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Abstract: Using the Ray-Knight theorem we give conditions for a nonnegative diffusion without drift to reach

zero or not. These results also give necessary and sufficient conditions for such a diffusion process to be a martin-

gale (and not just a local martinagle). We apply these results in order to give necessary and sufficient conditions

for nonnegative diffusiosn to have equivalent local martingale measures.
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1 Local Martingale Analysis

First we shall consider the following Markovian local martingale model :

dXt = σ(Xt) dWt, X0 = 1,

σ(·) satisfies ∀ε > 0, M < ∞,+∞ > sup
ε≤u≤M

σ(u) ≥ inf
ε≤u≤M

σ(u) > 0.

Furthermore the process will be stopped as soon as the origin is reached. This means that we will suppose
that σ(x) = 0 for all x ≤ 0. The purpose of this section is to analyse when the process will reach 0. Of
course this is an easy consequence of Feller’s criterion, but our presentation is different. We will use the
construction of the weak solution by means of the method of time changes. Using the Ray-Knight theorem
will then allow us find the necessary and sufficient condition for X to reach the origin. Afterwards we
will transform the equation and we will find a criterion that allows us to see when the solution X is not
only a local martingale but is a genuine martingale. These results will be used in section 2 to solve the
problem when a nonnegative diffusion process admits an equivalent local martingale measure.

Let us now present the weak solution of dXt = σ(Xt) dWt. First we take a Brownian Motion W

starting at 1, i.e. W0 = 1. Next we define T0 = inf {t | Wt = 0}, the hitting time of 0. The increasing
process A is defined as At =

∫ t

0
du

σ2(Wu) . We remark that from the boundedness properties of σ and from
the continuity of the Brownian motion, it follows that for all t < T0 we have that At < +∞. The value
AT0 ≤ +∞ will play a special role. The inverse function of A is defined as

Ct = inf {s | As ≥ t} .

†Part of the research was done while the second auther was visiting Eidgenössische Technische Hochschule Zürich,

Department of Mathematics. He wishes to extend his deep thanks for their hospitality.
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If AT0 = +∞, then we have that Ct is defined for all times t. In case AT0 < +∞, we have that Ct is only
defined for t ≤ AT0 . For t ≤ AT0 we define

St = WCt
.

For t ≤ AT0 , dSt = σ(St) dW ′
t , where W ′ is some Brownian motion. This construction is known as the

method of time changes and it is an easy way to find the weak solution of the stochastic equation. We
refer the reader to [1], chapter IX, section 1 (the reader should also have a look at exercise 1.16.) as well
as the basic reference [2]. From the results there it follows that the equation has only one weak solution.
For later use we also remark that

dCt = σ2(Xt) dt,

which follows easily from the definiton of C as the inverse function of the strictly increasing process A.
The above construction allows us to state the following

Proposition 1.1 The process X defined by dXt = σ(Xt) dWt reaches 0 in finite time if and only if
AT0 < ∞.

The next point in the programme is to find a condition under which AT0 < +∞. This is done through
the Ray-Knight theorem, see [1].

Theorem 1.2 (Ray-Knight) Let B be a standard Brownian motion and let la be its family of local
times. Let T1 be the first time B hits the level 1, i.e. T1 = inf{u | Bu = 1}. The process Za; 0 ≤ a ≤ 1
defined as Za = l1−a

T1
is a BESQ2(0) process.

Because we were working with a Brownian motion W that starts at the point 1, we have to translate a
couple of things. So we will apply the Ray-Knight theorem to the process

B = 1 − W.

In doing so, we notice that B hits the level one if W hits the zero level. Furthermore the local time of B

at the point 1 − a is the same as the local time La of W at the point a. So we have that

Theorem 1.3 The process La
T0

, 0 ≤ a ≤ 1 has the same law as the BESQ2(0) process.

