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No Bot Expects the DeepCAPTCHA!
Introducing Immutable Adversarial Examples, with Applications to CAPTCHA Generation

Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman, and Daniel Pérez-Cabo

Abstract

Recent advances in Deep Learning (DL) allow for solving

complex AI problems that used to be considered very hard.

While this progress has advanced many fields, it is considered

to be bad news for CAPTCHAs (Completely Automated

Public Turing tests to tell Computers and Humans Apart),

the security of which rests on the hardness of some learning

problems.

In this paper we introduce DeepCAPTCHA, a new and

secure CAPTCHA scheme based on adversarial examples, an

inherit limitation of the current Deep Learning networks.

These adversarial examples are constructed inputs, either

synthesized from scratch or computed by adding a small and

specific perturbation called adversarial noise to correctly clas-

sified items, causing the targeted DL network to misclassify

them. We show that plain adversarial noise is insufficient

to achieve secure CAPTCHA schemes, which leads us to

introduce immutable adversarial noise — an adversarial noise

that is resistant to removal attempts.
In this work we implement a proof of concept system,

and its analysis shows that the scheme offers high security
and good usability compared to the best previously existing
CAPTCHAs. Index Terms—CAPTCHA, Deep Learning, CNN,
Adversarial examples, HIP

I. INTRODUCTION

CAPTCHAs are traditionally defined as automatically con-

structed problems, that are very difficult to solve for artificial

intelligence (AI) algorithms, but easy for humans. Due to the

fast progress in AI, an increasing number of CAPTCHA de-

signs have become ineffective, as the underlying AI problems

have become solvable by algorithmic tools. Specifically, recent

advances in Deep Learning (DL) reduced the gap between

human and machine ability in solving problems that have

been typically used in CAPTCHAs in the past. A series of

breakthroughs in AI even led some researches to claim that

DL would lead to the “end” of CAPTCHAs [4], [14].

However, despite having achieved human-competitive accu-

racy in complex tasks such as speech processing and image

recognition, DL still has some important shortcomings with

regards to human ability [42]. In particular, they are vulnerable

to small perturbations of the input, that are imperceptible by

humans but can cause misclassification. Such perturbations,

called adversarial noise, can be specially crafted for a given

input that forces misclassification by the Machine Learning

(ML) model.
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University of Haifa. J. Hernandez-Castro is with the School of Computing,
University of Kent, S. Gibson is with School of Physical Sciences, University
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Although initially discovered in the specific context of Deep

Learning, this phenomenon was observed later in other classi-

fiers, such as linear, quadratic, decision trees, and KNN [42],

[15], [35], [33]. Moreover, Szegedy et al. [42] showed that

adversarial examples designed to be misclassified by one ML

model are often also misclassified by different (unrelated) ML

models. Such transferability allows adversarial examples to be

used in misclassification attacks on machine learning systems,

even without having access to the underlying model [35], [33].

Consequently, adversarial examples pose a serious security

threat for numerous existing machine learning based solutions

such as those employing image classification (e.g., biometric

authentication, OCR), text classification (e.g., spam filters),

speech understanding (e.g, voice commands [6]), malware

detection [48], and face recognition [40].

On the other hand, adversarial examples can be used in

a constructive way and improve computer security. In this

paper, we propose using adversarial examples for CAPTCHA

generation within an object classification framework, involving

a large number of classes. Adversarial examples are appealing

for CAPTCHA applications as they are very difficult for

Machine Learning tools (in particular advanced DL networks)

and easy for humans (adversarial noise tends to be small and

does not affect human perception of image content).1

To provide a secure CAPTCHA, adversarial examples 1)

should be effective against any ML tool and 2) should be

robust to preprocessing attacks, that aim to remove the adver-

sarial noise.

Effectiveness of adversarial examples against ML: The ML

community has been actively searching for methods that are

robust to adversarial examples. The most effective among the

proposed solutions, but still very far from providing sufficient

robustness, is training the model on adversarial examples [15],

[42]. The more sophisticated approaches include 1) training a

highly specialized network to deal with very specific types of

adversarial noise [34]; 2) combining autoencoders, trained to

map adversarial examples to clean inputs, with the original

network [16]. The combined architecture adds a significant

amount of computation and at the same time is vulnerable to

adversarial examples, crafted for the new architecture.

We note (and later discuss) that high-capacity models (such

as Radial Basis Functions (RBF)) are more robust to adver-

sarial examples, but they are unable to cope with large-scale

tasks, for example those involving more than 1000 categories.

To conclude, current ML solutions do not provide a generic

defense against adversarial examples.

Resilience to preprocessing attacks: In this paper we per-

formed an analysis of robustness of different types of adver-

1The idea of using adversarial images for CAPTCHA was independently
suggested in [41] as a general concept.
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sarial examples against preprocessing attacks. We discovered

that filtering attacks which try to remove the adversarial noise

could be effective and could even remove the adversarial

noise completely in specific domains (such as black and

white images). Thus in order to use adversarial examples in

CAPTCHA settings, one should improve the robustness of

adversarial noise to filtering attacks.

A. Our Contribution

This paper proposes DeepCAPTCHA – a new concept

of CAPTCHA generation that employs specifically designed

adversarial noise to deceive Deep Learning classification tools

(as well as other ML tools due to transferability of adversarial

examples [33]). The noise is kept small such that recognition

by humans is not significantly affected, while resisting the

removal attacks.

Previous methods for adversarial noise generation lack the

robustness to filtering or any other attacks that attempt to

remove the adversarial noise. We are the first to address this

problem and we solve it by generating immutable adversarial

noise with emphasis on image filtering. We analyze the secu-

rity of our construction against a number of complementary

attacks and show that it is highly robust to all of them.

Finally, we introduce the first proof-of-concept implemen-

tation of DeepCAPTCHA. Our results show that the approach

has merit in terms of both security and usability.

II. RELATED WORK

We start our discussion with reviewing the most prominent

work in CAPTCHA generation and then we turn to the Deep

Learning area, focusing on methods for creating adversarial

examples.

A. A brief introduction to CAPTCHAs

Since their introduction as a method of distinguishing

humans from machines [45], CAPTCHAs (also called inverse

Turing tests [30]) have been widely used in Internet security

for various tasks. Their chief uses are mitigating the impact of

Distributed Denial of Service (DDoS) attacks, slowing down

automatic registration of free email addresses or spam posting

to forums, and also as a defense against automatic scraping of

web contents [45].

Despite their utility, current CAPTCHA schemes are not

considered popular by users as they present an additional

obstacle to accessing internet services and many schemes

suffer from very poor usability [5], [51].

1) Text Based Schemes: The first generation of CAPTCHAs

used deformations of written text. This approach has now

became less popular due to its susceptibility to segmentation

attacks [50]. In response, some developers increased distortion

levels, using methods such as character overlapping, which

increases security [8]. Unfortunately, such measures have also

resulted in schemes that are frequently unreadable by humans.

We note that some text-based implementations are susceptible

to general purpose tools [4].

2) Image Based Schemes: Motivated by the vulnerability

of text based schemes, image based CAPTCHAs have been

developed, following the belief that these were more resilient

to automated attacks [10], [11], [13], [53]. For example, early

text based versions of the reCAPTCHA [46] system were

superseded by a combined text and image based approach.

However, the new scheme was also subsequently attacked in

[14].

An alternative approach is CORTCHA (Context-based Ob-

ject Recognition to Tell Computers and Humans Apart) that

claims resilience to machine learning attacks [53]. This sys-

tem uses the contextual relationships between objects in an

image, in which users are required to re-position objects to

form meaningful groupings. This task requires a higher level

reasoning in addition to simple object recognition.

