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3 No C1-recurrence of iterations of

symplectomorphisms

Yoshihiro Sugimoto

Abstract

In this article, we study the behaviour of iterations of symplectomor-

phisms and Hamiltonian diffeomorphisms on symplectic manifolds. We

prove that symplectomorphisms and Hamiltonian diffeomorphisms do not

have C1-recurrence on negatively monotone symplectic manifolds. This is

a generalization of the results of the study by Polterovich, Ono, Atallah-

Shelukhin. Hamiltonian group actions play very important roles in sym-

plectic topology. We see that negatively monotone symplectic manifolds

are far from being Hamiltonina G-maniofolds.

1 Introduction

In [10], Polterovich introduced “growth sequence” of a diffeomorphism f of a
smooth compact manifold M as follows:

Γn(f) = max{ max
x∈M

|dxf
n|, max

x∈M
|d−nx | }, n ∈ N

Here, |dxfn| is the operator norm of the differential map

dxf
n : TxM −→ Tfn(x)M

caluculated with respect to some Riemannian metric onM . Polterovich studied
the behabior of Γn(f) as n goes to +∞ for symplectomorphism f . Let (M,ω)
be a closed symplectic manifold. We denote the group of symplectomorphisms
by Symp(M,ω).

Symp(M,ω) = {φ ∈ Diff(M) | φ∗ω = ω}

Symp0(M,ω) is the identity component of Symp(M,ω). In other words, any
element of Symp0(M,ω) can be connected to the identity via an isotopy of
symplectomorphisms.

Symp0(M,ω) =

{
φ ∈ Symp(M,ω)

∣∣∣∣
∃ smooth isotopy{φt} ⊂ Symp(M,ω)

s.t. φ0 = Id, φ1 = φ

}
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Polterovich proved that if π2(M) = 0 and φ ∈ Symp0(M,ω)\{Id} has a fixed
point of contractible type,

Γn(f) → +∞ (n→ +∞)

holds. In particular, any Hamiltonian diffeomorphism does not haveC1-recurrence
property if π2(M) = 0 holds ([10]). A symplectic manifold (M,ω) is called neg-
atively monotone if there is a negative constant κ < 0 such that

c1|π2(M) = κ · ω|π2(M)

holds. Here, c1 ∈ H2(M) is the first Chern class of the tangent bundle of M .
Ono proved that there is no Hamiltonian S1-action on any negatively monotone
symplectic manifold ([9]). Recently, Atallah-Shelukhin proved that there is no
Hamiltonian torsion on negatively monotone symplectic manifolds ([2]). In other
words, there is no Hamiltonian diffeomorphism φ (φ 6= Id) such that φk = Id
holds for some positive integer k > 1. In this paper, we generalize these results
and prove that there is no C1-recurrence of iterations of symplectomorphisms
and Hamiltonian diffeomorphisms on negatively monotone symplectic manifolds.
In particular, the set {φk}k∈Z is discrete in C1-topology. Moreover, (M,ω) is
far from being a Hamiltonian G-manifold.

For any smooth function H ∈ C∞(M), we define the Hamiltonian vector
field XH by the following relation:

ω(XH , ·) = −dH

We also consider an S1-dependent (= 1-periodic) Hamiltonian functionH ∈ C∞(S1 ×M)
and an S1-dependent Hamiltonian vector field XH by the same formula. The
time 1 flow of the vector field XH is called Hamiltonian diffeomorphism gener-
ated by H . We denote this Hamiltonian diffeomorphism by φH . The set of all
Hamiltonian diffeomorphisms is called the Hamiltonian diffeomorphism group
and we denote it by Ham(M,ω), i.e.,

Ham(M,ω) = {φH | H ∈ C∞(S1 ×M)}

Ham(M,ω) is a subgroup of Symp0(M,ω). The composition of φH , φK is gen-
erated by a Hamiltonian function

H♯K(t, x) = H(t, x) +K(t, (φtH)−1(x)).

Moreover, φtH♯K = φtH ◦ φtK holds. The inverse of φH is generated by a Hamil-
tonian function

H(t, x) = −H(t, φtH(x)).

