No-Commitment Branch and Bound Search for Distributed
Constraint Optimization

Anton Chechetka
Robotics Institute, Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213, USA

antonc@cs.cmu.edu

ABSTRACT

We present a new polynomial-space algorithm for solving
Distributed Constraint Optimization problems (DCOP). The
algorithm, called NCBB, is branch and bound search with
modifications for efficiency in a multiagent setting. Two
main features of the algorithm are: (a) using different agents
to search non-intersecting parts of a search space concur-
rently, and (b) communicating lower bounds on solution cost
every time there is a possibility the bounds might change due
to changed variable assignments. The first leads to a better
utilization of computational resources of multiple partici-
pating agents, while the second provides for more efficient
pruning of search space.

Experimental results show that NCBB has significantly
better performance than another polynomial-space algorithm,
ADOPT, on random graph coloring problems. Under as-
sumptions of cheap communication it also has compara-
ble performance with DPOP despite using only polynomial
memory as opposed to exponential memory for DPOP.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and Coordination

General Terms
Algorithms

Keywords

Cooperative distributed problem solving in agent systems

1. INTRODUCTION

In recent years Distributed Constraint Optimization (DCOP)

[2] has received considerable attention as a powerful paradigm
for multiagent coordination. Example applications include
target tracking in distributed sensor networks [7] and dis-
tributed event scheduling [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’06 May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Katia Sycara
Robotics Institute, Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213, USA

katia+@cs.cmu.edu

Several efficient distributed algorithms for solving DCOP
have been developed recently, both optimal (Synchronous
Branch and Bound, ADOPT [7], OptAPO [5], DPOP [8])
and approximate (Iterative Distributed Breakout). Of the
optimal algorithms ADOPT, DPOP and OptAPO have the
best performance to date [5, 7, 8]. However, more work is
needed to make optimal DCOP algorithms efficient enough
for real-life problems.

In this paper we present a decentralized algorithm, called
No-Commitment Branch and Bound search (NCBB), for
solving DCOP, that addresses the problem of performance.
It is based on well-known branch and bound search [3]. It
runs several concurrent search processes in different parti-
tions of search space. This enables one to speed up the
search due to parallelization and also reduces the amount of
information that has to be synchronized among agents. We
demonstrate that NCBB performs better than ADOPT on
distributed graph coloring problems under a variety of met-
rics. When communication is cheap, it also has compara-
ble performance with DPOP despite using only polynomial
memory as opposed to exponential memory for DPOP.

2. DCOP

A Distributed Constraint Optimization problem consists
of a set of variables V = {z1,...,zn}, a set of discrete finite
domains for each of the variables D = {D;,...,D,} and a
set of constraints F = {f1,..., fm} where each constraint
is a function f; : Dil,...,Dij — N U oo. Each variable
is controlled by an agent that can communicate with other
agents. The goal of the agents is to find an assignment for
all the variables B* = {di,...,dn|d; € D;} such that the

global cost, > fi, is minimized. DCOP is NP-complete.

i=1

In this article we consider a restricted version of DCOP.
We assume all the constraints to depend on exactly two vari-
ables, although our approach can in principle be extended
to k-ary constraints. We also assume that each variable is
controlled by an independent agent and use the terms agent
and wvartable interchangeably.

We will use the term constraint graph to refer to a graph
where variables are nodes and two nodes have an edge be-
tween them if and only if they share a constraint. We also
assume that two agents have a direct communicational link
if and only if they share a constraint.

3. NCBB ALGORITHM

Before the algorithm can be executed, the agents need to
be prioritized in a depth-first search (DFS) tree, in which

1427

function mainLoop()
1 if (- IAmRoot) updateContext();

2 while (true)

3 search();

4 if (IAmRoot V updateContext()) break;

5 end while;

6 costs[resultValue] = 0;

7 (for YV y € chldren) subtreeSearch(resultValue, y);
8 (for V y € children) send “STOP” to y;

end mainLoop;

function updateContext()

10 while (true)

11 receive message m from y € ancestors;

12 if (received “search”) bound < m.BOUND; return false;
13 else if (received “y=d”)

14 context[y] « d;

15 send LB(x,context,indzy) - LB(x,context,indzy-1) to y;
16 else if (received “STOP”) return true;

end if; end while; end updateContext;

Figure 1: Main loop for agent x

each agent has a single parent and multiple children. Con-
straints are only allowed between agents that are in an ancestor-
descendant relationship in the DFS tree. An agent does not
have information about all its ancestors or descendants, but
only about those with whom it shares a constraint.