3) Alternative Schemes: Considerable effort is currently

being invested in novel ways of implementing secure and

usable CAPTCHAs. Two of the most popular research themes

are video-based CAPTCHAs such as NuCAPTCHA [32],

and game-based CAPTCHAs [28]. The former have gener-

ally shown inadequate security levels so far [3], [49]. The

latter designs are in general inspired by the AreYouHuman

CAPTCHA [1]. One of the most interesting proposals in this

group is [28], an example of a DGC (Dynamic Cognitive

Game) CAPTCHA that has the additional advantage of of-

fering some resistance to relay attacks, and a high usability.

Unfortunately, in its current form, it is vulnerable to automated

dictionary attacks. One can also argue that recent develop-

ments in game playing by computers, that match or improve

human abilities by using deep reinforcement learning [27],

question the prospects of future game based proposals. Finally,

a number of puzzle-based CAPTCHAs that seemingly offered

some promise have recently been subjected to devastating

attacks [17].

4) Deep Learning Attacks: The general consensus within

the cyber security community is that CAPTCHAs, that simul-

taneously combine good usability and security, are becoming

increasingly hard to design due to potential threats from bots

armed with Deep Learning [4], [14], [41] capabilities. This has

led to the popularity of Google’s NoCAPTCHA re-CAPTCHA

despite its violation of a number of important CAPTCHA and

general security principles.2

Definition of Secure CAPTCHA: Different authors claim

different security levels as the minimal standard for new

CAPTCHA designs. In the literature we can find requirements

for false positive rate (the probability of automatic bypassing

of the CAPTCHA system) ranging from 0.6% to around 5%.

Throughout this paper we define the threshold of at most

1.5% false positive rate to be the security requirement for a

CAPTCHA.

B. Deep Learning and Adversarial Examples

Deep Learning networks are designed to learn multiple

levels of representation and abstraction for different types of

2For example, the P in CAPTCHA stands for Public, and NoCAPTCHA
inner functioning is not public, based on the time-dishonored concept of
“security by obscurity” by employing heavily obfuscated Javascript code.
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data such as images, video, text, speech and other domains.

Convolutional Neural Networks (CNNs) are DL algorithms

that have been successfully applied to image classification

tasks since 1989 [22]. Hereafter, we will use the terms CNN

and DL network interchangeably.

1) Foundations of Adversarial Examples: Machine learning

models are often vulnerable to adversarial manipulations of

their input [9]. It was suggested [12] that this limitation could

be expressed in terms of a distinguishability measure between

classes. Using this measure, which is dependent on the chosen

family of classifiers, they showed a fundamental limit on the

robustness of low-capacity classifiers (e.g., linear, quadratic)

to adversarial perturbations. It was also suggested that higher

capacity models with highly non-linear decision boundaries

are significantly more robust to adversarial inputs.

Deep neural networks were also shown to be vulnera-

ble to adversarial perturbation. First examples of adversarial

perturbations for deep networks were proposed in [42] as

inputs, constructed by adding a small tailored noise component

to correctly classified items that cause the DL network to

misclassify them with high confidence.

Neural Networks can learn different capacity models, rang-

ing from linear to highly non-linear. DL architectures are

considered to have very large capacity, allowing highly non-

linear functions to be learned. However, training such DL

networks is hard and doing it efficiently remains an open

problem. The only architectures (and activation functions) that

are currently practical to train over complex problems have a

piecewise linear nature which is the most likely reason for

their vulnerability to adversarial examples [15].

Previous work [15], [35], [42] showed that adversarial

examples generalize well across different models and datasets.

Consequently, adversarial examples pose a security threat even

when the attacker does not have access to the target’s model

parameters and/or training set [35].

2) Constructing Adversarial Examples: Different tech-

niques for constructing adversarial inputs have been proposed

in recent works. The approach in [31] causes a neural net-

work to classify an input as a legitimate object with high

confidence, even though it is perceived as random noise or a

simple geometric pattern by a human. The techniques proposed

in [15], [18], [42] compute an image-dependent and small-

magnitude adversarial noise component such that, when added

to the original image, results in a perturbation that is not

perceptible to the human eye but causes the DL network

to completely misclassify the image with high confidence.

The method in [34] focuses on making the adversarial noise

affect only a small portion of the image pixels, but the noise

itself could be larger than in previous methods. In contrast

to the approach of targeting the prediction of the classifier

(as discussed above), Sabour et al. [38] proposed adversarial

examples that change a hidden representation of the network,

making it very close to an example with a different label.

Miyato et al. [26] considered a different setting in which

labels of images are unavailable. This approach targeted the

posterior distribution of the classifier corresponding to small

perturbations of the original image.

3) Robustness to Adversarial Examples: Previous

work [12], [15] outlined a number of solutions for adversarial

instability. One of them was to switch to highly non-linear

models, for instance, RBF Neural Networks or RBF Support

Vector Machines. These are shown to be significantly more

robust to adversarial examples, but are currently considered

impractical to train for the large-scale problems (for example

1000-way categorization).

Improving the robustness of DL tools against adversarial

perturbations has been an active field of research since their

discovery. The first proposition in this direction was to train

DL networks directly on adversarial examples. This made

the network robust against the examples in the training set

and improved the overall generalization abilities of the net-

work [12], [15]. However, it did not resolve the problem as

other adversarial samples could still be efficiently constructed.

A method called defensive distillation was proposed in [36].

This approach provides a high level of robustness, but only

against a very specific type of adversarial noise (see [36]

for details.) Gu and Rigazio [16] trained an autoencoder to

predict the original example from the one with adversarial

perturbations. However, the combination of such an autoen-

coder and the original network was shown to be vulnerable to

new adversarial examples, specially crafted for such combined

architectures. Moreover, such combinations increase the clas-

sification time. Hence, this approach seems to be somewhat

unsuitable for computer security applications, where efficiency

and versatility are crucial. To conclude, the current state of

technology does not offer a solution for a large scale (+1000

categories) multi-class recognition problem that is robust to

adversarial examples. Moreover, it was shown that adversarial

examples are consistently difficult to classify across different

network architectures and even different machine learning

models (e.g, svm, decision trees, logistic regression, KNN

classifier) [42], [15], [35], [33].

These limitations, combined with the fact that adversarial

noise could be made almost imperceptible to the human eye,

render the idea of using adversarial examples as the basis for

new CAPTCHA challenges very appealing. However, in order

to use adversarial noise in CAPTCHAs or other security ap-

plications, it should be resistant to removal attacks which can

employ alternative tools and, in particular, image processing

methods. We show here that none of the existing methods

for adversarial example construction are sufficiently robust to

such attacks. Even though the approach in [34] proposed the

construction of adversarial examples in a computer security

context, it also lacks the necessary robustness.

III. TEST BED DETAILS

We have used two sets of problems for the adversar-

ial examples discussed in the paper. The first one is the

MNIST database for digits [23]. The second, which was

used in the majority of our experiments, is the ILSVRC-

2012 database [37], containing 1000 categories of natural

images. We used MatConvNet [44] implementations of CNN

for MNIST classification and of CNN-F deep network [7] for

object classification.
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(a) (b) (c) (d) (e)

Fig. 1: Adversarial example on MNIST: The original black and white image is shown in (a), an adversarial example, produced

by the FGS method is shown in (b) including gray-level intensities. (c) shows the corresponding adversarial noise changing

the classification into an 8. This noise is successfully removed by thresholding (the resulting image is depicted in (d)) as well

as by a median filter of size 5x5 (whose result is shown in (e).)