This H satisfies φt
H

= (φtH)−1. We also consider k-th power of Hamiltonian dif-

feomorphisms for any integer k ∈ N. We define H(k) ∈ C∞(S1 ×M) as follows:

H(k)(t, x) = kH(kt, x)
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It is straightforward to see that φH(k) = (φH)k holds. In other words, H(k)

generates the k-th power of φH .
The main results of this paper are as follows:

Theorem 1 (no C1-recurrence). Let (M,ω) be a closed negatively monotone
symplectic manifold.

1. There is a C1-small open neighborhood U ⊂ Ham(M,ω) of the identity
such that for any φ ∈ Ham(M,ω)\{Id}, we can choose a positive integer
Nφ > 0 so that

k ≥ Nφ =⇒ φk /∈ U

holds.

2. Assume that the Euler number of M is not zero (χ(M) 6= 0) or π1(M) has
finite center. Then, there is a C1-small open neighborhood V ⊂ Symp0(M,ω)
of the identity such that for any ψ ∈ Symp0(M,ω)\{Id}, we can choose a
positive integer Mψ > 0 so that

k ≥Mψ =⇒ ψk /∈ V

holds.

2 Flux homomorphism and flux group

Let S̃ymp0(M,ω) be the universal cover of Symp0(M,ω). A point in S̃ymp0(M,ω)
is a homotopy class of smooth paths {φt} ⊂ Symp(M,ω) with fixed endpoints
φ0 = Id and φ1 = φ. Let {φt}t∈[0,1] ⊂ Symp(M,ω) be a smooth symplectic iso-
topy generated by a vector field Xt.

d

dt
φt(x) = Xt(φ

t(x))

Note that ιXt
ω ∈ Ω1(M) is a closed 1-form because {φt} is a symplectic isotopy

and

0 = LXt
ω = d(ιXt

ω) + ιXt
(dω) = d(ιXt

ω)

holds. The flux homomorphism of this isotopy is defined as follows:

Flux({φt}) =
[ ∫ 1

0

ιXt
ωdt

]
⊂ H1(M : R)

The flux homomorphism is invariant under any homotopy with fixed endpoints.
So, it is defined on the universal cover.

Flux : S̃ymp0(M,ω) −→ H1(M : R)
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The flux group Γ ⊂ H1(M : R) of a symplectic manifold (M,ω) is the image of
the fundamental group of Symp0(M,ω) under the flux homomorphism.

Γ = Flux(π1(Symp0(M,ω)))

The most important property of Γ is that it is a discrete subgroup of H1(M : R)
for any closed symplectic manifold (M,ω)([9]).

3 Floer homology and mean index

Let (M,ω) be a 2n-dimensional closed symplectic manifold and we fix a 1-
periodic Hamiltonian function

H : S1 ×M −→ R.

Definition 1. A Hamiltonian function H ∈ C∞(S1 ×M) is called non-degenerate
if the differential map

(dφH)x : TxM −→ TxM

does not have 1 as an eigenvalue for any fixed point x ∈ Fix(φH). In other
words, the graph of φH intersects the diagonal ∆M ⊂M ×M transverally.

We denote the set of contractible 1-periodic orbits of φtH by P(H).

P(H) = {x : S1 →M | ẋ(t) = XHt
(x(t)), x : contractible}

We define a covering space of P(H) as follows:

P̃(H) = {(u, x) | u : D2 →M,x ∈ P(H), ∂u = x}/ ∼

The equivalence relation ∼ is defined as follows:

(u, x) ∼ (v, y) ⇐⇒






x = y∫
S2(u♯v)

∗ω = 0∫
S2(u♯v)

∗c1 = 0

This u♯v is a sphere map u♯v : S2 →M obtained by gluing u : D2 → M and
v : D2 → M along the boundary. Here, v is the disc with the opposite orienta-
tion. c1 ∈ H2(M) is the first Chern class of (M,ω). We denote the equivariance
class of (u, x) by [u, x]. For any [u, x], the action functional AH([u, x]) is defined
by

AH([u, x]) = −

∫

D2

u∗ω +

∫ 1

0

H(t, x(t))dt.

We have the Conley-Zehnder index µCZ of P̃(H) (see [13, 12]). We normalize
µCZ so that the Conley-Zehnder index of a local maximum of a C2-small Morse
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function is equal to n. π2(M) acts P̃(H) naturally and it changes the Conley-
Zehnder index as follows:

µCZ([u♯A, x]) = µCZ([u, x])− 2c1(A) (∀A ∈ π2(M))

We also have the mean index µ([u, x]) ∈ R ([13]). The mean index has the
following properties.

