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ABSTRACT  
   

Nonregular screening designs can be an economical alternative to traditional 

resolution IV      fractional factorials.  Recently 16-run nonregular designs, referred to 

as no-confounding designs, were introduced in the literature.  These designs have the 

property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are 

completely confounded.  In this dissertation, orthogonal arrays were evaluated with many 

popular design-ranking criteria in order to identify optimal 20-run and 24-run no-

confounding designs.  Monte Carlo simulation was used to empirically assess the 

model-fitting effectiveness of the recommended no-confounding designs.  The results of 

the simulation demonstrated that these new designs, particularly the 24-run designs, are 

successful at detecting active effects over 95% of the time given sufficient model effect 

sparsity.  The final chapter presents a screening design selection methodology, based on 

decision trees, to aid in the selection of a screening design from a list of published 

options.  The methodology determines which of a candidate set of screening designs has 

the lowest expected experimental cost.   
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Chapter 1 

INTRODUCTION 

When an experimenter is unable to utilize a resolution V screening design due to 

budget or resource constraints, a resolution IV      fractional factorial design is often 

used as an alternative.  A disadvantage of these designs is that two-factor interactions 

(2FI) are completely confounded with other candidate 2FI.  If fully confounded 2FI are 

found to be active, the experimenter is forced to assume the additional cost of running a 

foldover experiment to disambiguate the experimental results.  As a solution to this 

problem, Jones and Montgomery (2010) identified a class of 16-run nonregular designs, 

referred to as no-confounding designs, which have the property that no pair of main 

effect (ME) and 2FI estimates are completely confounded.  An important advantage of 

these screening designs is that when analyzed with techniques such as stepwise 

regression, the no-confounding design can estimate all of the model terms without the 

need for additional experimentation - an advantage which can save considerable 

experimental resources.   

This dissertation introduces 20-run and 24-run no-confounding designs as 

additional alternatives to resolution IV      fractional factorials.  As with the 16-run no-

confounding designs, no pair of ME or 2FI are completely confounded, allowing an 

experimenter to avoid foldover experiments.  Compared to the 16-run designs, designs of 

20 runs and 24 runs have more capability to accurately screen effects for models of one to 

eight terms.  These designs also provide more accurate coefficient estimates for the cost 

of only four and eight additional runs respectively.  In addition to providing 

experimenters economical screening design options, this dissertation introduces a 
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screening designs selection methodology used to identify which of a candidate set of 

screening designs has the lowest expected experimental cost given uncertainty about the 

model that must be fit.  This methodology provides an objective approach to the usually 

subjective process of selecting a screening design.   

The no-confounding designs are identified through an evaluation, using Monte 

Carlo simulation, of orthogonal arrays (OA).  Formally, an OA is a     matrix whose  th column contains    levels.  The OA has strength   if, within any   columns, every  -
tuple of levels appears equally often.  The general notation is   (           )    In the 

case of pure level arrays where each column has the same number of levels then the 

notation is shortened to   (      )   Most OAs are categorized in the experimental 

design literature as nonregular designs, defined as factorial designs which produce 

partially confounded effect estimates.   

A literature survey of nonregular designs is provided in Chapter 2.  The chapter 

discusses five aspects of nonregular designs: design evaluation criteria; design 

construction methods; design projection properties; nonregular design analysis methods; 

and recent articles in the literature concerning nonregular designs for screening 

experiments.  The background material in Chapter 2 gives important details, particularly 

about design-ranking criteria, that will help the reader understand the theoretical 

foundation for assessing and selecting screening designs from the catalog of orthogonal 

arrays in Chapters 3 and 4.   

 Chapter 3 presents the research conducted to identify the 20-run no-confounding 

designs.  The search for these designs involved the completely enumerated catalog of 

non-isomorphic orthogonal arrays of 6-12 columns provided by Sun, Li et al. (2002).  
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The OAs were evaluated and ranked using a set of 24 design criteria.  Standard criteria 

such as G-aberration, projection estimation capacity (PEC), and  (  ) are included in the 

set.  Other criteria included unique points in k-factor projections and average variance 

inflation factors (VIF).   

The Pareto efficient set of designs, as defined by the 24 design criteria, was of 

reasonable cardinality such that it was feasible to conduct an empirical model-fitting 

analysis of each design.  The empirical analysis was conducted using Monte Carlo 

simulation which randomly generated experimental response data and automated the 

model fitting process.  To assess the performance of a design, the simulation was 

repeated 5000 times, each time with unique response data.   