We crafted adversarial examples using these two DL net-

works. The networks were trained on the training set of

the corresponding database. The adversarial examples were

created using the validation (test) set.

All experiments described in this work were conducted on a

Linux 3.13.0 Ubuntu machine with an Intel(R) QuadCore(TM)

i3-4160 CPU @ 3.60GHz, 32GB RAM, with a GTX 970 GPU

card, using MATLAB 8.3.0.532 (R2014a.)

IV. IMMUTABLE ADVERSARIAL NOISE GENERATION

Adversarial noise is specifically designed to deceive DL

networks. However, an attacker can preprocess network inputs

in an attempt to remove this adversarial perturbation. Hence, in

a computer security setting, adversarial noise must withstand

any general preprocessing technique aimed at cancelling its

effects.

We introduce the concept of Immutable Adversarial Noise

(IAN), as an adversarial perturbation that withstands these

cancellation attempts. We explicitly define the requirements

for creating IAN that are useful for CAPTCHA generation.

Then, we analyze previous algorithms for adversarial example

generation and show that they do not meet these requirements.

Finally, we present our new scheme for IAN generation, that

satisfies these new requirements.

A. Requirements for IAN in CAPTCHA

An algorithm for the construction of immutable adversarial

noise useful in CAPTCHA generation needs to meet the

following requirements:

1) Adversarial: The added noise should be successful in

deceiving the targeted system according to the defined

security level (specifically to our requirement, at least

98.5% of the times.)

2) Robust: The added noise should be very difficult to

remove by any computationally efficient means; for

example by filtering or by ML approaches.

3) Perceptually Small: The added noise should be small

enough to not interfere with a successful recognition of

the image contents by humans.

4) Efficient: The algorithm should be computationally effi-

cient, to allow for the generation of possibly millions of

challenges per second. This is fundamental for deploying

the CAPTCHA successfully in production environments.

A basic requirement for CAPTCHAs is that challenges do

not repeat and are not predictable (i.e., guessing one out of

m possible answers should succeed with probability 1/m).

Hence, the source used for generating adversarial examples

should be bottomless and uniform. An algorithm that can cre-

ate an adversarial example from an arbitrary image, together

with such a bottomless and uniform source of images can

certainly generate a bottomless and uniform set of challenges,

as required.

B. Previous Methodologies for Generating Adversarial Exam-

ples

We briefly introduce in the following the most popular

methods for adversarial noise generation, and discuss why they

do not meet the above requirements.
Our idea is simple: use images that are easily recognized by

humans but are adversarial to DL algorithms. Consequently,

methods that cause a DL network to classify images of noise

or geometric patterns as objects such as the one in [31] are

not adequate for our goal.
We analyzed in detail the optimization method proposed

in [42] and the fast gradient sign method suggested in [15].

These two methods for constructing adversarial perturbations

are the most mature, and have been previously considered

in the literature when exploring countermeasures against ad-

versarial examples. We believe that methods such as [18],

[34] will show a similar behavior, as they rely on the similar

concept of adding a noise component to the original image.

The methods in [26], [38], on the other hand, considered a

completely different setting which may be useful for future

works.
To exemplify the removal of adversarial noise, we focus on

two classical image classification tasks: digit recognition and

object recognition. Digit recognition was used in earlier gener-

ations of CAPTCHA, but, as we show later, object recognition

provides a significantly better base for our proposal, both from

security and usability points of view.
1) The Optimization Method: Szegedy et al. [42] intro-

duced the concept of adversarial examples in the context of DL

networks and proposed a straightforward way of computing

them using the following optimization problem:

argmin
∆I

‖∆I‖
2 s.t. Net(I +∆I) = Cd (1)

where I is the original input from class Ci, ∆I is the

adversarial noise, Net is the DL classification algorithm, and
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Cd is the deceiving class, such that Cd 6= Ci. Once the

adversarial noise is computed, the corresponding adversarial

image is constructed by adding the adversarial noise to the

original input I .

We implemented and tested the optimization method de-

scribed by Eq. (1), over a set of 1000 images on the MNIST

and ILSVRC-2012 datasets.

Fast computation of adversarial examples is an essential

requirement for any viable CAPTCHA deployment, since it

will need to generate millions of challenges per second. The

optimization method described above is unfortunately too

slow, hence for practical purposes we limited the number

of iterations to a fixed threshold (it stops when this limit

is reached). This, however, resulted in a failure to produce

the desired class in some cases. The timing statistics of the

experiment and the success rate are shown in Table I.

Based on these results, we can conclude that the optimiza-

tion algorithm is not suitable for our needs: it is computation-

ally expensive and it does not converge in some cases. The

inefficiency of this method has been reported before, and is

explicitly mentioned in [15], [42].

Despite its poor efficiency, we analyzed the resistance to

preprocessing attacks of the adversarial noise created by the

optimization method. We computed 1000 adversarial images

(as described above) for the MNIST and ILSVRC-2012

datasets. Then we tested various filters and parameters and

found that for the MNIST data set, which is exclusively formed

of images of white digits on a black background (just two

intensity values, 255 and 0), the adversarial noise can be

successfully removed by applying a half range threshold (128)

on the pixel values. This is an extremely simple and fast

procedure that cancels the adversarial effect in 95% of the

tested images.

It was also noted in [16] that applying a convolution with

a Gaussian kernel of size 11 to the input layer of the CNN

trained on MNIST, helps in classifying correctly 50% of the

adversarial examples created by the optimization method. We

achieved an even better result of 62.7% with a median filter of

size 5x5, but both of these results are way below the success

of the much simpler thresholding method.

These findings demonstrate that images composed of only

two colors (such as those in MNIST) are a poor source of

adversarial examples.

Canceling adversarial noise in natural RGB images is more

challenging, and can not be generally achieved by a simple

thresholding. We found that a 5x5 pixel median filter was

most successful in removing adversarial noise from the images

drawn out of the ILSVRC-2012 data set. Note that for an

attack on a CAPTCHA to be successful, it is important

for the machine classification to match human classification

accuracy. Thus the classification of the filtered samples should

be compared to the true label (rather than to the classification

label of the original input, that could be wrong some times).

The classification label computed by the network on fil-

tered adversarial examples constructed from the ILSVRC-2012

dataset matched their true label in 16.2% of the cases (see

Table I.) This result is not very high, but it shows that it fails

by quite some margin to provide the required security level

for modern CAPTCHAs.

2) The Fast Gradient Sign Method: A much faster method

for generating adversarial examples was proposed in [15].

The approach is called the fast gradient sign method (FGS)

and it computes the adversarial noise as follows:

∆I = ǫ · sign(∇IJ(W, I, Ci))

where J(W, I, Ci) is a cost function of the neural network

(given image I and class Ci), ∇IJ(W, I, Ci) is its gradient

with respect to the input I , W are the trained network

parameters, and ǫ is a constant which controls the amount

of noise inserted. Similarly to [42], the adversarial image is

obtained by adding the adversarial noise ∆I to the original

image I .

The FGS method does not produce adversarial examples

that deceive the system with the a chosen target label. Its

goal is simply to change the classification of the adversarial

example, away from the original label. This is done by shifting

the input image in the direction of the highest gradient by a

constant factor. The bigger this constant is, the larger both

the adversarial effect and the degradation of the image are.

The FGS method is significantly faster than the previous

optimization approach (Table I.)

The adversarial noise for the MNIST dataset produced by

the FGS method was also easily removed by thresholding the

pixel values at the half range threshold, achieving an even

higher success of 97.60% (out of 1000 images).4 An example

of FGS adversarial noise removal from an MNIST sample is

shown in Figure 1.