1. |µ([u, x])–µCZ([u, x])| ≤ n

2. µ([u(k), x(k)]) = kµ([u, x])

Here [u(k), x(k)] ∈ P̃(H(k)) is the natural k-th iteration of [u, x]. The Floer chain
complex CF∗(H) is defined as

CF∗(H) =
{ ∑

z∈P̃(H)

az · z | az ∈ Q, ∀C ∈ R, ♯{z ∈ P̃(H) | az 6= 0, AH(z) > 0} <∞
}
.

The boundary operator dF : CF∗(H) → CF∗−1(H) is defined as follows:

dF (z) =
∑

w∈P̃(H)

n(z, w) · w

This coefficient n(z, w) ∈ Q is the number of solutions of the following Floer
equation modulo the natural R-action (see [3, 6]). We choose an almost complex
structure J on the tangent bundle TM .

z = [v−, x−], w = [v+, x+]

u : R× S1 −→ M

∂su(s, t) + J
(
∂tu(s, t)−XHt

(u(s, t))
)
= 0

lim
s→±∞

u(s, t) = x±(t)

[v−♯u, x+] = [v+, x+]

The Floer homologyHF∗(H) is the homology of the chain complex (CF∗(H), dF ).
It is known that HF∗(H) is isomorphic to the quantum homology of (M,ω).
Let Γ(M,ω) be an abelian group defined as follows:

Γ(M,ω) =
π2(M)

kerω ∩ kerc1

Here, ω : π2(M) → R is the integration of the symplectic form ω and c1 : π2(M) → Z
is the integration of the first Chern class c1. The degree of u ∈ Γ(M,ω) is −2c1(u).
The Novikov ring Λ(M,ω) is defined as the set of possibly infinite sum of Γ(M,ω)

with suitable convergence, i.e.,

Λ(M,ω) =
{ ∑

u∈Γ(M,ω)

au · u | au ∈ Q, ∀C ∈ R, ♯{u ∈ Γ(M,ω), au 6= 0, ω(u) < C} <∞
}
.
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The quantum homology of (M,ω) is the singular homology with Λ(M,ω) coeffient,
i.e.,

QH∗(M,ω) = H∗(M : Q)⊗ Λ(M,ω).

It is known that there is a natural isomorphism (PSS-isomorphism) between
QH∗(M,ω) and HF∗(H) ([11, 3, 6]).

PSS : QH∗(M,ω) −→ HF∗−n(H)

The PSS-isomorphism is used to define the spectral invariant of the Floer homol-
ogy. For any nonzero chain c =

∑
z∈P̃(H) az · z ∈ CF∗(H), the set {AH(z)|az 6= 0}

is bounded above and discrete. We denote its supremum by l(c). If c = 0, we
define l(0) = −∞.

l : CF∗(H) −→ R ∪ {−∞}

c 7→ sup{AH(z)|az 6= 0}

Then, CF<a∗ (H) = {c ∈ CF∗(H)|l(c) < a} is a subcomplex of (CF∗(H), dF ) for
any a ∈ R. We denote the homology of (CF<a∗ (H), dF ) by HF<a∗ (H). The
inclusion CF<a∗ (H) → CF∗(H) induces a natural map

ιa : HF<a∗ (H) −→ HF∗(H).

For any α ∈ QH∗(M,ω), the spectral invariant c(α,H) is defined as follows
([8, 14, 20]):

c(α,H) = inf{a ∈ R | PSS(α) ∈ Im(ιa)}

Usher proved that c(α,H) is achieved by some cycle in PSS(α) ∈ HF∗(H).

Lemma 1 ([19]). Let H ∈ C∞(S1 × M) be a non-degenerate Hamiltonian
function. For any α ∈ QH∗(M,ω)\{0}, there is a cycle c ∈ CF∗(H) such that

l(c) = c(α,H)

[c] = PSS(α)

holds.

Note that c(α,H) is defined for possibly degenerate Hamiltonian function
H because c(α,H) is continuous with respect to the Hofer norm (=L∞-norm)
of the function H .

|c(α,H)–c(α,K)| ≤

∫ 1

0

max
x∈M

|H(t, x)−K(t, x)|dt

This continuity enable us to extend c(α, ·) to continuous functions. The spectral
norm of H is defined by the spectral invariant of H and H with respect to the
funcamental class [M ] ∈ QH2n(M,ω).

