ≥ 1

E
( ∫ τn

0

∫
(x2 ∧ 1)dν

)
<∞.

Using this notation, H turns out to be a special semimartingale if and only
if

(x2 ∧ |x|) ∗ ν ∈ Aloc.
Further, H is a square integrable semimartingale if and only if

x2 ∗ ν ∈ Aloc.

If H is a special semimartingale, then the canonical representation (17) is
valid with ϕ(x) = x, i.e.

Ht = H0 +Bt +Hc
t +

∫ t

0

∫
xd(µ− ν), t ≥ 0, (19)

with B = B(ϕ).

There are various reasons why semimartingales play a fundamental role in
insurance and finance (and indeed in many more applications):

(i) They form a wide class of processes including stochastic sequences
in discrete time, martingales, super- and sub-martingales, diffusion
processes, diffusions with jumps, processes with independent incre-
ments (if for every λ ∈ R, (EeiλHt)t≥ 0 has bounded variation). This
is especially important in the intersection of insurance and finance
where models involving both a diffusion component as well as a jump
component are relevant.

(ii) They form the most general class of stochastic processes for which a
stochastic integration theory can be worked out, the latter is a conse-
quence of the famous Bichteler, Dellacherie, Kussmaul, Métivier and
Pellaumail theorem (see Rogers and Willliams (1987), Section IV. 16).
A full stochastic calculus, including Itô’s lemma for semimartingales
exists.
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(iii) The knowledge that a stochastic process is not a semimartingale may
have important implications in finance in so far that then often explicit
arbitrage strategies can be worked out. A typical example concerning
so-called fractional Brownian motion is to be found in Rogers (1995).
See also Delbaen and Schachermayer (1994) where it is shown that
a very weak form of the no-arbitrage property implies that the price
process is already a semimartingale.

2.3 Examples

2.3.1 Discrete time

In this case we don’t really need the heavy semimartingale machinery, we
only include this case for illustrative purposes. Consider the stochastic se-
quence H = (Hn)n≥ 0 with hn = ∆Hn = Hn −Hn−1.
Hence

Hn = H0 +
∑

0<k≤n
hk

= H0 +
∑

0<k≤n
ϕ(hk) +

∑
0<k≤n

(hk − ϕ(hk)) (20)

= H0 +
∑

0<k≤n
E[ϕ(hk)|Fk−1]

+
∑

0<k≤n
(ϕ(hk)− E[ϕ(hk)|Fk−1]) +

∑
0<k≤n

(hk − ϕ(hk)).

Define for all A ∈ B(R\ {0}), k ≥ 0 :

µk(A) = I(hk ∈ A) = I(∆Hk ∈ A),
νk(A) = E[I(hk ∈ A)|Fk−1] = P (hk ∈ A|Fk−1),

where conditional expectations are always taken as regular versions. Then

µ(ω; (0, n] × A) =
∑

0<k≤n
µk(A),

ν(ω; (0, n] × A) =
∑

0<k≤n
νk(A),

yielding the canonical representation (see (17))

Hn = H0 +B(ϕ)n +
∑

0<k≤n

∫
ϕ(x)d(µk − νk)

+
∑

0<k≤n

∫
(x− ϕ(x))dµk, (21)
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where

B(ϕ)n =
∑

0<k≤n

∫
ϕ(x)dνk. (22)

(We could have written νk(dx) for dνk etc.) Because there is no continuous
part, the characteristic triplet reduces to

T (ϕ) = (B(ϕ), 0, ν) (23)

where
B(ϕ) = (B(ϕ)n)n≥ 0, ν = (νn)n≥ 1.

2.3.2 Processes with independent increments (I.I.)

A process H = (Ht)t≥ 0 with I.I. is a semimartingale if and only if for each
λ ∈ R, (Eei λHt)t≥ 0 is a function of bounded variation. For a proof, see
Jacod and Shiryaev (1987), Chapter II, 4.14. A remarkable fact for such
processes is that their triplet of predictable characteristics only has deter-
ministic components. If H = (Ht) is continuous in probability, then B(ϕ)t,
< Hc >t and ν((0, t] × dx) are continuous in t and the Lévy–Khintchin
formula yields