For the object recognition task (over the ILSVRC-2012

dataset) the FGS succeeded in creating an adversarial example

97.8% of the times, as shown in Table I. Unfortunately, the

median filter (of size 5x5) was able to restore the classification

of the adversarial examples to their true label in a staggering

60.81% of the cases, deeming this method unusable for our

purposes.

Since the FGS method does a very small step away from the

correct label, the resulting noise 1) has a very small magnitude

and 2) 2) the dependency of the noise on the source image is

low and it is similar in appearance to “salt and pepper” noise.

These properties explain the success of the median and other

standard filters.

C. IAN: Our New Approach to Adversarial Noise

As we showed earlier, adversarial noise can be easily

removed from black and white images, thus MNIST is clearly

not a good dataset for creating immutable adversarial ex-

amples, despite the existing literature. We therefore choose

natural images of objects, containing richer variations in color,

shapes, texture, etc. as the platform for IAN construction.

We base our method for adversarial noise construction on

the FGS method, since CAPTCHA applications requires a very

fast computation of adversarial examples, and speed is one of

the main advantages of this algorithm. However, the FGS lacks

4A median filter of size 5x5 succeeded in removing the adversarial noise
in 55.20% of the cases.
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MNIST (digits) ILSVRC-2012 (images)
Generation Time Adversarial Resistance Generation Time Adversarial Resistance

Method Average Std Success Level Average Std Success Level

Optimization [42] 3.83s 2.87s 20% 5% 120.94s 98.19s 85.2% 83.8%

Fast Gradient Sign3 [15] 0.0677s 0.0268s 100% 2.4% 0.33s 0.03s 97.8% 39.19%

Our IAN Scheme Unlikely to exist, see discussion. 1.01s 0.80s 100% 100%

TABLE I: Comparison between adversarial noise generation methods. Reported times show the efficiency of the generation

algorithm; Adversarial Success indicates the percentage of examples that succeeded to force the target DL network to classify

the adversarial example with the target category (chosen at random); Resistance level indicates the percentage of adversarial

inputs (out of 1000) that were not reverted to their original category by applying the best performing preprocessing method

(thresholding for the MNIST set and median filter of size 5x5 for the ILSVRC-12 set), where bigger numbers represent better

performance.

two important properties. First, it only perturbs the original

label of the classification, but it offers no guarantees that the

new label would be semantically different from the original

one. Our experiments on ImageNet with 1000 categories

showed that the FGS changes the label to semantically similar

classes in many cases (for example, hand held computer to

cellular telephone). This can have seriously effects on the

usability, and possibly the security, of the CAPTCHA system.
We propose an iterative version of FGS that accepts in

addition to the original image also a target label and a

confidence level and guarantees that the produced adversarial

example is classified with the target label and at the desired

confidence (while keeping the added noise minimal).5 To this

end, we run a noise generation step with a small ǫ in the

direction that increases the activation of the target label (as

specified in Eq. 2) for several iterations until it reaches the

target label and the desired confidence level. We call this

method an iterative fast gradient sign (IFGS). To increase the

activation of the target label we update the input image I as

follows:

I = I − ǫ · sign(∇IJ(W, I, Cd)) (2)

The second property that FGS lacks is resilience to filtering

attacks. As discussed in Section IV-B2 the success of stan-

dard filtering stems from the small magnitude of the noise.

Increasing the magnitude of the noise would significantly

damage the content of the image resulting in poor human

recognition. Moreover, we observed that FGS noise tends to be

stationary over the image, which facilitates standard filtering.

To resolve these problems, we suggest the following approach:

Our construction for the generation of immutable adversarial

noise starts with an adversarial image, produced by the IFGS,

with a small noise constant ǫ. It then filters the adversarial

image and tries to recognize it. If it succeeds, then we increase

the noise and run IFGS with the new noise constant. We

iterate the process until the noise cannot be removed. The

iterative approach guarantees that the increase in magnitude

does not exceed the desired level (allows for easy human

recognition). In addition running IFGS several times increases

the dependency of the noise on the source image, preventing

standard filters from removing it. We detail the construction

in the pseudocode shown in Algorithm 1.

5A similar algorithm was independently discovered in [20].

A median filter of size 5x5 was used in our construction, as

it showed experimentally the highest success in removing the

adversarial noise generated by the fast gradient sign method

when compared with other standard filters such as the average,

Gaussian lowpass and Laplacian, and was faster than more

complex filters such as non-local means [2] and wavelet

denoising [25].

Algorithm 1 IAN Generation

Require: Net a trained DL network; I a source image; Ci is the
true class of I; Cd a deceiving class; p a confidence level of the
network; Mf a Median filter.
Begin:
adv(I, Cd, p)← I; {adv(I, Cd, p) the adversarial example}
∆← 0;
while Net(Mf (adv(I, Cd, p))) = Ci do

while Net(adv(I, Cd, p)) 6= Cd or confidence < p do
∆ = −ǫ · sign(∇INet(I, Cd));
adv(I, Cd, p)← adv(I, Cd, p) + ∆;

end while
ǫ = ǫ+ δǫ; {Increase the noise constant;}

end while
Output: ∆

We tested the proposed method on the same set of 1000

images with initial value of ǫ = 5 and δǫ = 5. The

evaluation results, shown in Table I, prove that our method

for IAN generation satisfies all four requirements, as defined

in Section IV-A. It is important to note that the additional

checks to ensure robustness against the median filter Mf do

not slow down the generation process significantly.

Figure 2c shows an example of an adversarial image,

created by adding the IAN (Figure 2b) produced by our novel

algorithm to the original image (Figure 2a). Figure 2d depicts

the outcome of applying the median filter to the adversarial

image. The resulting image is not recognized correctly by the

DL network. Moreover, the filtering moved the classification

to a category which is further away (in terms of the distance

between the class positions in the score vector) from the true

one. The distance between the true and deceiving classes is

214, and between the true class and the class assigned to

the image after filtering (a removal attack) is 259. At the

same time, while being more noticeable than in the previous

algorithms, the relatively small amount of added noise still

allows a human to easily recognize the image contents.
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(a) (b) (c) (d)

Fig. 2: An example of the IAN generation algorithm. Image (a) is the original image, correctly classified as a Shetland sheepdog

with a high confidence of 0.6731 (b) is the computed immutable adversarial noise, (c) is the adversarial image (the sum of the

image in (a) and the IAN in (b)), classified as a tandem or bicycle-built-for-two with a 0.9771 confidence and (d) the result

of applying Mf , classified as a chainlink fence with confidence 0.1452.

V. DEEPCAPTCHA

We now propose a novel CAPTCHA scheme that we named

DeepCAPTCHA, which is based on a large-scale recognition

task, involving at least 1,000 different categories. The scheme

utilizes a DL network, trained to recognize these categories

with high accuracy.

DeepCAPTCHA presents an adversarial example as an im-

age recognition challenge. The adversarial example is obtained

by creating and adding IAN to its source image. The deceiving

class in IAN must differ from the true class of the source

image (both classes are from the 1,000 categories involved in

the recognition task). The source image is chosen at random

from a very large (bottomless) source of images with uniform

distribution over classes, and discarded once the adversarial

image is created. The label of the image is obtained by

classifying it using the deep network and verifying that the

top score is over a predefined confidence level.

Contrary to previous CAPTCHAs that use letters or digits,

we use objects in order to make the classification task larger

and to provide enough variability in the image to make it

robust to attacks that aim to remove the adversarial noise.