ρ(H) = c([M ], H) + c([M ], H)
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It is known that ρ(H) ≥ 0 holds and moreover, ρ(H) > 0 holds if φH 6= Id.
This is a consequence of the proof of the energy-capacity inequality between
the Hofer-Zehnder capacity and the displacement energy (see [18, 15]). More
precisely, we have the following estimate of ρ(H). Let (R2n, ω0) be the standard
symplectic space.

ω0(x1, · · · , xn, y1, · · · , yn) =
∑

i

xi ∧ yi

We say that φ ∈ Ham(M,ω) displaces a symplectically embedded r-ball (r > 0)
if there is a symplectic embedding ι

ι :
(
B(r), ω0|B(r)

)
−→ (M,ω)

B(r) =
{
(x1, · · · , xn, y1, · · · , yn) ∈ R2n

∣∣ ∑

i

x2i +
∑

i

y2i ≤ r2
}

such that φ(ι(B(r))) ∩ ι(B(r)) = ∅ holds. If φH displaces a symplectically em-
bedded r-ball,

ρ(H) ≥ πr2

holds. The Poincare duality of the spectral invariant (see [5]) implies that if H
is non-degenerate,

c([M ], H) = − inf{c(β,H) | β ∈ QH0(M,ω), β = [pt] +
∑

b∈H2k(M),k≥1

ab · b}

holds. In particular, this equality and Lemma 1 implies that there exists
z, w ∈ P̃(H) such that

µCZ(z) = n

µCZ(w) = −n

AH(z) = c([M ], H), AH(w) = −c([M ], H)

holds. In particular, if φH displaces a symplectically embedded r-ball, there
exists z, w ∈ P̃(H) such that

0 ≤ µ(z) ≤ 2n

−2n ≤ µ(w) ≤ 0

AH(z)−AH(w) ≥ πr2

holds. The same conclusion holds for possibly degenerate Hamiltonian function
H .

Lemma 2. Let H ∈ C∞(S1×M) be a possibly degenerate Hamiltonian function
such that φH displaces a symplectically embedded r-ball. Then, there are capped
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periodic orbits z, w ∈ P̃(H) such that

0 ≤ µ(z) ≤ 2n

−2n ≤ µ(w) ≤ 0

AH(z)−AH(w) ≥ πr2

holds.

First, we choose a family of Hamiltonian functions {Hm}m∈N such that every
Hm is non-degenerate and Hm converges to H in C∞-topology. We assume that
every φHm

displaces a symplectically embedded r-ball. Then, we can choose

zm = [um, xm], wm = [vm, ym] in P̃(Hm) so that

0 ≤ µ(zm) ≤ 2n, −2n ≤ µ(wm) ≤ 0

AHm
(zm) = c([M ], Hm), AHm

(wm) = c([M ], Hm)

AHm
(zm)−AHm

(wm) ≥ πr2

Without loss of generality, we assume that xm and ym converges to contractible
periodic orbits of H .

xm → x, ym → y

Note that the continuity of the spectral invariant implies that AHm
(zm) con-

verges to c([M ], H) and AHm
(wm) converges to c([M ], H). Let Cm and Dm be

small cylinders [0, 1]× S1 → M which connect xm and x, ym and y respectively.

Cm(0, t) = xm(t), Cm(1, t) = x(t)

Dm(0, t) = ym(t), Dm(1, t) = y(t)

Here, “small” means that {Cm(s, t)}s∈[0,1] and {Dm(s, t)}s∈[0,1] are shortest
geodesics with respect to some Riemanninan metric. We define z̃m and w̃m in
P̃(H) as follows:

z̃m = [um♯Cm, x], w̃m = [vm♯Dm, y]

Then, {AH(z̃m)} converges to c([M ], H) and AH(w̃m) converges to c([M ], H).
Our monotonicity assumption implies that the differences are contained in the
discrete subgroup of R.