E exp{iλ(Ht −H0)} = exp {iλB(ϕ)t −
λ2

2
Ct

+
∫ t

0

∫
(eiλx − 1− iλϕ(x))ν(ds × dx)} (24)

where Ct =< Hc >t is the variance of the continuous Gaussian part of H,
and B(ϕ) and ν are the first and third component in the triplet T (ϕ) =
(B(ϕ), < Hc >, ν) of H written in semimartingale form. If the I.I. process
is moreover homogeneous (stationary), also referred to as a Lévy process,
then

B(ϕ)t = tb(ϕ)
Ct = tC (25)

ν(dt × dx) = dt × F (dx)

where F is a distribution function on R. For a textbook treatment of Lévy
processes, see Bertoin (1996). Hence in this case the triplet T (ϕ) is reduced
to (b(ϕ), C, F (dx)).
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2.3.3 Brownian motion with drift and Poisson jumps

Suppose that

Ht = bt+ σWt +
Nt∑
k=1

ξk (26)

where ξ, ξ1, ξ2, . . . are i.i.d. random variables with F (x) = P (ξ ≤ x),
N = (Nt)t≥ 0 is a homogeneous Poisson process with intensity λ > 0, and
W = (Wt)t≥ 0 is standard Brownian motion. Suppose furthermore that the
processes W , N and (ξi) are jointly independent. In this formulation, H in
(26) in the recent literature either occurs as a classical risk process perturbed
by Browian motion (see Gerber (1970)) or as a model for catastrophic in-
surance futures (see for instance Cummins and Geman (1995))
Then

Ht = bt+ σWt +
Nt∑
k=1

ξk (27)

= bt+ σWt +
∫ t

0

∫
xdµ

= (bt+
∫ t

0

∫
ϕ(x)dν) + (σWt +

∫ t

0

∫
ϕ(x)d(µ− ν))

+(
∫ t

0

∫
(x− ϕ(x))dµ)

= t(b+ λ

∫
ϕ(x)F (dx)) + (σWt +

∫ t

0

∫
ϕ(x)d(µ− ν))

+(
∫ t

0

∫
(x− ϕ(x))dµ).

Consequently,
T (ϕ) = (B(ϕ), 〈Hc〉, ν)

where

B(ϕ)t = t(b+ λ

∫
ϕ(x)F (dx)),

< Hc >t = σ2t, (28)
dν = λdtF (dx).
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2.3.4 Diffusion processes with jumps.

These processes can be viewed as semimartingales with predictable charac-
teristic triplet T (ϕ) = (B(ϕ), C, ν) where

B(ϕ)t =
∫ t

0
b(s,Hs)ds, (b = Bϕ),

Ct =
∫ t

0
C(s,Hs)ds (29)

ν(ω; dt × dx) = dt × Kt(Hs(ω), dx),

where Kt(x, dy) is a Borel transition kernel from R+ × R in R; see Jacod
and Shiryaev (1987), Chapter III, 2.

2.4 Conditional Esscher transforms

Consider a semimartingale H = (Ht)t≥ 0 with triplet T = (B,C, ν) where we
dropped for notational convenience the dependence on ϕ. Also for simplicity,
we take ϕ(x) = xI(|x| ≤ 1). We first introduce the cummulant process
A(u) = (A(u)t)t≥ 0 associated with H:

A(u)t = iuBt −
1
2
u2Ct +

∫
(ei u x − 1− iuϕ(x))ν

(
(0, t] × dx

)
. (30)

Suppose that ∆A(u) 6= −1, then the stochastic exponentialG(u) = E(A(u))
defined in (6) cannot take zero values. Now define the process

Xt(u) =
ei uHt

E(A(u))t
, t ≥ 0. (31)

An important property of semimartingales is the following characterisation:

H is a semimartingale with triplet (B,C, ν)

if and only if (32)

X = (Xt(u))t≥0 is a local martingale for every u ∈ R;

see Jacod and Shiryaev (1987), Chapter II, 2.49. For discrete time processes,
(30) reduces to

∆A(u)n =
∫

(ei u x − 1)νn(dx) = E(eiuhn − 1|Fn−1). (33)
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However, in this case (6) implies that

E(A(u))n =
∏

0<k≤n
(1 + ∆A(u)k),

=
∏

0<k≤n
E(eiuhn |Fn−1).