The designs were evaluated on two metrics: the percentage of simulations which 

resulted in an estimated model with at least the active effects (no type II errors), and the 

percentage of simulations which resulted in an estimated model with all of the active 

effects and no inactive effects (no type I or type II errors).  These metrics were called the 

% at least correct and the % correct.  The Monte Carlo simulation results were used to 

give an empirical characterization, in terms of the % at least correct and the % correct, of 

the model fitting capability of the optimal 20-run no-confounding designs for models 

composed of every possible combination of 2-5 ME and 0-2 2FI.  The 20-run designs are 

shown to be extremely effective at identifying at least the active effects – the most 

important quality of a screening design - when there is at most four ME and one 2FI. 

In addition to empirically assessing orthogonal arrays, the Monte Carlo simulation 

was also used to assess model fitting methods.  Many variants of stepwise regression 

were evaluated to determine which was the most effective.  The results in this dissertation 
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corroborate the recommendation in Shinde (2012) to use a two-stage forward stepwise 

regression when analyzing no-confounding designs. 

 Chapter 4 discusses the process used to identify the 24-run no-confounding 

designs.  The approach used to identify those designs involved an empirical assessment 

of minimum G-aberration designs, maximum PEC designs, and designs created by two 

variants of a column-exchange search algorithm.  The lack of a completely enumerated 

catalog of   (       ) for     necessitated a search algorithm.  The column-

exchange algorithms used in this research differed from previous search algorithms in 

that they were not restricted to the columns of Hadamard matrices.   

Several methods were used to generate columns and efficiently search the space 

of balanced, orthogonal 2-level designs.  The algorithm was also modified to search for 

non-orthogonal designs to explore whether sacrificing some column orthogonality might 

lead to a better over-all design.  It was discovered that the minimum G-aberration 24-run 

designs performed better in terms of the % at least correct and the % correct metrics than 

any other published or algorithmically generated design, despite the fact that no 6-factor 

projection can estimate every term in a 6-factor full model.  The algorithms did find 

designs whose values of % at least correct and % correct were within 4 percentage 

points of the minimum G-aberration designs, but could estimate the full 6-factor model in 

every projection.  The 24-run no-confounding designs detected every active effect over 

95% of the time for response models composed of up to five ME and two 2FI.  These 

results were consistent when investigating any number of 6-12 factors.  

The 20-run and 24-run screening designs introduced in this dissertation give an 

experimenter an expanded list of screening designs options.  These screening designs are 
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alternatives to the more traditional options: the      fractional factorials and the Plackett-

Burman designs.  Definitive Screening Designs have also been introduced recently by 

Jones and Nachtsheim (2011).  These designs incorporate a third level to allow for the 

unambiguous estimation of quadratic effects.  With so many screening design options, it 

can be difficult for an experimenter to make an informed choice.  

In Chapter 5 a screening design selection methodology is presented that helps an 

experimenter select a design based on which one has the lowest expected cost.  Often an 

experimental budget must be established prior to the experiment.  However, when 

experimenting in stages, it becomes more difficult to provide an initial estimate of the 

total cost of the experiment.  This is because the total number of runs in each stage of 

experimentation - usually the key driver of experimental cost - depends on the number of 

significant main effects (ME), two-factor interactions (2FI) and quadratic effects (QE) 

required to adequately model the response variable.   

The total number of experimental runs is heavily influenced by the choice of 

screening design.  The screening design determines aspects of the data such as whether 

active effects are completely confounded with other effects and whether quadratic effects 

can be estimated in the screening phase.  These aspects affect how many experimental 

runs are required in the later stages of experimentation.   

The expected cost screening design selection methodology extends the previous 

research on cost-constrained experimental design in three important ways.  First, while 

the previous methods optimized the construction of a one-stage experimental design, this 

method minimizes the expected start-to-finish experimental cost of a multi-stage 

experiment involving a screening design, fold over runs, and axial runs.  Second, instead 
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of using an algorithm to select cost-optimal runs for a fractional factorial design, our 

methodology is a process for design selection from a candidate list of cataloged screening 

designs.  The methodology can be used with any traditional or modern experimental 

design, such as a definitive screening or no-confounding design.  Finally, an expanded 

scope of three cost sources is considered: the cost of the experimental runs; the cost of 

building a model that omits significant model terms or includes superfluous model terms; 

and the cost of building a model with inaccurate estimates of the regression coefficients.   

The screening design with the lowest expected cost is reported for all feasible 

combinations of model probability and cost penalty values.  This facilitates a sensitivity 

analysis that informs the experimenter of how robust the optimal screening design is to 

changes in the probability and cost penalty assumptions.  Instead of making predictions 

or assumptions about specific probabilities or inaccurate model cost penalties, the 

experimenter has the easier task of predicting a region of probabilities and penalties. 