AH(z̃m)−AH(z̃m′) ∈
1

κ
Z

AH(w̃m)−AH(w̃m′ ) ∈
1

κ
Z

This implies that AH(z̃m) and AH(w̃m) stabilize for sufficiently large m. In
other words, we can choose N ∈ N so that

AH(z̃m) = AH(z̃m′), AH(w̃m) = AH(w̃m′)
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holds for any m,m′ ≥ N . Our monotonicity assumption implies that the mean
index also stabilizes. So,

µ(z̃m) = µ(z̃m′), µ(w̃m) = µ(w̃m′)

holds for any m,m′ ≥ N . This also implies that z̃m = z̃m′ and w̃m = w̃m′ hold.
We denote these capped periodic orbits by z and w.

z = z̃m, w = w̃m m ≥ N

This z and w satisfies the following relations:

0 ≤ µ(z) ≤ 2n, −2n ≤ µ(w) ≤ 0

AH(z) = c([M ], H), AH(w) = c([M ], H)

AH(z)−AH(w) ≥ πr2

So we proved the lemma.

4 Proof of the main theorem

In this section, we prove the main theorem. First, we prove the following propo-
sition.

Proposition 1. Let (M,ω) be a closed symplectic manifold. We fix a suffi-
ciently small C1-open neighborhood of the identity U ⊂ Ham(M,ω). For any
ψ ∈ U , we can construct a C1-small Hamiltonian isotopy between the identity
and ψ.

Remark 1. It is almost trivial that we can construct a C1-small symplectic
isotopy between the identity and ψ. The important point is that we can construct
a Hamiltonian isotopy.

We apply the following correspondence between the set of symplectomor-
phisms which are C1-close to the identity and the set of small closed 1-forms on
M (see [7]). Let σ ∈ Ω(M ×M) be a symplectic form on M ×M .

σ = −π∗
1ω + π∗

2ω

Here, πi :M ×M →M is the projection from the i-th factor

πi(x, y) =

{
x i = 1

y i = 2.

We denote the canonical Liouville 1-form on the cotangent bundle T ∗M by λ.

λ(X) = w(dπ∗(X)) X ∈ TwT
∗M

This dπ : TT ∗M → TM is the differentail of the natural projection π : T ∗M →M .
Then, dλ ∈ Ω(T ∗M) is the canonical symplectic form on the cotangent bundle.
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LetM0 ⊂ T ∗M be the image of the zero section. We can construct a symplecto-
morphism Ψ between an open neighborhood of the zero section N (M0) ⊂ T ∗M
and an open neighborhood of the diagonal N (∆) ⊂M ×M . This symplecto-
morphism Ψ satisfies the following properties.

Ψ : N (∆) −→ N (M0)

Ψ(∆) =M0

π(Ψ(q, q)) = q ∈M0

We fix a Hamiltonian diffeomorphism ψ ∈ Ham(M,ω) which is sufficiently C1-
close to the identity. We define a closed 1-form σψ by

σψ = Ψ(graph(ψ)).

Next we fix a 1-periodic Hamiltonian functionH ∈ C∞(S1 ×M) so that φH = ψ
holds. We define a path of symplectomorphisms {ψt}0≤t≤1 as follows:

{(q, ψt(q))}q∈M = Ψ−1(tσψ)

In particular, σψt = tσψ holds. Our purpose is to prove that {ψt} is a Hamil-
tonian isotopy. It sufficies to prove that σψ is an exact 1-form because the flux
of the path {ψt}0≤t≤T is equal to T [σψ] for any T ∈ [0, 1]. Let γt be a loop of
symplectomorphisms defined as follows:

γt =

{
ψ2t 0 ≤ t ≤ 1

2

φ
2(1−t)
H

1
2 ≤ t ≤ 1

The flux of the loop {γt} is equal to [σψ ] ⊂ Γ. Note that Γ is a discrete
subgroup of H1(M : R). This implies that [σφ] = 0 holds if σψ is a sufficiently
small closed 1-form on M . In particular, {ψt} is a Hamiltonian path. So, we
proved the proposition.

Remark 2. This argument can be used to prove that C1-topology is stronger
than the topology induced from Hofer’s metric ([17]).