Hence in discrete time for a stochastic sequence H = (Hn) with ∆Hn = hn
and so that E(eiuhn |Fn−1) 6= 0, n ≥ 1, the sequence(

ei uHn∏
0<k≤n E(ei u h k |Fk−1)

)
n≥ 1

(34)

is a local martingale. Of course we don’t need the deep characterisation
result (32) in order to prove (34), a more direct argument can be given in
this case. Similarly, suppose Eeakhk < ∞, k ≥ 1, for some constants
a1, a2, . . . , then the sequence Z = (Zn)n≥ 1 with Z0 = 1 and

Zn =
∏
k≤n

eakhk

E(eakhk |Fk−1)
, n ≥ 1 , (35)

is a martingale. The latter follows immediately from the adaptiveness of H
and elementary properties of conditional expectation. Property (35) allows
us to construct a family of measures {P̃N} such that dP̃N = ZNdPN and
P̃N = P̃N+1|FN . The conditional distribution

P̃N (hN ∈ A|FN−1) = E

[
IA(hN )

eaN hN

E(eaN hN |FN−1)

∣∣FN−1

]
(36)

is called the conditional Esscher transform. In the traditional actuarial con-
text, the hi’s are independent and hence (36) reduces to an unconditional
expectation, the Esscher transform:

P̃N (hN ∈ A) = E

[
IA(hN )

eaN hN

EeaN hN

]
. (37)

3 Predictable Conditions for S ∈Mloc (P ), S ∈M (P )

3.1 One asset.

In order to investigate whether S ∈M(P ) (i.e. S is a P -martingale) it may
be more convenient to first look for conditions so that S ∈Mloc(P ) (i.e. S is
a local P -martingale) and then use the result in Jacod and Shiryaev (1987),
Chapter I, 1.47 that a local martingale S is a uniformly integrable martingale
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if and only if S belongs to the class (D), that is the set of random variables
{ST : T finite stopping time} is uniformly integrable. We hence start with
the representation (5), i.e.

St = S0E(Ĥ)t
and use the property (see Section 1.2) that

S ∈Mloc (P ) if and only if Ĥ ∈Mloc (P ). (38)

From (4) and (17) we obtain:

Ĥt = Ht +
1
2
〈Hc〉t +

∫ t

0

∫
(ex − 1− x)dµ

= H0 +B(ϕ)t +Hc
t +

1
2
〈Hc〉t +

∫ t

0

∫
ϕ(x)d(µ− ν) (39)

+
∫ t

0

∫
(x− ϕ(x))dµ+

∫ t

0

∫
(ex − 1− x)dµ

= H0 +B(ϕ)t +Hc
t +

1
2
〈Hc〉t +

∫ t

0

∫
ϕ(x)d(µ− ν)

+
∫ t

0

∫
(ex − 1− ϕ(x))dµ.

Suppose now that |ex − 1− ϕ(x)| ∗ ν ∈ Aloc (i.e. the process (
∫ t

0

∫
|ex − 1

− ϕ(x)|dν)t≥ 0 is locally integrable), then∫ t

0

∫
(ex − 1− ϕ(x))dµ =

∫ t

0

∫
(ex − 1− ϕ(x))dν

+
∫ t

0

∫
(ex − 1− ϕ(x))d(µ− ν), (40)

where the last integral is a local martingale; see Jacod and Shiryaev (1987),
Chapter II, 1.28 and Liptser and Shiryaev (1986), Chapter III, § 5. Hence
from (39),

Ĥt = H0 +B(ϕ)t +Hc
t +

1
2
〈Hc〉t +

∫ t

0

∫
(ex − 1− ϕ(x))dν

+
∫ t

0

∫
(ex − 1− ϕ(x))d(µ− ν) +

∫ t

0

∫
ϕ(x)d(µ− ν)

= H0 +Kt +Hc
t +

∫ t

0

∫
(ex − 1)d(µ− ν),

where (see (30))

Kt = A(−i)t = B(ϕ)t +
1
2
〈Hc〉t

+
∫ t

0

∫
(ex − 1− ϕ(x))dν. (41)
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Therefore Ĥt = Kt + (local martingale)t. Since K = (Kt) is a predictable
process, it follows that

Ĥ ∈Mloc (P ) if and only if K ≡ 0.