Local times are especially useful when we want to calculate the image measure of a Brownian motion.
More precisely, see [1], chapter VI, section 1, we have for every nonnegative Borel function f that

∫ T0

0

f(Wu) du =
∫ +∞

0

f(x)Lx
T0

dx.

Applied to the increasing process A this gives

AT0 =
∫ +∞

0

1
σ2(x)

Lx
T0

dx =
∫ 1

0

1
σ2(x)

Lx
T0

dx +
∫ +∞

1

1
σ2(x)

Lx
T0

dx.

But the second term is always finite and we get that

AT0 < +∞ if and only if
∫ 1

0

1
σ2(x)

Lx
T0

dx < +∞.

Because of the Ray-Knight theorem we can replace the local times by a BESQ2 process. So let 1B and
2B be two independent standard Brownian motions, defined on some probability space. We get that

AT0 < +∞ almost surely if and only if
∫ 1

0

1
σ2(x)

(
(1Bx)2 + (2Bx)2

)
dx < +∞ almost surely.

By independence this is the same as (here B denotes a Brownian motion)

AT0 < +∞ almost surely if and only if
∫ 1

0

1
σ2(x)

(Bx)2 dx < +∞ almost surely.

This equivalence is the basis for the following characterisation theorem
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Theorem 1.4 Let the process X be defined by the equation dXt = σ(Xt) dWt. Let us suppose that
σ satisfies the boundedness condition: for all ε > 0 and all ε ≤ M < ∞, +∞ > supε≤u≤M σ(u) ≥
infε≤u≤M σ(u) > 0. Then we have two alternatives

• either
∫ 1

0
x

σ2(x) dx = +∞ and X does not reach the origin in finite time

• or
∫ 1

0
x

σ2(x) dx < +∞ and with certainty X reaches the origin in finite time.

Proof. Let B be a standard Browmian motion. If
∫ 1

0
x

σ2(x) dx < +∞, then clearly, by Fubini’s theorem,

we have that E[
∫ 1

0
B2

x

σ2(x) dx] < +∞ and this implies that almost surely
∫ 1

0
B2

x

σ2(x) dx < +∞.

Conversely suppose that
∫ 1

0
B2

x

σ2(x) dx < +∞ on a set of strictly positive measure, then we may suppose

that for some N we have that
∫ 1

0
B2

x

σ2(x) dx ≤ N on a set A of measure at least δ > 0. Take now ε > 0 so
that P [B2

x ≤ εx] ≤ δ/4. We remark that this ε is independent of x since for all x we have that Bx/
√

x

has a standard normal distribution. We now have the following inequalities:

N ≥
∫ 1

0

B2
x

σ2(x)
1A dx ≥

∫ 1

0

εx

σ2(x)
1A1{B2

x≥εx} dx

Integration gives us that

N ≥
∫ 1

0

εx

σ2(x)
P [A ∩ {B2

x ≥ εx}] dx ≥
∫ 1

0

εx

σ2(x)
(δ/2) dx

This clearly implies that
∫ 1

0
x

σ2(x) dx < +∞. �

Remark 1.5 In case the process X reaches zero in finite time we have that for all ε > 0, necessarily
P [Xε = 0] > 0. This is a standard application of the Markov property.

We now turn to the question whether the process X can be a martingale. In case X is a martingale we
have for all t that the measure defined as dQ = XtdP is a probability measure. Of course Q[Xu �= 0] = 1
for all u ≤ t. This means that for the measure Q, the process X does not become zero. A straightforward
application of Itô’s formula and the measure transformation (the Girsanov-Maruyama formula, see [1]
where also the case of non-equivalent measures, due to Lenglart, is treated) yields that the process
Yu = 1/Xu satisfies the equation

dYu = Y 2
u σ(1/Yu) dW ′

u for some Q−Brownian motion W ′ and for u ≤ t.

Since the process Y does not reach zero before time t, we may apply the previous remark and we
necessarily must have that ∫ 1

0

y

y4σ2(1/y)
dy = ∞.