Henceforth, we assume that (M,ω) is a 2n-dimensional closed negatively
monotone symplectic manifold. Let H ∈ C∞(S1 ×M) be a non-degenerate
Hamiltonian function such that φH displaces a symplectically embedded r-ball.
By lemma 2, we can choose two capped periodic orbits x̄, ȳ ∈ P̃(H) so that

−n ≤ µ(x̄) ≤ 0

0 ≤ µ(ȳ) ≤ n

AH(ȳ)−AH(x̄) ≥ πr2

holds. The k-th power x̄(k), ȳ(k) ∈ P̃(H(k)) satisfies

µ(x̄(k)) ≤ 0 ≤ µ(ȳ(k))

AH(k) (ȳ(k))−AH(k) (x̄(k)) = k{AH(ȳ)−AH(x̄)} ≥ kπr2.
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We choose Ak, Bk ∈ π2(M) so that

0 ≤ µ(x̄(k)♯Ak) ≤ 2N

0 ≤ µ(ȳ(k)♯Bk) ≤ 2N

holds. This N ∈ N ∪ {+∞} is the minimal Chern number of (M,ω). In other
words, N is the positive generator of the image of c1 : π2(M) → Z. We assume
that Bk is trivial if

0 ≤ µ(ȳ(k)) ≤ 2N

holds. This implies that

AH(k)(ȳ(k)♯Bk)−AH(k)(x̄(k)♯Ak) ≥ AH(k)(ȳ(k))−AH(k)(x̄(k))

= k(AH(ȳ)−AH(x̄)) ≥ kπr2

holds because

c1(Ak) ≤ 0, ω(Ak) ≥ 0

holds. Next, we assume that (φH)k ⊂ U holds where U ⊂ Ham(M,ω) is a C1-
small open neighborhood of the identity. Proposition 1 implies that we can
connect (φH)k and Id by a C1-small Hamiltonian isotopy generated by a Hamil-
tonian function K ∈ C∞(S1 ×M). In particular,

φH(k)♯K = Id

holds. By concatenating this small isotopy, x̄(k)♯Ak and ȳ(k)♯Bk become capped
periodic orbits zk, wk ∈ P̃(H(k)♯K) such that

−ǫ ≤ µ(zk) ≤ 2N + ǫ

−ǫ ≤ µ(wk) ≤ 2N + ǫ

AH(k)♯K(wk)− AH(k)♯K(zk) ≥ kπr2 − ǫ

holds for some ǫ > 0. ǫ > 0 is determined by U . Note that φH(k)♯K = Id holds.

We compare P̃(H(k)♯K) and P̃(0) = Γ(M,ω). More generally, we can construct

a one to one correspondence between P̃(G1) and P̃(G2) if φG1 = φG2 holds (see
[16], section 3.1). We fix a Hamiltonian function L so that

φtG2
= φtL ◦ φtG1

holds. Note that L generates a Hamiltonian loop. Let L(M) be the space of
contractible loops in M .

L(M) = {x : S1 → M | x : contractible}

11



We define a covering π : L̃(M) → L(M) as follows:

L̃(M) = {(u, x) | x ∈ L(M), u : D2 →M,∂u = x}/ ∼

(u, x) ∼ (v, y) ⇐⇒





x = y∫
S1(u♯v)

∗ω = 0∫
S1(u♯v)

∗c1 = 0

The Hamiltonian loop {φtL} acts on L(M) as follows:

f : L(M) −→ L(M)

f(x)(t) = φtL(x(t))

Note that f(P)(G1) = P(G2) holds. Let f̃ be a covering transformation such
that the following diagram is commutative.

L̃(M)
f̃

−−−−→ L̃(M)

π

y π

y

L(M)
f

−−−−→ L(M)

We see that f̃ restricted to P̃(G1) makes shifts of the action functional and the
mean index.

Lemma 3. For any z, w ∈ P̃(G1), the following equations holds:

AG1(z)−AG1(w) = AG2(f̃(z))−AG2(f̃(w))

µ(z)− µ(w) = µ(f̃(z))− µ(f̃(w))

For the first equation, we prove that AG1(z)−AG2(f̃(z)) does not depend

on z ∈ L̃(M). It suffices to prove that the differential

TzL̃(M) −→ R

X 7→ D(AG1(z)−AG2(f̃(z)))X

vanishes for any z = [u, x]. Note that TzL̃(M) = Γ(x∗TM) holds. So X is a
section of the vector bundle x∗TM → S1.