See Jacod and Shiryaev (1987), Chapter I,3.16 and Liptser and Shiryaev
(1986), Chapter I,6, Theorem 4 for more details.

3.2 Two assets

Suppose that we now have a second asset S0 = (S0
t )t≥ 0 with

S0
t = S0

0 e
H0
t · (42)

Similar to the discussions above (see (4)) we introduce

Ĥ0
t = H0

t +
1
2
〈H0c〉t +

∑
0<s≤ t

(e∆H0
s − 1−∆H0

s ) (43)

and obtain
S0
t = S0

0 E(Ĥ0)t.

Therefore

St
S0
t

=
S0

S0
0

E(Ĥ)t
E(Ĥ0)t

. (44)

It is now easy to check by Itô’s formula that

E(Ĥ0)−1
t = E(−Ĥ∗)t (45)

where

Ĥ∗t = Ĥ0
t − 〈Ĥ0c〉t −

∑
0<s≤ t

(∆Ĥ0
s )2

1 + ∆Ĥ0
s

· (46)

From (44) and (45) we obtain that

St
S0
t

=
S0

S0
0

E(Ĥt) E (−Ĥ∗)t. (47)

If in general U, V ∈ Sem(P ), then the so-called Yor addition formula (see
for instance Rogers and Williams (1987), Section IV. 19) yields

E(U)E(V ) = E(U + V + [U, V ]) (48)
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where the quadratic covariation process

[U, V ]t = 〈U c, V c〉t +
∑

0<s≤ t
∆Us∆Vs. (49)

So from (47), (48):

St
S0
t

=
S0

S0
0

E(Ĥ − Ĥ∗ + [Ĥ,−Ĥ∗])t.

It is not difficult to check that

Ĥ − Ĥ∗ + [Ĥ,−Ĥ∗] = Ĥ − Ĥ0 + 〈Ĥ0c − Ĥc, Ĥ0c〉

+
∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)

1 + ∆Ĥ0
·

If S0 stands for a riskless asset, i.e. H0 is predictable, then Ĥ0c = H0c = 0
and

St
S0
t

=
S0

S0
0

E
(
Ĥ − Ĥ0 +

∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)
1 + ∆Ĥ0

)
. (50)

Hence
S

S0
∈Mloc(P )

if and only if (51)

Ĥ − Ĥ0 +
∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)

1 + ∆Ĥ0
∈Mloc(P )

The result (51) can be very useful in finding sufficient conditions for S/S0

to be a local P -martingale. For instance, if ∆Ĥ0 = 0, then Ĥ0
t = H0

t (we
suppose that H0 is predictable) and we obtain

Kt −H0
t ≡ 0 implies

S

S0
∈Mloc(P ). (52)

Also, if ∆Ĥ = ∆Ĥ0, then

Kt −H0
t −

∑
0<s≤ t

(e∆H0
t − 1−∆H0

s ) ≡ 0

implies (53)

S

S0
∈Mloc(P ).
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3.3 Examples

3.3.1 Discrete time.

In the case of discrete time

Ĥ − Ĥ0 +
∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)

1 + ∆Ĥ0
=
∑ ∆Ĥ −∆Ĥ0

1 + ∆Ĥ0
,

so that because of (51),
S

S0
∈Mloc(P )

if and only if

∑
k≤n

ĥk − ĥ0
k

1 + ĥ0
k

∈Mloc(P ) · (54)

However ĥk = ehk − 1, ĥ0
k = eh

0
k − 1, so that by Fk−1-measurability of h0

k we
obtain the following sufficient condition

E(ehk |Fk−1) = eh
0
k , k ≥ 1 implies

S

S0
∈Mloc(P ).

3.3.2 Processes with independent increments

Suppose that H = (Ht)t≥ 0 is a process with independent increments, the
triplet T (ϕ) given by (25) and let Ĥ0

t = rt. Then

Kt = t
(
b(ϕ) +

C

2
+
∫

(ex − 1− ϕ(x))F (dx)
)
,

so that

b(ϕ) +
C

2
+
∫

(ex − 1− ϕ(x))F (dx) = r implies
S

S0
∈Mloc(P ).

3.3.3 Brownian motion with drift and Poisson jumps

For the notation, see section 2.3.3. In this case

Kt = t
(
b+

σ2

2
+ λ

∫
(ex − 1)F (dx)

)
,

whence

b+
σ2

2
+ λE(eξ − 1) = τ implies

S

S0
∈Mloc(P ).