This is the same as ∫ +∞

1

x

σ2(x)
dx = +∞.

Suppose conversely that we have
∫ +∞
1

x
σ2(x) dx = +∞. Let us define the following function

Ψ(x) = x for x ≤ 1 (1.1)

Ψ(x) = 1 +
∫ x

1

u

σ2(u)
(x − u) du for x ≥ 1. (1.2)

This also means that for x ≥ 1 we have that Ψ′′(x) = x
σ2(x) . We therefore get that

dΨ(Xt) = Ψ′(Xt) dXt +
1
2
1Xt≥1 Xt dt
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For every n and fixed t we now define the stopping time τn as

τn = inf{u | Xu ≥ n} ∧ t.

The process X remains bounded by n before time τn. Of course we must have that E[Xτn ] = 1, since
up to time τn the local martingale X is a martingale. But the boundedness of the stopped process also
implies that the martingale component (coming from Ψ′(Xt) dXt) has expectation zero. Since in any
case we have E[Xu] ≤ 1 we have that

E[Ψ(Xτn)] = Ψ(1) + E

[∫ τn

0

1
2
1Xu≥1 Xu du

]

≤ 1 + t.

But as easily seen
∫ +∞
1

x
σ2(x) dx = +∞ implies that the function Ψ satisfies

lim
x→+∞

Ψ(x)
x

= +∞.

The criterion of de la Vallée Poussin then shows that the sequence Xτn is uniformly integrable and
therefore we have that for all t

E[Xt] = lim
n

E[Xτn ] = 1.

We therefore proved the following

Theorem 1.6 Under the conditions of theorem 1.4 we have that the process X is a martingale, i.e.
E[Xt] = 1 for all t, if and only if

∫ +∞
1

x
σ2(x) dx = +∞.

As an application we can state the following now facts for the equation (σ > 0 is a constant):

dXt = σXρ
t dWt.

1 If ρ = 1 we get a geometric Brownian motion, it does not reach zero and it is a martingale. It
cannot be closed at ∞.

2 If ρ < 1 the process X is a martingale but with certainty it reaches zero in finite time. It cannot
be closed at ∞.

3 If ρ > 1 the process X does not reach zero but it is only a local martingale. The reader can find
out the relation with Bessel processes.

2 General Model Analysis

Next we shall consider the existence of an equivalent local martingale measure for the following general
Markovian stock price model

dXt = b(Xt)dt + σ(Xt)dWt, X0 = 1

where W is a P -Brownian motion and where the process is stopped when it reaches zero. Of course if
such an equivalent measure, Q, exists we have that under Q, the process follows the equation

dXt = σ(Xt)dW ′
t , X0 = 1

for some Q− Brownian motion W ′ and where again the process is stopped when it reaches zero. The
time horizon is supposed to be finite, i.e. we work with the time interval [0, t0], where t0 < +∞. All
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stopping times take values in the interval [0, t0], in particular we suppose that inf ∅ = t0. We furthermore
assume the following conditions.

(i) X0 = 1 and Xt is stopped when 0 is reached.

(ii) dXt = b(Xt)dt + σ(Xt)dWt, X0 = 1, has a unique weak solution,
defining the law P on the space C[0, t0] of continuous functions.

(iii) dXt = σ(Xt)dW ′
t , X0 = 1, has a unique weak solution,

defining the law P ′ on the space C[0, t0] of continuous functions.
(iv) σ(·) is bounded and bounded away from zero on compact sets of (0,∞).
(v) b(·) is bounded on compact intervals of (0,∞).
(vi) b and σ are Borel measurable

The problem is to find necessary and sufficient conditions under which the two measures P and P ′

are equivalent. This is of course not always the case as the following heuristic reasoning explains. If
0 is reached under P ′ (i.e.