D(AG1(z))X = −

∫

S1

ω(X(t), ẋ(t))dt +

∫

S1

d(G1)t ·X(t)dt

12



D(AG2(f̃(z)))X

= −

∫

S1

ω(dφtL(X(t)),
∂

∂t
(φtL(x(t))))dt +

∫

S1

d(G2)t · (dφ
t
L ·X(t))dt

= −

∫

S1

ω(dφtL(X(t)), XLt
+ dφtL(ẋ(t)))dt

+

∫

S1

(dLt + d(G1)t ◦ d(φ
t
L)

−1) ◦ (dφtL ·X(t))dt

= −

∫

S1

{
ω(X(t), ẋ(t)) + dLt ◦ dφ

t
L(X(t))

}
dt

+

∫

S1

{
dLt ◦ dφ

t
L(X(t)) + d(G1)t ·X(t)

}
dt

= −

∫

S1

ω(X(t), ẋ(t))dt +

∫

S1

d(G1)t ·X(t)dt

= D(AG1(z))X

So, D(AG1(z)−AG2(f̃(z))) is zero and the difference AG1(z)−AG2(f̃(z)) is

a constant function on L̃(M). Next, we prove that µ(z)− µ(f̃(z)) does not

depend on z ∈ P̃(G1). We fix z = [u, x] and w = [v, y] in P̃(G1). We choose
a cylinder C : [0, 1]× S1 →M which connects x and y and w = [u♯C, y] holds.
Let D : [0, 1]× S1 →M be a cylinder defined as follows:

D(s, t) = φtL(C(s, t))

We also fix a trivialization of the symplectic vector bundle C∗TM . Then x
and y determines two paths of symplectomorphisms on the symplectic vecor
space (R2n, ω0). µ(z)− µ(w) is a difference of the mean index of these two

paths. Similary, µ(f̃(z))− µ(f̃(w)) is caluculated by fixing a trivialization of
D∗TM . One such trivialization is obtained by the trivialization of C∗TM and
the Hamiltonian loop {φtL}. So the equality

µ(z)− µ(w) = µ(f̃(z))− µ(f̃(w))

holds and we proved Lemma 3.
Lemma 3 and φH(k)♯K = Id implies that there is a transformation

f̃ : P̃(H(k)♯K) −→ P̃(0) = Γ(M,ω)

such that

AH(k)♯K(z)−AH(k)♯K(w) = A0(f̃(z))−A0(f̃(w))

= κ(µ(f̃(z)− µ(f̃(w))) = κ(µ(z)− µ(w))

holds for any capped periodic orbits z, w ∈ P̃(H(k)♯K). However, this is a con-
tradiction for sufficiently large k ∈ N because

|µ(zk)− µ(wk)| ≤ 2N + 2ǫ

|AH(k)♯K(zk)−AH(k)♯K(wk)| ≥ kπr2 − ǫ→ +∞
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holds. So, we proved Theorem 1 (1). Next, we prove Theorem 1 (2). We need
the following Proposition.

Proposition 2 ([1] Proposition 1.1). Let (M,ω) be a negatively monotone sym-
plectic manifold whose Euler number is not zero or π1(M) has finite center.
Then, the flux group Γ is trivial.

We fix a symplectomorphism ψ ∈ Symp0(M,ω)\{Id}. We choose a path of
symplectomorphisms {ψt} which connects Id and ψ (ψ0 = Id, ψ1 = ψ). We
extend {ψt}0≤t≤1 to an isotopy {ψt}t∈R periodically. Let V ⊂ Symp0(M,ω) be
a sufficiently C1-small open neighborhood of the identity so that any element
in V can be connected to Id by a C1-small isotopy of symplectomorphisms.
Assume that ψk ∈ V holds. We connect Id and ψk by a C1-small isotopy of
symplectomorphisms {φt}. Let {γt} be a loop of symplectomorphisms defined
as follows:

γt =

{
ψ2kt 0 ≤ t ≤ 1

2

φ2(1−t) 1
2 ≤ t ≤ 1

Proposition 2 implies that

0 = [Flux({γt})] = k[Flux({ψt}0≤t≤1)]− [Flux({φt})]

holds. Note that [Flux({φt})] ∈ H1(M : R) is contained in a small neighbor-
hood of 0 because {φt} is a C1-small isotopy of symplectomorphisms. So
[Flux({ψt}0≤t≤1)] is zero if k is sufficiently large. In particular, ψ is a Hamilto-
nian diffeomorphism. This implies that Theorem 1 (2) follows from Theorem 1
(1).
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