18



4 Predictable conditions for the existence of a lo-
cally equivalent probability measure P̃ such that
S ∈Mloc(P̃ ), S ∈M (P̃ )

4.1 General results

If we have a measure P̃ loc∼ P , then the likelihood (Radon–Nikodym deriva-
tive) process Z = (Zt)t≥0 with

Zt =
dP̃t
dPt

(55)

is strictly positive (Zt > 0, P and P̃ -a.s., t ≥ 0; see for instance Rogers
and Williams 1987, Theorem IV, 17.1. We therefore can define the process
M = (Mt)t≥0 as follows:

Mt =
∫ t

0

dZs
Zs−

, (56)

which satisfies M ∈Mloc(P ). Since dZt = Zt− dMt, we have that

Zt = Z0 E(M)t (57)

where

E(M)t = exp{Mt −
1
2
〈M c〉t}

∏
0<s≤ t

(1 + ∆Ms)e−∆Ms . (58)

The local martingale property of M implies that the following decomposition
holds:

Mt = M0 +
∫ t

0
βsdH

c
s +

∫ t

0

∫
W (·, s, x)d(µ− ν) + M̃t,

where β and W satisfy some integrability conditions (see Jacod and Shiryaev
(1987), Chapter III, 4.24) and M̃ is a residual martingale part which is
orthogonal to

∫ .
0 βsdH

c
s and

∫ .
0

∫
W (·, s, x)d(µ − ν). Unfortunately, we do

not have sufficient tools in order to control the properties of M̃ . However,
for many interesting cases, M̃ ≡ 0. The latter for instance holds if the
triplet T (ϕ) = (B,C, ν) for H defines the distribution of H uniquely. The
following are cases where this property holds:

(i) Processes with independent increments.

(ii) Strong solutions of stochastic differential equations with respect to
Brownian motion.
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(iii) In the case of Poisson random measure in discrete time where ν(ω, {n}
× A) = P (∆Hn ∈ A|Fn−1), n ≥ 1, which gives us the possibility to
calculate the (unconditional) distribution of (Hn)n≥0.

A possible approach consists of considering the structure of Z under the
assumption that P̃ loc∼ P exists. Hence assume that Z = (Zt)t≥0 satisfies the
representation (57)–(58), where

Mt = M0 +
∫ t

0
βsdH

c
s +

∫ t

0

∫
W (., s, x) d(µ− ν). (59)

Can we from this representation deduce the existence of P̃? This approach
may work if at least the characteristic triplet of H defines the measure P (i.e.
the law of H) uniquely. We assume the finite horizon case 0 ≤ t ≤ T < ∞
and normalise E ZT = 1. In this case we can simply define

dP̃T = ZT dPT .

The difficult part in this plan de campagne is to find conditions on (β,W )
and (B,C, ν) which imply that Z = (Zt)0≤t≤T is a martingale with E ZT =
1. A whole series of papers exists on this topic, see for instance Jacod and
Memin (1976), Liptser and Shiryaev (1972), Novikov (1975, 1979), Lepingle
and Memin (1978) and Grigelionis (1971). (See Schachermayer (1993) and
Delbaen and Schachermayer (1997) for a case where M̃ cannot be taken to
be zero!) So suppose that M = (Mt)0≤t≤T defined as in (59) is a positive
martingale with E ZT = 1. We now want to understand which conditions
on (β,W ) imply that S ∈Mloc(P̃T ). First observe that

SZ ∈Mloc(PT ) implies S ∈Mloc(P̃T ), (60)

(see Jacod and Shiryaev, Chapter III, 3.8) so that it suffices to find conditions
implying

E(Ĥ)E(M) ∈Mloc(PT ) · (61)

Also note that

ĤZ ∈Mloc(PT )⇒ Ĥ ∈Mloc(P̃T )

⇔ E(Ĥ) ∈Mloc(P̃T )

⇔ S ∈Mloc(P̃T ),

so that instead of checking (61), one may look for conditions implying

ĤE(M) ∈Mloc(PT ). (62)
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One easily shows that (61) and (62) are equivalent.
From (61) and Yor’s formula ((48)) one obtains:

E(Ĥ)E(M) = E(Ĥ +M + [Ĥ,M ])

= E(Ĥ +M + 〈Ĥc,M c〉+
∑

∆Ĥ∆M) · (63)

Moreover, (41) yields

Ĥt = Kt +Hc
t +

∫ t

0

∫
(ex − 1)d(µ− ν) · (64)

From (59) and (64) , assuming that the process [Ĥ,M ] is locally integrable,

we can find its compensator ˜[Ĥ,M ]. The latter is a predictable process with

the property that [Ĥ,M ] − ˜[Ĥ,M ] ∈ Mloc(P ). The following form results
see also Jacod and Shiryaev, Chapter II, 2.17:

˜[Ĥ,M ]t =
∫ t

0
βsd〈Hc〉s +

∫ t

0

∫
W (ex − 1)dν

−
∑
s≤ t

∫
W (s, x)ν({s} × dx)

∫
(ex − 1)ν({s} × dx). (65)

It turns out to be convenient to denote W = Y − 1. The main reason for
this is the following. If H is a P -semimartingale with triplet (B,C, ν) and
dP̃T = ZT dPT , then H is also a P̃T -semimartingale with triplet (B̃, C̃, ν̃)
where dν̃ = Y dν, Y (ω, t, x) is positive and predictable and the process W in
the definition of M (see (59)) has the following representation (Jacod and
Shiryaev, Chapter III, 5.19)

W = Y − 1 +
Ŷ − a
1− a I(a < 1), (66)

a = (at(ω)) where at(ω) = ν(ω; {t} × R)

Ŷt =
∫
Y (ω, t, x)ν(ω; {t} × dx) ·

Both in the so-called quasi-left continuous case (i.e. at ≡ 0) as well as in
the discrete-time case where at(ω) = P (∆Ht ∈ R|Ft−1) = 1 we have that
W = Y − 1. Therefore, as a corollary we obtain

˜[Ĥ,N ]t =
∫ t

0
βsd〈Hc〉s +

∫ t

0

∫
(Y − 1)(ex − 1)dν · (67)

Together with (59), (63) and (64) we are led to the following result.
Suppose that Z = (Zt)t≤T is a positive martingale with dZt = Zt − dMt
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where M = (Mt)t≤T is given by (59) and E | ZT |= 1. Then in the cases
where

ν(ω; {t} × R) ∈ {0, 1},
the condition

Kt +
∫ t

0
βsd〈Hc〉s +

∫ t

0

∫
(Y − 1)(ex − 1)dν = 0, t ≤ T,

implies that there exists a measure P̃T constructed by (56), (59), (66) such
that

P̃T ∼ PT and S ∈Mloc(P̃T ).

Suppose now that we are interested in the construction of probability
measures P̃T with

P̃T ∼ PT and
S

S0
∈Mloc(P̃T ).

In this case,

St
S0
t

Zt =
S0

S0
0

Z0 E(Ĥ)t E−1(Ĥ0)t E(M)t · (68)

Because of (51), E(Ĥ)E−1(Ĥ0) = E(H̄) where

H̄ = Ĥ − Ĥ0 +
∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)

1 + ∆Ĥ0
·

Moreover, by (63),

E(Ĥ)E−1(Ĥ0)E(M) = E(H̄)E(M)
= E(H̄ +M + [H̄,M ])

= E(H̄ +M + 〈H̄c,M c〉+
∑

∆H̄∆M)

= E(Ĥ − Ĥ0 +M + 〈Ĥc − Ĥ0c,M c〉

+
∑ ∆Ĥ −∆Ĥ0

1 + ∆Ĥ0
∆M

+
∑ ∆Ĥ0(∆Ĥ0 −∆Ĥ)

1 + ∆Ĥ0
)

≡ E(I), say · (69)

Again we assume that H0 is predictable so that H0c = 0 and consequently

I = Ĥ − Ĥ0 +M + 〈Ĥc,M c〉

+
∑ (∆M −∆Ĥ0)(∆Ĥ −∆Ĥ0)

1 + ∆Ĥ0
· (70)
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Compare this expression with (51) when M ≡ 0 and (63) when Ĥ0 ≡ 0. In
order to find now a predictable condition ensuring that S/S0 ∈Mloc(P̃ ), as
before, we search for a decomposition

I = Predictable process + local martingale·

Another way of putting this is: if Ĩ is the compensator (i.e. predictable part)
of I, then

Ĩ = 0 implies
S

S0
∈Mloc(P̃ ) · (71)

Returning to (70), observe the following facts.