Using object recognition as a challenge poses two usability

issues: 1) object names are sometimes ambiguous, 2) typing

in the challenge solution requires adapting the system to

the user’s language. We propose to solve these issues by

providing a set of pictorial answers, i.e., a set of images, each

representing a different class. Obviously, the answers contain

the correct class, as well as random classes (excluding the

deceiving class).

The task for the user is to choose (click on) the image from

the supplied set of answers that belongs to the same class as

the object in the test image – the adversarial example. Since

we keep the adversarial noise small, a human could easily

recognize the object in the adversarial example and choose

the correct class as the answer. The only possible ML tool

that can solve such a large-scale image recognition problem is

a DL network. However, the adversarial noise used to create

the adversarial example is designed to deceive the DL tools

into recognizing the adversarial image as from a different

category. Hence, the proposed challenge is designed to be easy

for humans and very difficult for automatic tools.

A. The Proposed Model

We now provide a formal description of our proposed

design. Let Net be a DL network trained to classify n
(n ≥ 1000) classes with high (human-competitive) classifi-

cation accuracy. Let C = {C1, ..., Cn} be a set of labels for

these n classes. Let I be an image of class Ci ∈ C. Let

C∗

i = C\{Ci},6 and let Cd be a deceiving label which is

chosen at random from C∗

i . The DeepCAPTCHA challenge

comprises the following elements:

• An adversarial image adv(I, Cd, p), constructed from

I by the addition of an immutable adversarial noise

component (constructed by Algorithm 1) that changes the

classification by the DL Net to class Cd with confidence

at least p.7

• m−1 answers, which can be fixed images corresponding

to m− 1 labels chosen at random and without repetition

from C∗

i \{Cd};

• A fixed image with label Ci, different from I .

The m− 1 suggestions and the true answer are displayed in a

random order. The challenge for the user is to choose the

representative image of Ci from the answers. The original

image I is assumed to be a fresh image which is randomly

picked from different sources (databases and/or online social

networks), and it is discarded after creating the adversarial

example (i.e., we never use the same source image twice).

The pseudocode for the DeepCAPTCHA challenge gener-

ation is shown in Algorithm 2 and an example, generated by

our proof-of-concept implementation (detailed in Section VII),

is depicted in Figure 3.

VI. SECURITY ANALYSIS

In the following we analyze several different but comple-

mentary approaches that potential attackers could use against

the proposed DeepCAPTCHA system. We start the analysis by

discussing a straightforward guessing attack, we then continue

to evaluate attacks that use image processing techniques,

aiming to revert the adversarial image to its original class

by applying image processing filters. We then turn to more

sophisticated attacks that employ machine learning tools.

Finally, we discuss possible solutions to relay attacks. We set

6We note that in some cases, depending on the variability of the data set
and other circumstances, it could be advisable to remove classes similar to
Ci from C∗

i .
7In our experiments we have used p = 0.8.
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Algorithm 2 Compute a DeepCAPTCHA challenge

Require: [C1, . . . , Cn] a set of n classes; {Ij}
n
j=1 fixed answers

of the n classes; i ←r [1, 2, . . . , n] the index of a random class
Ci, and I ∈R Ci a random element; m the number of possible
answers; p the desired misclassification confidence; Net a trained
DL network; Mf a Median filter.
Begin:
Randomly pick a destination class Cd, d 6= i;
Set ∆ = IAN Generation(Net, I , Ci, Cd, p, Mf );
adv(I, Cd, p) = I+∆; {The immutable adversarial example}
Discard I;
Randomly select m − 1 different indexes j1, . . . , jm−1 from
[1, . . . , n]\{i, d};
Choose the representative images [Ij1 , . . . , Ijm−1

] of the corre-
sponding classes;
Output: adv(I, Cd, p), and a random permutation of m possible
answers {I, Ij1 , . . . , Ijm−1

}.

Fig. 3: An example of a DeepCAPTCHA challenge. The large

image above is the computed adversarial example, and the

smaller ones are the set of possible answers.

the security requirement for the success of an attack to a false

acceptance rate (FAR) of at most 1.5%.

A. Random Guessing Attack

Using m answers per challenge provides a theoretical bound

of ( 1
m
)n for the probability that a bot will successfully pass n

challenges8. Therefore, n = − log p
logm

are required for achieving

a False Acceptance Rate (FAR)9 of p. As we show later (in

Section VII-A), m = 12 offers sufficient usability (low False

Rejection Rate (FRR) and fast enough answers), hence for our

target FAR of at most 1.5%, n should be greater than 1.67,

e.g., n = 2 (resulting in an FAR of 0.7%).10

One can, alternatively, combine challenges with different

numbers of answers in consecutive rounds, or increase n.

These allow a better tailoring of the FAR and the FRR (both

can be computed following the figures shown on Table IV).

8Assuming independence between tests.
9In our context, FAR stands for the probability that a bot succeeds to pass

the DeepCAPTCHA whereas FRR stands for the probability that a human
fails to pass DeepCAPTCHA.

10We note that increasing the permissable FAR to 1.5625% would allow
using two challenges of 8 answers each. This will improve the usability of
the system as shown in Section VII-A. However, we prioritize the security
and thus choose 12 answers for challenge.

The latter approach offers a finer balance between security and

usability.

B. Filtering Attacks

We examined the robustness of our IAN generating algo-

rithm to a set of image filters particularly aimed at removing

the added noise. Any of these attacks will succeed if they

are able to remove sufficient noise to correctly classify an

adversarial example into the class of its original image.

We tested seven filters with a wide range of parameters on a

set of 1000 adversarial examples, created with the generation

algorithm presented in Algorithm 1. This set of filters included

the median filter, averaging filter, circular averaging filter,

Gaussian lowpass filter, a filter approximating the shape of the

two-dimensional Laplacian operator, non-local means [2], and

wavelet denoising [25] filters. Table II shows the success rates

of the different filters (along with the optimal parameter choice

for the filter). The success rates of all filters are significantly

below the security requirement of 1.5%.

C. Machine Learning Based Attacks

We start by defining the attacker model, and then analyze in-

depth the most prominent attacks that could be applied against

DeepCAPTCHA.

1) The Attacker Model:

Knowledge of the algorithm and its internal

parameters: The attacker has a full knowledge of the

CNN (its architecture and parameters, or knowledge

of the training set that allows training of a simi-

lar CNN), used in the adversarial noise generation

algorithm and of the generation algorithm itself,

including its internal parameters.

Access to DeepCAPTCHA challenges: The attacker

has access to all generated adversarial examples (but

not to their source) as well as to the images which

serve as the representatives of the classes (one or

more per class).

No Access to the Source Images: The source im-

ages (used to generate the adversarial examples) are

chosen at random from crawling a number of high

volume online social media and similar sites, thus the

size of the source image pool can be considered in-

finite for all practical purposes. Once the adversarial

image is created, the corresponding original image

is discarded instantly from the DeepCAPTCHA and

never reused.11 Theoretically, the attacker may access

the sources as well (or have access to an indexing

service such as Google), but if the chosen image is

“fresh” (not indexed yet) and chosen from a large set

of sources, he has no knowledge about the particular

image used for generating the adversarial example.

Access to other machine learning tools: The at-

tacker has the ability to use any other classifier in

11Obviously, unless the system stores all previous source images, then
repetitions may exist by random chance (depending on the sampling process).
Designing efficient methods to ensure that no such repetitions exist, is outside
the scope of this paper.