 Chapter 6 summarizes the results of this research into 20 and 24-run screening 

designs and the designs selection methodology.  It ties together commonalities between 

the no-confounding designs of different dimensions and highlights the important 

differences.  The chapter concludes with avenues for future research related to this topic. 

 As a note to the reader, the chapters in this dissertation are written so that they can 

be read separately from the rest of the document.  Some material from the introduction as 

well as background information from Chapter 2 are included in Chapters 3-5.  The goal is 

to avoid situations where the reader must refer to other chapters in order to understand 

the discussion in the chapters pertaining to the research. 
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Chapter 2 

LITERATURE SURVEY 

Experimental designs which produce effect estimates that are partially 

confounded with other effects are known as nonregular designs.  Sun and Wu (1993) 

introduced the term “nonregular design” when studying Hadamard matrices of order 16.  

There are many circumstances in which nonregular designs have been shown to be 

preferable alternatives to      fractional factorials in the screening design process.  

Much of the work in this dissertation involves the evaluation of nonregular designs in 

order to find more alternative screening designs with specific properties. 

This chapter highlights important research concerning nonregular designs that 

relates to the process of identifying the 20-run no-confounding designs in Chapter 3 and 

the 24-run no-confounding designs in Chapter 4.  Section 2.1 discusses seven of the most 

popular ways to assess and rank nonregular designs.  Section 2.2 presents nonregular 

design construction methods.  Section 2.3 describes the projection properties of 

nonregular designs and how these properties make them effective screening designs.  

Section 2.4 discusses three analysis methods used to analyze experiments conducted with 

nonregular designs.  The chapter concludes with Section 2.5 which highlights two 

recently-introduced screening designs that are rapidly gaining popularity: the no-

confounding designs and the definitive screening designs.   

A more formal definition of nonregular designs are those designs whose alias 

matrix contains elements other than    or 0.  The alias matrix is computed as follows: 

Suppose the proposed linear model is          
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Where    is the     vector of responses,    is the      model matrix,    is the      vector of model coefficients, and    is the     vector of independent and 

normally distributed random errors with mean   and variance   .  Then the least squares 

estimate of    is  ̂  (     )       

Let    be a      model matrix containing variables that were not included in the 

original model matrix and let    be the      vector of model coefficients associated 

with those variables.  Suppose the true model is                

Then it can be shown that             ( ̂ )     (     )                   

The matrix   (     )        is known as the alias matrix (Montgomery (2012). 

 The first screening designs were nonregular designs introduced by Plackett and 

Burman (1946), who provided a collection of 2-level and 3-level designs to investigate     factors with   experimental runs, where   is a multiple of four.  All columns in 

the design matrix are pair-wise orthogonal, meaning main effects are completely de-

aliased, but every main effect is partially aliased with every two-factor interaction not 

involving itself.  Hamada and Wu (1992) showed that the use of Plackett-Burman designs 

need not be restricted to screening for main effects.  With proper analysis, two-factor 

interactions could be detected as well.  This revelation prompted further research into 

nonregular designs.   
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Cheng and Wu (2001) proposed a modification of the traditional response surface 

methodology in which screening and response surface exploration are conducted with a 

single design.  An important condition for this approach is that the single design has good 

low-dimensional projection properties since it is not known a priori which factors are 

important.  The following section reviews research attempting to identify optimal or 

superior nonregular designs in terms of projection properties and orthogonality of effects.   

2.1 Evaluating Nonregular Screening Designs 

Regular designs, such as the      fractional factorials, have been evaluated by 

using the minimum aberration criteria proposed by Fries and Hunter (1980).  Designs 

with minimum aberration have the most favorable alias relationships among all designs 

of equivalent dimension.  A minimum aberration design has the minimum number of 

words in the defining relation that are of minimum length.  For a given design of 

resolution  , these designs minimize the number of main effects (ME) aliased with 

(   )-factor interactions and the number of two-factor interactions (2FI) aliased with 

(   )-factor interactions Montgomery (2012).  Section 2.1.1 discusses research 

concerning how to evaluate nonregular designs with a criterion that is analogous to 

minimum aberration for regular fractional factorials. 

2.1.1 G-aberration 

The first to generalize the concept of minimum aberration for nonregular 

fractional factorials was Deng and Tang (1999).  Their paper introduced the concept of 

generalized resolution and generalized minimum aberration (minimum G-aberration).  