(a) Ĥt − Ĥ0
t +Mt = (Kt − Ĥ0

t ) + Ĥc
t +

∫ t

0

∫
(ex − 1)d(µ− ν)

+
∫ t

0
βsdH

c
s +

∫ t

0

∫
Wd(µ− ν)

= (Kt − Ĥ0
t ) + (local martingale)t,

(b) 〈Ĥc, M̂ c〉t =
∫ t

0 βsd〈Ĥc〉s·

The calculation of the compensator of the last (i.e.
∑
−) term in (70) is

in general involved. However, for many interesting special cases (including
those already discussed in previous sections) the compensator Ĩ can be ob-
tained in explicit form. Rather than pursuing the general case as outlined
above, in the next section we shall look at some examples.

4.2 Some examples

4.2.1 Discrete time

In this case,

∆I = ∆M +
(1 + ∆M)(∆Ĥ −∆Ĥ0)

1 + ∆Ĥ0

=
∆M(1 + ∆Ĥ) + (∆Ĥ −∆Ĥ0)

1 + ∆Ĥ0
· (72)

Again denote hk = ∆Hk, whence ∆Ĥk = e∆Hk − 1 = ehk − 1; we use the
same notation for H0. Hence, with

∆Mn =
∫

(Yn(x;ω)− 1)(µn(dx)− νn(dx))

= Yn(hn;ω)− E(Yn(hn;ω)|Fn−1),
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we obtain from (72) that

∆In = ∆Mne
hn−h0

n + ehn−h
0
n − 1

= ehn−h
0
n(∆Mn + 1)− 1 · (73)

Together with the assumed predictability of (h0
n), we obtain from (73) the

following key result:

E
[
ehn
(
Yn(hn;ω)− E

(
Yn(hn;ω)|Fn−1

)
+ 1
)
|Fn−1

]
= eh

0
n , n ≥ 1

implies (74)

S

S0
∈Mloc(P̃ )·

Therefore, the existence problem of a (local) matingale measure P̃ is re-
duced to finding (Yn) which satisfy (74). This task may still seem to be
formidable in the stated generality. It is exactly at this point that the
conditional Esscher transform defined in (36) enters naturally. Indeed, we
assume that

Yn(hn;ω) =
eanhn

E(eanhn |Fn−1)
, (75)

where the unknown functions an are Fn−1-measurable. Our aim is to deter-
mine the an’s in the special case of (75). With (74) we arrive at the following
equation:

E
[
e(an+1)hn |Fn−1

]
= eh

0
nE
[
eanhn |Fn−1

]
· (76)

If the increment sequence (hn) is iid and h0
n ≡ h0

1 say, then for a ≡ an we
obtain the equation:

Ee(a+1)h1 = eh
0
1Eeah1 · (77)

Hence in this case, the Esscher transform allows for a special construction of
(Yn) by reducing the problem to finding constants (an) or predictable func-
tions (an(ω)) satisfying (76). In Gerber and Shiu (1994), the construction
(77) is applied in a finance context. See also the references in the latter
paper for further reading on the subject. Embrechts (1996) discusses the
Esscher transform in the light of financial versus actuarial pricing systems.

4.2.2 Processes with stationary, independent increments (S.I.I.)

Let H = (Ht) be a process with S.I.I., continuous in probability, and triplet

B(ϕ)t = tb(ϕ)
Ct = tC

ν(dt × dx) = dtF (dx) ·
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Moreover, H0
t = rt, say. Then Kt is defined in Section 3.3.2. In this case,

I = Ĥ − Ĥ0 +M + [Ĥ,M ],

and from (59), (64), (67) we obtain:

Kt +
∫ t

0
βsd〈Hc〉s +

∫ t

0

∫
(Y − 1)(ex − 1)dν = rt (78)

implies
S

S0
∈Mloc(P̃ )·

The sufficient condition (78) can be rewritten as:

t
(
b(ϕ) +

C

2
+
∫

(ex − 1− ϕ(x))F (dx)
)

+ C

∫ t

0
βsds

+
∫ t

0

∫
(Y − 1)(ex − 1)dsF (dx) = rt · (79)

Because of the homogeneity (i.e. incremental stationarity) of the process, it
seems reasonable to take βs(ω) ≡ β, Y (s.x.ω) ≡ Y (x). Then for unknown
β and Y (x), (79) reduces to:

C(
1
2

+ β) + b(ϕ) +
∫

(ex − 1− ϕ(x))F (dx)

+
∫

(Y (x)− 1)(ex − 1)F (dx) = r. (80)

Take as particular case the standard Black–Scholes set-up in finance, i.e.