9

Median Averaging Circular Gaussian Laplacian Non-local Means Wavelet
Averaging Lowpass (1/2 Patch size = 3, Denoising

(Size 5x5) (Size 5x5) (Radius 5) (Size 5x5, (Size 3x3, 1/2 Window size = 2, (σ = 3,
std = 0.5) α = 0.2) Weighting = 0.1) Num. levels = 3)

0% 0% 0.1% 0.1% 0.2% 0.3% 0.2%

TABLE II: Filters employed in the filtering attack, and their respective success rates (out of 1000 trials). Note that the median

filter was used in the generation process, thus the challenge is robust to the median filter by construction.

an attempt to classify the adversarial examples or

to train the same or other DL networks on them.

This can be done with the aim of finding alternative

networks with similar accuracy over the baseline

classification problem, but having more robustness

against adversarial examples.

Therefore, in the highly likely case that the attacker does

not have access to the source images, the DeepCAPTCHA

scheme is secure and usable even when all other aspects of

the attacker model are satisfied.

2) Alternative Classifier Attack: The most straightforward

attack on DeepCAPTCHA is probably the one that tries to

use other classifiers, in an attempt to correctly recognize the

adversarial example.

A machine learning algorithm, to be used successfully in

such an attack, should be 1) robust to adversarial examples

in general or at least to those used in DeepCAPTCHA; 2)

scalable to a large number of categories (+1000).

Highly non-linear models such as RBF-SVM, or RBF

networks are known to be more robust to this adversarial

phenomenon [12], [15]. But these non-linear classifiers are

currently not scalable to be able to cover +1000 categories.

Thus, they do not offer a practical method for breaking

DeepCAPTCHA or future similar schemes until major break-

throughs in ML allow for training highly non-linear models

over problems with a large number of classes.

Since the adversarial generation algorithm uses a specific

network, one can consider a potential attack using another

DL network with a different architecture and/or parameter-

ization. However, it was previously shown that adversarial

examples generalize well to different architectures and initial-

izations [15], [42], [24].

To verify the robustness of our construction against attacks

that use alternative DL algorithms, we tested several publicly

available DL networks trained on the same set of images to

classify the adversarial examples in DeepCAPTCHA. Specif-

ically, we used the CNN-F network from [7] to generate

the CAPTCHA and we tested the ability to recognize the

adversarial examples using three other deep learning networks.

Two of these networks have a different architecture: CNN-M

is similar to Zeiler and Fergus [52] and CNN-S is similar to

OverFeat [39]. The third network — AlexNet from [19], has an

architecture similar to CNN-F, with the difference that CNN-

F has a reduced number of convolutional layers and a denser

connectivity between convolutional layers. Table III compares

the classification results of the tested networks on the clean

and adversarial version of 1000 images. The results show that

none of these tools reached the 1.5% threshold.

Network Clean Images Adversarial Images
CNN-F 55.2% 0%
CNN-M 58.7% 0.1%
CNN-S 60.5% 0.1%
AlexNet 55.6% 0%

TABLE III: Transferability of adversarial examples to other

deep networks. 1000 adversarial examples were created using

CNN-F from clean images in the validation set of ILSVRC-

12. The table reports the classification accuracy of the tested

networks on the clean and adversarial versions of these images.

We verified the transferability of adversarial exam-

ples,created by Algorithm 1, across different classification

models. Specifically, we tested a linear SVM classifier trained

on a bag of visual words (as provided in the toolkit of

ILSVRC-10 competition) extracted from the training set of

ILSVRC-12 and tested their classification rate on the clean

validation set of ILSVRC-12 and on the adversarial set used to

test deep networks. This model achieved 23.99% classification

rate on the clean validation set (which is comparable to the

results reported in the literature). However, the classification

rate on the adversarial set achieved only 0.5% which is below

our security threshold.

3) Adversarial Training: Since adversarial examples are

effective at fooling other ML tools trained on clean examples,

another attack to consider is fine tuning an existing DL

network on adversarial examples. Previous work suggested to

improve the robustness of DL to adversarial examples by an

iterative process that alternates between creating adversarial

examples for a current network and fine-tuning this network

on a mixed set of regular and adversarial examples [42].

This approach was only tested on the MNIST data set,

which is relatively small. Still, the reported results show very

limited success. Namely, running five iterations of training

on adversarial examples improved the error rate from 96.1%

to 92.1% [43]. Combining networks produced during the

iterative adversarial training into a committee and taking an

average prediction of all committee members as the score

for classification, improved the error to 35.5% [43]. Finally,

Goodfelow et al. [15] suggested adversarial training which

combines the loss of a training sample with the loss of its ad-

versarial variant. Such training reduced the error on adversarial

examples generated via the original model to 19.6%.

Even though the new networks enjoy a somewhat increased

robustness to adversarial examples, generated by network prior

to adversarial training, one can easily generate adversarial ex-

amples against the retrained networks (as noted by Goodfellow

in [47]). Moreover, the results of adversarial training were

reported for the MNIST set, which is composed of images
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with low entropy, and thus the adversarial noise could be easily

neutralized by very simple tools (See section IV). Previous

quantitative results for natural images categories are restricted

to one-step methods, which improve their robustness as a

result of adversarial training [21]. However, as we showed in

Section IV-B, adversarial noise created by one-step methods

can also be removed with high success using a very simple

filtering.

An adversary wishing to use adversarial training for attack-

ing the DeepCAPTCHA system would need to obtain adver-

sarial examples which are correctly labelled (the ground truth

labels). Given the success of deceiving the existing network,

this would force the adversary to employ humans to provide

the labels (at a higher cost). Moreover, the DeepCAPTCHA

system can also be retrained (to imitate the process done by

the adversary) to produce new adversarial examples against

the newly trained network. As the DeepCAPTCHA system

knows the true labels, the defender has the upper hand — for

a smaller cost and effort she can alter her network to imitate

the adversary.

We ran an instance of an adversarial training attack on

DeepCAPTCHA using the ILSVRC-2012 database [37]. We

used a two step process that iteratively improves the robustness

of the input network by adversarial training. The process

inputs CNN-F network [7] (used for DeepCAPTCHA) fully

trained on clean examples. The first step of the training process

produces adversarial examples using our novel algorithm (see

Algorithm 1) via the current network and adds them to the pool

of adversarial examples. The second step fine tunes the current

network on the mix of clean and adversarial examples from

the updated pool. We ran the process for 5 iterations adding

2000 adversarial examples in each iteration. After training,

the error on a validation set constructed from the previous

generations of adversarial examples was reduced to 92.3%

on average (over the intermediate networks) with a minimal

error of 87%. However, newly produced adversarial examples

deceive all these networks in 100% of the cases.

Building a committee from the intermediate networks (pro-

duced by the iterative training process) achieved a minor

reduction in error on the newly generated adversarial examples

(crafted via the last version of the network). Specifically,

basing the classification on the sum of scores of all committee

members was able to reduce the error from 100% to 98.9%.

Devising adversarial examples that can deceive multiple mod-

els has been recently shown in [24]. Similar strategy can

be followed to improve robustness against a committee of

classifiers.

To conclude, it seems that adversarial training attacks

against DeepCAPTCHA can be mitigated by retraining the

network (periodically) on previously created adversarial ex-

amples.

4) Noise Approximation Attack: Given that the challenges

were generated by adding adversarial noise, the attacker may

hope to approximate this noise (to remove it) using DL. We

show next that for suitably chosen image sources, this attack

is successful less than 1.5% of the time.

Recall that the images belong to known classes. Therefore,

the attacker can try and explore the similarity between images

of the same class in order to approximate the noise that

changes the classification from the true category (Ci) to the

deceiving one (Cd). To approach this goal one would consider

collecting representative samples of a category and learning a

noise per each sample in that class and for each other category

in the system.