For regular designs, minimum G-aberration reduces to the traditional minimum 

aberration criterion.   
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In order to define minimum G-aberration, Deng and Tang first developed the idea 

of J-characteristics and the confounding frequency vector (CFV).  Suppose there is an     design matrix   (   )    with       .  Let    {     } be an index set 

of the columns of D.  For every subset   of   , define   ( )  ∑ ∏           .  The 

collection of    values is known as the J-characteristics of design  .  Let      and     

be the frequency of   column combinations that give |  | =  (         ) for          , where |  | is the absolute value of a J-characteristic.  The confounding frequency 

vector of design   is defined to be  ( )     (         ) (         ) (         )   (         )  
Note that (         ) is simply the frequency of non-zero column sums of   in reverse 

order, which for a balanced two-level design are all zero since all column sums are zero.   

Let   (  ) and   (  ) be the  th entries of  (  ) and  (  ), respectively.  Let   

be the smallest integer such that   (  )    (  ).  If   (  )     (  ) then    has less 

G-aberration than   .  If no design has less G-aberration than   , then    has minimum 

G-aberration.  Recently, Lin, Sitter et al. (2012) used G-aberration to catalog and rank 

two-level nonregular fractional factorial designs of 32 and 40 runs. 

2.1.2 G2-Aberration 

Tang and Deng (1999) introduced a second design evaluation concept known as 

G2-aberration.  Unlike G-aberration, this metric penalized average non-orthogonality of 

effects more than the maximum non-orthogonality.  As was the case for the G-aberration, 

minimum G2-aberration reduces to the traditional minimum aberration criterion for 

regular designs.  Minimum G2-aberration designs are also derived from the 

J-characteristics.  Let   ( )      ∑ |  | (   )| |  .  The generalized wordlength 
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pattern is defined to be   ( )     ( )).  For two designs    and   , let   be the 

smallest integer such that   (  )    (  ).  If   (  )     (  ) then    has less G2-

aberration than   .  If no design has less G2-aberration than   , then    has minimum 

G2-aberration.   

2.1.3 Generalized Minimum Aberration 

Tang and Deng (1999) had extended the idea of minimum aberration to two-level 

nonregular designs, but they did not provide an obvious extension to designs of three or 

more levels.  This extension was accomplished independently by two groups of 

researchers.  Xu and Wu (2001) proposed generalized minimum aberration (GMA) as the 

generalization of G2-aberration to asymmetrical (mixed level) designs.  Ma and Fang 

(2001) independently developed minimum generalized aberration which is a special case 

of GMA from Xu and Wu (2001).  Fang, Zhang et al. (2007) provided optimal conditions 

for GMA designs, and used the conditions to create an effective sub-design selection 

algorithm to find GMA designs. 

2.1.4 The E(s2)  

Even before minimum aberration had been developed to compare regular 

fractional factorials, researchers searched for a way to compare supersaturated designs.  

A supersaturated design is a factorial design with   rows and   effect columns with      .  Booth and Cox (1962) introduced  (  ) as a solution to the problem of 

evaluating supersaturated designs.  Let    be the  th column of the     model matrix  .  

Then 

 (  )  ∑ (     )    (  )⁄  
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Minimizing  (  ) is equivalent to minimizing the sum of squared off-diagonal elements 

of the correlation matrix of the model matrix.  Lin (1993) was the first to rejuvenate 

interest in the metric.  He constructed supersaturated designs of size (   )  (       ) using half fractions of Hadamard matrices. 

The E(s2) criterion was used to construct and evaluate supersaturated designs in 

Wu (1993), Lin (1995), Nguyen (1996), Tang and Wu (1997), Cheng (1997), and Liu and 

Zhang (2000).  Wu (1993) used Hadamard matrices to develop supersaturated designs of 

12 and 20 runs to investigate up to 66 and 124 factors respectively.  Lin (1995) examined 

the maximum number of factors that can be investigated with a supersaturated designs of 

size N given a pre-specified degree of non-orthogonality between effects.  Nguyen (1996) 

generalized the work in Lin (1993) by discovering a method of constructing 

supersaturated designs with cyclic BIBDs.  Tang and Wu (1997) also generalized the 

work in Lin (1993) by using Hadamard matrices to construct supersaturated designs.  

Cheng (1997) presented a unified synthesis of the optimality results from Lin (1993) and 

Tang and Wu (1997).  Liu and Zhang (2000) present a general algorithm of constructing  (  )-optimal supersaturated designs from cyclic BIBDs.  They compare their results to 

work in Nguyen (1996) and Tang and Wu (1997).  Jones and Montgomery (2010) used  (  ) to identify which projections of the Hadamard matrices of order 16 were optimal 

no-confounding designs. 