The purpose of such an ordering is to decompose the
global cost function: given the assignments to all ancestors,
agents in a given subtree can work on minimizing their part
of the solution cost independently of agents in other sub-
trees. Any constraint graph can be ordered into some DFS
tree using distributed algorithm from [4].

3.1 Auxiliary definitions

In further explanation all variables names refer to local
variables of the considered agent.
DEFINITION 1. Agent cost for agent x and assignment B

AgentCost(z,B) = Z Jzy(B(x), B(y))

y€ancestorsy

where B(x) is the value of x under assignment B.
DEFINITION 2. For agent x, assignment B and integer
k € 0..|ancestors,| denote LB(z,B,k)

LB(z,B,k) = min min AgentCost(dsz, B)
dy €Dy B1€B],

neestorsg[1..k|

where Blyars is the set of all assignments that agree with B
on the values of variables in vars.

3.2 Initialization

During the initialization stage agents compute global up-
per and lower bounds on the solution cost. Each agent
chooses its value greedily given values of its ancestors so
as to minimize its AgentCost. The costs are propagated up
the tree and bound variable of the root agent takes the value

bound = Z AgentCost(x, Byreedy) — Z LB(z,0,0).
zeV zeV

bound variable of an agent plays the role of an upper bound
on the cost of this agent’s subtree. Thus one can see that
NCBB uses nontrivial lower bounds on the solution cost dur-
ing the search. This idea is closely related to preprocessing

function search()

20 idle < children;

21 costs < @; unexplored « (; anncdVals « (;

22 minCost «+ LB(x, context, |ancestors|);

23 for Vd € D : AgentCost(d,context) <bound + minCost
24 costs[d] « AgentCost(d,context) - minCost;

25 end for;

26 for (Vd € D : costs[d] # 0) unexplored[d] « children;
27 while (unexplored # @ V anncdVals #Z 0)

28 while idle # 0

29 choose child € idle; idle « (idle \ child);
30 choose d : child € unexplored[d];

31 unexplored[d] < (unexplored[d] \ child);
32 if (— subtreeSearch(d, child) A

33 (3 ¢ € D: child € unexplored|c]))
34 idle « (idle U child);

35 end if; end while;
36 if anncdVals #

37 receive costy from y € children;

38 d < anncdVals[y]; anncdVals[y] « 0;

39 costs[d] « costs[d] + costy;

40 if (costs[d] > bound) prune();

41 else if (unexplored[d] = 0) A (y & ch anncdVals|[c])
42 bound=costs[d]; resultValue = d; prune();

43 end if; end if;

44 (if 3 ¢ € D: child € unexplored|c]) idle « (idle U child);
45 end while;

46 if (- TAmRoot) send f}éig costs[d] to parent; end if}

end search;

function subtreeSearch(d, child)

50 send “x=d” to all descendants|child]; anncdVals[child]=d,;
51 for V y € descendants|child]

52 receive costy from y; costs[d] < costs[d] + costy; end for;
53 if (costs[d] > bound) prune(); anncdVals[chld]=0;

54 return false;

55 else

56 send “SEARCH, BOUND=bound-costs[d]” to child;

57 return true;

end if; end subtreeSearch;

Figure 2: Main search loop subroutines for agent x

heuristics for lower bound estimation for ADOPT [1] that
resulted in speedups by an order of magnitude.

3.3 Main loop

After initialization all agents execute the main search loop
listed in Figures 1 and 2. An agent = does not start actively
searching until it receives a SEARC H message from its par-
ent (line 12). Before this message is sent by z’s parent, all
z’s ancestors select their values and announce them to their
descendants. Therefore, when x receives a message to start
searching, it has consistent knowledge about the relevant
ancestors’ values.

The search function contains two most distinct features
of the algorithm. One of them is the method of branching;:
when z selects the next value to explore on a given sub-
tree, it may choose a value different from those announced
to a’s other subtrees (30). For each value an already known
part of the total cost is stored and updated (see costs vari-
able). Because a particular value is generally used at differ-
ent times for different subtrees, one can take into account the

1428

costs for already completed subtree searches and compute a
tighter upper bound on the solution cost for the next sub-
tree (subtreeSearch, (52, 56)). It can be viewed as running
simultaneous search processes in different parts of search
space, and exploits inherent parallelism of the problem.

The second major feature of NCBB is eager propagation
of cost lower bound changes. As agent x learns about its an-
cestors’ assignments, it can compute LB(x, contexty, k) for
larger and larger k. Every time x receives a message with
the value of its ancestor y, it immediately sends back the
amount of change in lower bound on z’s AgentCost (15).
This leads to more precise lower bounds on partial assign-
ment optimal cost at the point of control (agent y in this
case) and in turn to better pruning.