For the attack to be effective, the variation between the

instances of the same class should be small, for example a

category comprising images of the letter ‘A’ printed with a

similar font. In other words, the adversarial noise that takes

an element from Ci and “transforms” it into an element in Cd,

should be relatively independent of the actual element.

Fortunately, this property rarely holds for general objects

categories like the ones we are using for DeepCAPTCHA. In

fact, this is exactly what causes the baseline classification to

be difficult in the first place, requiring a sophisticated feature

extraction process (such as a CNN) to overcome the very high

intra-class variation.

Along these lines, we implemented and tested an attack we

have named the noise approximation attack. Consider a work-

ing example with the following settings: a thousand image

categories, where each category is represented by 1200 im-

ages12 and there are 12 candidate answers per DeepCAPTCHA

challenge. If the images used for answers are static, then their

labels could be pre-computed by running the network over all

classes only once. Then, for each challenge, the labels of the

answers could be retrieved very efficiently.

In the pre-computation step, the attacker can compute the

adversarial noises that transform every image in the dataset

into every other category. This implies a total of 1, 200∗999 =
1, 198, 800 adversarial noise images (i.e., for a representative

image I ′ ∈ Ci and a target category d compute all its ∆d
I′,i =

I ′ − adv(I, Cd, p) values).

In the online phase of the attack, the attacker is pre-

sented with the challenge, including the adversarial example13

adv(I, Cd, p) and a random permutation of 12 possible an-

swers {Ii, Ij1 , . . . , Ij11} (where i is the label of the correct

class, and d is the decoy label of the adversarial example).

Then, the attacker runs the network over adv(I, Cd, p) and

retrieves the decoy label d. As the attacker knows that the

noise caused the image I to be classified in Cd (rather than

one of the 12 classes represented by the set of answers), he

tries to remove the adversarial noise that transforms I ′ ∈ Ci

into Cd from adv(I, Cd, p). Specifically, for each class j of

the 12 answers, and for each representative image I ′ ∈ Cj ,

the attacker computes the estimation of the original image as:

I∗ = adv(I, Cd, p)−∆d
I′,j , and then runs the network on the

estimate I∗, which results in 1200 ∗ 12 = 14400 attempts per

challenge (as the representative sets are of size 1200 images,

and there are 12 candidate sets). This is a large number, but

if the images in the same category are very similar (e.g.,

same letter), then even the first attempt could be successful.

To prevent such security issues one should exclusively use

12To make the CAPTCHA more secure, we chose classes with large
variability between the categories.

13We remind the reader that I is not available to the adversary as per our
assumptions.
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natural images of real objects with moderate to high intra-

class variation as a source for CAPTCHA generation.

We ran an instance of the noise approximation attack, where

the true category was lion (that exhibits moderate intra-class

variation) and the target category was rooster. A total of

3 out of 1200 challenges were broken using this approach.

This implies that the noise approximation attack is interesting

and potentially relevant, and that despite its low success

rate of 0.25% it needs to be taken into account in future

implementations, to ensure it stays below the 1.5% threshold.

We also verified that categories with a low inner-class

variability are highly susceptible to the proposed noise approx-

imation attack. Specifically, we used MNIST data set to collect

adversarial noises that cause CNN to classify images of digit

‘1’ as ‘2’ for a set of 200 adversarial examples. We tested the

noise approximation attack using these noises on a different

set of 200 adversarial examples (of ‘1’ recognized as ‘2’). The

attack succeeded to remove the adversarial noise in all tested

images. Furthermore, it was very effective computationally, as

it succeeded to remove the adversarial noise from a test image

on the first attempt (subtracting the first stored noise) 90% of

the time. Consequently, MNIST and similar low variation data

collections are not a suitable source for adversarial examples.

D. Relay Attacks

Relay attacks are becoming increasingly relevant in the con-

text of CAPTCHAs, and have been revealed to be very difficult

to fight against and relatively easy to deploy. They are also

called ‘human relay’ attacks, ‘human farms’ or ‘sweatshop’

attacks in the literature. They are based on exploiting cheap

labor for relaying CAPTCHA challenges to humans who can

solve thousands of them per hour at a low cost (e.g., around

$1, as reported in [29].)

These attacks are very difficult to stop, and there are very

few proposals in the literature that offer any real protection

against them. One such approach is a Dynamic Cognitive

Game CAPTCHA [28] that, while offering some resistance

to relay attacks is, in its current form, vulnerable to low-

complexity automated dictionary attacks.

We note that any generic defense against relay attacks can

be applied to the DeepCAPTCHA system: from relying on

the client’s original IP address to browser-specific character-

istics, or the use of timing information. For example, as we

have good timing estimates for the average solution times of

DeepCAPTCHA challenges, one can easily introduce a time

threshold to detect such attacks as suggested in [28].

VII. POC: DEEPCAPTCHA-ILSVRC-2012 SYSTEM

We implemented a proof-of-concept system using the CNN-

F deep network from [7], trained on the ILSVRC-2012

database [37]. This set contains 1000 categories of natural

images from ImageNet. The DL network was trained on the

training set of the ILSVRC-2012 database, and we used the

validation set that contains 50,000 images as a pool for source

images (such a pool is used only for the PoC system; in a real-

life system, a source image should be taken from a web source

and discarded after creating the challenge). For each challenge

we picked an image at random and produced an adversarial

example for it using the IAN generation method, detailed

in Algorithm 1. We selected one representative image per

category from the training set (to guarantee that the answers do

not contain the image, used to generate adversarial examples)

for the answers.

The PoC system was implemented as a web application in

order to conduct a number of usability tests. In our implemen-

tation we varied the number of answers to test the best trade-

off between usability and security (more choices increase the

security, but are harder for users and the solution takes more

time). The number of challenges per session was set to 10

(note that our security analysis suggests that 2–3 answers are

enough to reach the desired security level). An example of a

challenge from the PoC system is shown in Figure 3.

A. Usability Analysis of the PoC System

We tested the proof-of-concept implementation of our Deep-

CAPTCHA system using 472 participants contacted using the

Microworkers.com online micro crowd sourcing service. Each

participant was requested to provide anonymous statistical data

about their age, gender and familiarity with computers before

starting the test. Participants were next presented with 10

DeepCAPTCHA challenges of varying difficulties and gave

feedback on usability once they had completed the challenges.

This provided us with 4720 answered tests, of which we

removed 182 (approx. a 3.85%) to avoid outliers. In particular,

we removed tests or sessions if they fall into any of these three

categories14: 1. Sessions with average time per test longer than

40 seconds, 2. Tests with answer times above 45 seconds, and

3. Sessions with a success rate of 10% or lower.

We tried to get some insights into the best trade-off between

usability and security by testing different numbers of answers,

in the range 8 + 4k, k ∈ {0, . . . , 3}, so users were randomly

assigned variants of the tests with different number of answers

for studying the impact of this change. The most relevant

usability results are shown in Table IV. The participants

reported high satisfaction with DeepCAPTCHA usability (see

Figure 4). The data shown in Figure 4 is an average across

all variants, from 8 to 20 answers. As expected, the per-

ceived user-friendliness and difficulty (see Figure 5) of the

DeepCAPTCHA deteriorated steadily from the versions with

8 answers to those with 20.

It is interesting to note that participants who declared

their gender as female performed significantly better than

the males, across all variants, the gap becoming wider with

the increasing difficulty of the CAPTCHA task, as seen in

Figure 6. Consistent with this finding is the additional fact

that females not only achieved better accuracy but also did it

using less time on average than males.