∫ 1

0
u

σ2(u)du < ∞), and is not reached under P (i.e. b is very positive in a
neighborhood of 0), then clearly P and P ′ cannot be equivalent.

Let us define

Zt = exp
{

−
∫ t

0

b(Xu)
σ(Xu)

dWu − 1
2

∫ t

0

b2(Xu)
σ2(Xu)

du

}

,

Z ′
t = exp

{∫ t

0

b(Xu)
σ(Xu)

dW ′
u − 1

2

∫ t

0

b2(Xu)
σ2(Xu)

du

}

.

Clearly Z should describe dP′

dP and Z ′ should describe dP
dP′ . Here “should” comes from the fact the they

are only local martingales and there is no need that P 
 P ′ or P ′ 
 P .
Let us fix the time horizon t0 to define

ν = inf{u ; Xu = 0},
τ = inf{u ; Wu = 0} (W0 = 1),

τn = inf{u ; Z ′
u ≥ n or Z ′

u ≤ 1
n
}.

Clearly on Fτn
, we have

P |Fτn
∼ P ′|Fτn

,

dP

dP ′

∣
∣
∣
∣
Fτn

= Z ′
τn

,

dP ′

dP

∣
∣
∣
∣
Fτn

= Zτn ,

ZτnZ ′
τn

= 1.

Under P ′, Z ′ is certainly defined and Z ′ can become 0 only if
∫ ·
0

b2(Xu)
σ2(Xu)du becomes ∞.

With our realistic hypothesis on b(·), σ(·), this means Z ′ remains > 0 and it can only become zero at
time ν. That is, in the notation of section 1, where we introduced the solution by means of the method
of time changes:

Z ′
t0 > 0 P ′-a.s. ⇐⇒

∫ ν

0

b2(Xu)
σ2(Xu)

du < ∞ P ′-a.s.

But as pointed out in section 1, we have that
∫ ν

0

b2(Xu)
σ2(Xu)

du
(Law)
=

∫ AT0

0

b2(WCu)
σ4(WCu

)
dCu.

Hence, from the analysis in section 1 and because of the assumptions on b and σ, we get

Z ′
t0 > 0 P ′-a.s. ⇐⇒

∫ T0

0

b2(Ws)
σ4(Ws)

ds < ∞ ⇐⇒
∫ 1

0

b2(x)x
σ4(x)

dx < ∞.
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Summarizing we have the following result :

(A) If
∫ 1

0

u

σ2(u)
du = ∞, then under P ′, X does not attain 0 and Z ′

t0 > 0 P ′-a.s..

(B) If
∫ 1

0

u

σ2(u)
du < ∞, then under P ′, X reaches 0 and Z ′

t0 > 0 P ′-a.s. ⇐⇒
∫ 1

0

b2(u)
σ4(u)

u du < ∞.

In both cases where we have Zt0 > 0, P ′− a.s., we have P ′ 
 P on Ft0

Indeed take A ∈ Ft0 such that P [A] = 0. Then

P [A ∩ {τn > t0}] = 0 ∀ n,

and hence
P ′[A ∩ {τn > t0}] = 0 ∀ n.

Since ∪n≥1{τn > t0} = Ω P ′−a.s., we have P ′[A] = 0.

In the same way we can show

Theorem 2.1 If Zt0 > 0 P -a.s., then P 
 P ′ on Ft0 .

Proof. Let σn = inf{t ; Zt ≥ n or Zt ≤ 1
n}. Take A ∈ Ft0 such that P ′[A] = 0. Then

P ′[A ∩ {σn > t0}] = 0 ∀ n,

and hence
P [A ∩ {σn > t0}] = 0 ∀ n.

Since ∪n{σn > t0} = Ω P -a.s., we have P [A] = 0. This concludes the proof. �

The results can also be seen as follows.

Zt0∧τn
Z ′

t0∧τn
= 1, P and P ′-a.s..