St = eµt+σW t , S0
t = ert·

In this case, b(ϕ) = µ, C = σ2, ν ≡ 0 so that the condition (80) reduces to
the well-known equation

µ+ σ2(
1
2

+ β) = r (81)

and Mt = βHc
t = βσWt. It should be stressed that (81) can be obtained

much more easily directly, i.e. without using the general theory introduced
above. Indeed

Zt = exp
{
βσWt −

(βσ)2

2
t

}
and
St
S0
t

Zt = exp
{

(µ− r)t+ σWt

}
exp

{
βσWt −

(βσ)2

2
t

}
= exp

{
σ(1 + β)Wt −

σ2(1 + β)2

2
t

}
exp

{
(σ2(

1
2

+ β) + µ− r)t
}
·

Since (
exp

{
σ(1 + β)Wt −

σ2(1 + β)2

2
t

})
t≥0
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is a P -martingale, condition (81) immediately implies that S/S0 ∈ M (P )
and so S/S0 ∈M (P̃ ) where dP̃t = ZtdPt.

4.2.3 Brownian motion with drift and Poisson jumps

Consider the model (26) with triplet representation (28). Hence from (80)
we obtain the following condition for (β, Y (x)):

σ2(
1
2

+ β) + b+ λ

∫
Y (x)(ex − 1)F (dx) = r (82)

or equivalently,

σ2(
1
2

+ β) + b+ λE(eξ − 1)Y (ξ) = r.

Compare this condition with the condition in section 3.3.3, where β = 0,
Y ≡ 1 and P̃t = Pt. If we consider a solution

Y (x) =
eαx

Eeαξ

for suitable α, then we get for (α, β):

σ2(
1
2

+ β) + b+ λ
E(eξ − 1)eαξ

Eeαξ
= r,

or with ψ(α) = Eeαξ,

βσ2 + λ
ψ(α+ 1)
ψ(α)

= r − b− σ2

2
− λ.

Conclusion
In order to price and hedge derivative instruments in insurance and finance,
a no-arbitrage approach leads to the construction of equivalent (local) mar-
tingale measures of specific semimartingales. For a general class of such
processes, including discrete models, processes with stationary and indepen-
dent increments and certain diffusion models with jumps, a general construc-
tion toward obtaining such measures is outlined. Though these methods are
well known in the literature on general stochastic processes, we found it
useful to summarise the main results and applications of this theory to the
context of insurance and finance. In doing so, we hope to contribute to
closing the methodological gap currently existing between both fields. The
main common tool concerns the so-called Esscher transform, a time hon-
oured tool in insurance risk theory. Its construction is generalised to the
so-called conditional Esscher transform which may serve a similar purpose
within more general pricing models.
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Appl. Prob. 17, 623–637.

F. Esscher (1932) On the probability function in the collective theory of
risk. Skandinavisk Aktuarietidskrift 15, 175–195.

H.J. Furrer, H. Schmidli (1994) Exponential inequalities for ruin proba-
bilities of risk processes perturbed by diffusion. Insurance: Math. and
Econom. 15, 23–36.

28



H.U. Gerber (1970) An extension of the renewal equation and its appli-
cation to the collective theory of risk. Skandinavisk Aktuarietidskrift,
205–210.

H.U. Gerber, E.S.W. Shiu (1994) Option pricing by Esscher transforms.
Transactions of the Society of Actuaries XLVI, 99–191.

P. Grandits (1996) The p-optimal martingale measure and its asymptotic
relation with the Esscher transform. Preprint, University of Vienna.

B.I. Grigelionis (1971) On absolute continuity of measures corresponding
to stochastic processes. Lit. Mathem. Sb. 11, 783–794.
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