An agent keeps track of the solution costs known so far
for each one of its values (costs map), which subtrees have
not yet explored which of its values (unexplored) and what
value is currently used in what subtree (anncdVals). It up-
dates this information as the subtrees return their search
results (lines 39,52).

4. ALGORITHM PROPERTIES

PRrROPERTY 1. NCBB always terminates after finite time.

PROPERTY 2. The amount of memory required for agent
z is O(|Dg| X |neighborsg|).

PROPERTY 3. After terminating, resultValue variables val-
ues of all agents form optimal variable assignment B™:

B* = argmBm;fi(B)

PROPERTY 4. The number of messages processed by any
agent between receiving SEARCH message and reporting re-
sults in corresponding costy message is O(|Dy| X |neighborsg|).
Also, the size of each message does not depend on the prob-
lem, i.e. algorithm uses only messages of size O(1).

5. EVALUATION

The main metric for evaluation was concurrent constraint
checks (CCC) [6]. It combines computational and commu-
nicational cost of solving the problem and allows for par-
allelism. The unit of cost is time needed to perform one
constraint check. The cost of a message is defined in terms
of constraint checks and does not depend on message size.
It is easy to add CCC as a benchmark for a simulated dis-
tributed system by adding a special field with a value of
local “tick counter” v to every message. Upon receiving the
message, the receiver updates its counter value according to

VUreceiver = maX{Ureceivem VUsender + COStmessage}7

When an agent evaluates a constraint, v is increased by 1.
The cost of solving the problem is the maximal value of v
over all agents.

Fig. 3(a), 3(b) and 3(c) show the dependency of the prob-
lem solving cost on the number of variables for sparse (3(a))
and dense (3(b), 3(c)) settings. The respective message costs
were CoStmessage = 103707 106 (€0Stmessage = 0 corresponds
to pure computational cost of an algorithm). In Fig. 3(d)
one can see the total number of messages sent by all agents
during the solution process depending on the problem size.

Summarizing the experimental results, we conclude that
for almost all parameter settings NCBB performance-wise
dominates ADOPT, and DPOP dominates NCBB. However,

constraints = 3 x variables number

constraints = 2 x variables number (sparse (dense setting), message cost = 0

setting), message cost = 1000
1.E+08

1.E+09

—+NCBB ‘+NCEB ‘

1.E+08 DPOP — 1.E+07 - DPOP

1.E407 {8 ADOPT} —— P e L - & -ADOPT "
© 1.E406 I e g e
s} LRl O 1E+05 «

1.E405 = —= e

1.E404 1.E+04 d

1.E+03 1.E403

1.E+02 1.E+02

16 21
variables number

(a)

constraints = 3 x variables number (dense
setting), message cost = 1E+6

6 11 16

variables number
constraints = 3 x variables number

(dense setting)
‘+NGBB ‘

[

21 26

1.E+08

1.E+13
1.E+12

1.E407 -

9 1.E+06 7wt
1.E+11 3
i & 1.E+05
O 1.E+10 1 —NCBB | 2
S 1409 DPOP £ 1.6+04

- ® -ADOPT 1.6403

1.E+02 q

1.E+08
1.E407
1.E+06

1.E+01

" 16

variables number

()

21 26 6 1 16

variables number

(d)

21 26

Figure 3: NCBB performance results

DPOP requires exponential memory on each agent, so it is
not always applicable. For example, nodes in sensor net-
works have scarce memory, and it is enough even for one
agent to not have enough space for DPOP to fail. For such
applications NCBB may be the optimal choice given its per-
formance advantage over another polynomial algorithm and
the fact that NCBB is itself polynomial-space.

6. CONCLUSIONS

We have presented a novel backtracking-based algorithm
for solving DCOP. It has polynomial memory requirements
and uses messages of constant size. It offers significant per-
formance improvements over the state of the art polynomial-
memory algorithm ADOPT, and thus may be the optimal
choice for settings with scarce memory, such as sensor nets.

7. REFERENCES

[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques
for accelerating the DCOP algorithm ADOPT. In Proc. of
AAMAS, 2005.

K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In Principles and Practice of
Constraint Programming, pages 222236, 1997.

E. L. Lawler and D. E. Wood. Branch-and-bound methods:
A survey. Operations Research, 14(4):699-719, 1966.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In Proc.
of AAMAS, 2004.

A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing performance of distributed constraints processing
algorithms. In Proc. of DCR Workshop, AAMAS, 2002.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 16(1-2):149-180,
2005.

A. Petcu and B. Faltings. An efficient constraint
optimization method for large multiagent systems. In Proc.
of the LSMAS Workshop, AAMAS, 2005.

(2]

(3]

(5]

[6]

[7]

1429