So when Zt0∧τn
→ 0 somewhere P , then Z ′

t0∧τn
→ ∞ somewhere P . Since Z ′

t0∧τn
remains bounded as

for P ′, we cannot have P 
 P ′. We can use the same argument for Z ′
t0∧τn

→ 0 somewhere P . Hence we
get,

Zt0 > 0 P -a.s. ⇐⇒ P 
 P ′ and then EP ′ [Z ′
t0 ] = 1,

Z ′
t0 > 0 P ′-a.s. ⇐⇒ P ′ 
 P and then EP [Zt0 ] = 1.

Besides Feller’s condition and its proof, is not easy to give a condition under which 0 is reached for
the measure P . Since we do not have a nicer method we will summarize how it works. Contrary to the
presentation in section 1, this is standard material. We will not give all details, since the convergence or
divergence of the integrals is done exactly inthe same way as in section 1.

First we introduce the function h which is the solution of the equation

1
2
σ2(x)h′′(x) + h′(x)b(x).

The solution of this equation (under our boundedness assumptions) is given by (x0 still to be chosen in
R+):

h(x) =
∫ x

x0

exp
(∫ u

x0

−2b(s)
σ2(s)

ds

)

du.

Since the function h is stricly increasing it has an inverse funtion h−1. Under the measure P the process
Y = h(X) is a local martingale that satisfies

dYt = h′(Xt)σ(Xt) dWt or dYt = h′(h−1(Yt))σ(h−1(Yt)) dWt.

The function h is bounded above on compact intervals of R+. The function h can however tend to −∞
at zero, in which case x0 = 0 cannot be used as a normalisation.

Depending on the convergence of certain integrals there are two normalisations possible
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The first case: h(0) = −∞. In this case we could take x0 = 1. We can continue the analysis
a little bit further. If one stops the process X when it reaches an arbitrary level, say n, we get
a process Y n that is a local martingale bounded above. This is necessarily a submartingale and
therefore also bounded below a.s.. This means that the process X cannot reach zero in finite time.
So we get that under the condition h(0) = −∞, the process X cannot reach zero.

The second case: h(0) = 0. In this case we take x0 = 0 and we can further multiply the function
h with a constant in such a way that we get h(1) = 1. Whether the point 0 can be reached or not
is not obvious. Applying the criterion of section 1 to the process Y gives us that the process X (or
equivalently the process h(X) = Y ) will reach zero if and only if

∫ 1

0

x

(h′(h−1(x))σ(h−1(x)))2
dx < +∞.

Making the obvious substitution x = h(y) gives us that this condition is equivalent to the condition

∫ 1

0

h(y)
h′(y)σ2(y)

dx < +∞.

The case b = 0 and σ(x) = x provides a case where h(0) = 0 and where the previous integral
diverges. So the condition is not superfluous.

We can now summarize the results. We only give the necessary and sufficient conditions for the
measures P and P ′ to be equivalent. The characterisation of the case P 
 P ′ is left as an exercise.

1
∫ 1

0
x

σ2(x) dx = +∞. Then the measures are equivalent if and only if either h(0) = −∞ or h(0) = 0

and
∫ 1

0
h(y)

h′(y)σ2(x) dx = +∞.

2
∫ 1

0
x

σ2(x) dx < +∞. Then the two measures are equivalent if and only if
∫ 1

0
b2(u)
σ4(u)u du < ∞ and

h(0) = 0 and
∫ 1

0
h(y)

h′(y)σ2(x) dy < +∞ and
∫ 1

0
b2(y)h(y)
h′(y)σ4(y) dy < +∞.

We will not further analyse the dependece between the convergence of all these integrals. It depends on
the behaviour of b and σ around the origin. As the reader can see this is a matter of delicate real analysis
and it goes beyond the scope of this paper. For practical applications we suggest that the reader should
follow the discussion above and should not simply check the convergence/divergence of the integrals.
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