We define a secure CAPTCHA as one that has a less than

1.5% chance of being successfully attacked by a bot, and a

usable CAPTCHA as one with a challenge pass rate above

75% when attempted by a human within an average time of

14We assume that long solving times are due to users that were interrupted
during the tests, and the low success rates are due to users that did not follow
the instructions, or chose their answers at random.
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Overall Results 8 answers 12 answers 16 answers 20 answers

Total test count 4538 1257 990 1144 1147

Success rate 82,57 % 89,18 % 86,67 % 79,98 % 74,37 %
Average time 7,89s 6,04s 7,66s 8,36s 9,66s
Median time 5,49s 4,24s 5,18s 5,89s 7,34s

TABLE IV: Usability results for the DeepCAPTCHA proof of concept implementation, with different number of answers.

Fig. 4: Self reported user friendliness of DeepCAPTCHA.

Answers in the range 1-10, 10 being best.

Fig. 5: Self reported DeepCAPTCHA difficulty, compared

with existing CAPTCHAS, for variants from 8 to 20 answers.

15s. These thresholds are in line with those previously reported

and with other CAPTCHA schemes.

Based on the results collected so far in our preliminary

tests, and the security analysis in Section VI, we conclude

that the best trade-off between security and usability is met

by the version of our test with 12 answers per challenge and

two challenges in a CAPTCHA session. This configuration

meets the accepted security and usability requisites. Namely,

humans showed a success rate of 86.67% per challenge, hence

the overall success probability is (assuming independence)

about 0.86672 = 0.751. The average time for the session was

about 2 · 7.66s = 15.32s (the median is significantly faster —

10.4s). The security analysis showed that a probability of a

bot bypassing the scheme is not higher than 0.7% (by random

guessing).

We expect that once users will become more familiar with

the task and the system (as the system gains popularity), the

solution times and the success rates would improve.

Fig. 6: Accuracy across self-reported gender for variants from

8 to 20 answers.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced DeepCAPTCHA, a secure

new CAPTCHA mechanism based on immutable adversarial

noise that deceives DL tools and cannot be removed using

preprocessing. DeepCAPTCHA offers a playful and friendly

interface for performing one of the most loathed Internet-

related tasks — solving CAPTCHAs. We also implemented a

first proof-of-concept system and examined it in great detail.15

We are the first to pose the question of adversarial exam-

ples’ immutability, in particular to techniques that attempt

to remove the adversarial noise. Our analysis showed that

previous methods are not robust to such attacks. To this end,

we proposed a new construction for generating immutable

adversarial examples which is significantly more robust to

attacks attempting to remove this noise than existing methods.

There are three main directions for future CAPTCHA

research:

• Design a new large-scale classification task for Deep-

CAPTCHA that contains a new data set of at least 1000

dissimilar categories of objects. This task also includes

collecting (and labelling) a new data set for training of

the CNN.

• Adversarial examples are trained per classification prob-

lem, meaning that they can operate on the set of labels

they have been trained for. Switching to an alternative set

of labels is likely to reduce their effectiveness. Another

interesting future research topic could be to develop IANs

for these scenarios, e.g., for hierarchy-based labels (such

as Animal-Dog-Poodle.)

• The study and introduction of CAPTCHAs based on

different modalities, such as sound/speech processing

(e.g., to address users with visual impairments).

15DeepCAPTCHA can be accessed at http://crypto.cs.haifa.ac.il/∼daniel
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Finally, we believe that IANs could have a wide range

of applications in computer security. They may be used to

bypass current ML-based security mechanisms such as spam

filters and behavior-based anti-malware tools. Additionally, our

proposed attacks on adversarial noise may be of independent

interest and lead to new research outcomes.

ACKNOWLEDGEMENTS

The authors thank Daniel Osadchy for his worthy contri-

butions to the paper and the anonymous reviewers for their

ideas and suggestions. This research was supported by UK

Engineering and Physical Sciences Research Council project

EP/M013375/1 and by the Israeli Ministry of Science and

Technology project 3-11858.

REFERENCES

[1] ARE YOU A HUMAN. http://www.areyouahuman.com/, Last accessed
May 2016.

[2] BUADES, A., COLL, B., AND MOREL, J. A Non-Local Algorithm for
Image Denoising. In IEEE Computer Vision and Pattern Recognition

(2005), pp. 60–65.
[3] BURSZTEIN, E. How we broke the NuCaptcha video scheme and what

we proposed to fix it. http://elie.im/blog/security Last accessed May
2016.

[4] BURSZTEIN, E., AIGRAIN, J., MOSCICKI, A., AND MITCHELL, J. C.
The End is Nigh: Generic Solving of Text-based CAPTCHAs. In
Proceedings of the 8th USENIX Conference on Offensive Technologies

(Berkeley, CA, USA, 2014), USENIX Association.
[5] BURSZTEIN, E., BETHARD, S., FABRY, C., MITCHELL, J. C., AND

JURAFSKY, D. How Good Are Humans at Solving CAPTCHAs? A
Large Scale Evaluation. In Proceedings of the IEEE Symposium on

Security and Privacy (Washington, DC, USA, 2010), IEEE Computer
Society, pp. 399–413.

[6] CARLINI, N., MISHRA, P., VAIDYA, T., ZHANG, Y., SHERR, M.,
SHIELDS, C., WAGNER, D., AND ZHOU, W. Hidden Voice Commands.
In USENIX Security Symposium (Security) (August 2016).

[7] CHATFIELD, K., SIMONYAN, K., VEDALDI, A., AND ZISSERMAN, A.
Return of the Devil in the Details: Delving Deep into Convolutional
Nets. In British Machine Vision Conference (2014).

[8] CHELLAPILLA, K., LARSON, K., SIMARD, P., AND CZERWINSKI,
M. Designing Human Friendly Human Interaction Proofs (HIPs). In
Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (New York, 2005), ACM, pp. 711–720.
[9] DALVI, N., DOMINGOS, P., MAUSAM, SANGHAI, S., AND VERMA, D.

Adversarial classification. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining

(2004), KDD ’04, pp. 99–108.
[10] DATTA, R., LI, J., AND WANG, J. Z. IMAGINATION: a robust image-

based CAPTCHA generation system. In Proceedings of the 13th ACM

International Conference on Multimedia, Singapore (2005), pp. 331–
334.

[11] ELSON, J., DOUCEUR, J. R., HOWELL, J., AND SAUL, J. Asirra: A
CAPTCHA that Exploits Interest-Aligned Manual Image Categorization.
In Proc. of 14th ACM Conference on Computer and Communications

Security (2007), Association for Computing Machinery, Inc.
[12] FAWZI, A., FAWZI, O., AND FROSSARD, P. Analysis of classifiers’

robustness to adversarial perturbations. CoRR abs/1502.02590 (2015).
[13] GOLLE, P. Machine Learning Attacks Against the Asirra CAPTCHA. In

Proc. of the 15th ACM Conference on Computer and Communications

Security (New York, 2008), ACM, pp. 535–542.
[14] GOODFELLOW, I. J., BULATOV, Y., IBARZ, J., ARNOUD, S., AND

SHET, V. D. Multi-digit number recognition from street view imagery
using deep convolutional neural networks. CoRR abs/1312.6082 (2013).

[15] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Explaining and
harnessing adversarial examples. CoRR abs/1412.6572 (2014).

[16] GU, S., AND RIGAZIO, L. Towards deep neural network architectures
robust to adversarial examples. arXiv preprint arXiv:1412.5068 (2014).
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