2.1.5 Minimum Moment Aberration 

A new approach for comparing nonregular and supersaturated designs based on 

the dissimilarity of the rows in a design matrix was developed by Xu (2003).  He defined 

a new criterion called minimum moment aberration which minimized the power moments 
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of the number of coincidences between runs.  For an (    ) design     [   ]    and a 

positive integer  , the  th power moment is defined to be   ( )    (   )      ∑ [   ( )]         

where the number of coincidences between the  th and  th rows of a design   is 

   ( )   ∑  (       ) 
    

Inside the summation,  (   ) is the Kronecker delta function function, which equals   if     and   otherwise.  Minimum moment aberration created a link between design 

theory and algebraic coding theory since      ( ) is the Hamming distance between 

the  th and  th rows in a design matrix.   

Xu showed minimum moment aberration was a good surrogate for minimum 

G2-aberration, generalized minimum aberration and  (  ).  In addition this metric was 

less expensive in terms of computation time and proved to be useful in several design 

construction algorithms.  Xu and Deng (2005) developed moment aberration projection to 

rank and classify general nonregular designs.  They discovered the surprising result that 

the minimum G-aberration criterion and the moment aberration projection criterion are 

not equivalent for two-level designs. 

2.1.6 Projection Estimation Capacity 

Another general way to evaluate designs is by model robustness, often measured 

by some variant of estimation capacity.  Estimation capacity was first introduced by Sun 

(1993) and measures the number of estimable models containing all of the ME evaluated 

in a design, and a given number of   2FI’s.  Estimation capacity was used by Li and 
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Nachtsheim (2000) and Li (2006) to create model robust designs for screening 

experiments.   

Loeppky, Sitter et al. (2007) introduced a variant of estimation capacity known as 

projection estimation capacity (PEC).  Instead of the potential model space involving all 

ME in the screening design, the model space for PEC involves all   ME in  -factor 

projections of the original design plus all of the associated 2FI.  Using the completed 

catalog of non-isomorphic   (       ) and   (       ), Loeppky et al. were able to 

identify optimal 16-run and 20-run designs in terms of PEC.  They used the complete 

catalog of non-isomorphic Hadamard matrices of orders 24 and 28 to identify 24 and 28-

run PEC designs. 

The PEC of experimental designs is important when screening all of the effects in 

a full ME and 2FI model.  Schoen (2010) looked at OAs of strength 3 with full estimation 

capacity (the ability to estimate all terms in a full model) and discussed when these OAs 

perform better than an optimal design. 

2.1.7 Cost-constrained Screening Designs 

Another important method of evaluating designs, which has been applied to both 

regular and nonregular designs, is based on design cost.  Early work on design evaluation 

based on budgetary constraints includes Neuhardt, Bradley et al. (1973) and Neuhardt, 

Bradley et al. (1978) who examined the problem of selecting the lowest cost      

fractional factorial experiment based on the assignment of a cost    to each “cell” (factor 

level combination) in the full factorial experiment.  Neuhardt, Bradley et al. (1978) 

discuss a dynamic programming approach to obtaining an optimal cost fractional factorial 

based on cell costs.  See Mount-Campbell and Neuhardt (1980) and Mount-Campbell and 
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Neuhardt (1982) for discussions concerning cost-optimal 3n-r fractional factorial designs 

and 3m-r2n-s  fractional factorials respectively.   

Pignatiello (1985) introduced a procedure to determine cost-optimal  n-r fractional 

factorials (for prime  ) that simultaneously considered cell costs and the ability to 

estimate a rank ordered list of specified main effects and two-factor interactions.  

Rafajlowicz (1989) developed an algorithm to find cost-efficient fractional factorials 

based on a specified information matrix. 

Tack and Vandebroek (2001) were the first to simultaneously consider resource 

costs and run-transition costs as criteria for constructing cost-optimal designs.  In Tack 

and Vandebroek (2002) they extend their cost-efficient and time trend-resistant optimal 

design approach to block designs.  In Tack and Vandebroek (2004) the work is extended 

to situations where there is a budgetary constraint.  Additional optimal design research 

was conducted by Park, Montgomery et al. (2006), who developed a genetic algorithm to 

create cost-constrained designs with good G-efficiency. 

2.2 Nonregular Design Construction Methods 

Advancing computing capability in the past 15 years has led to significant 

research in the construction of nonregular designs.  Many construction methods utilize 

Hadamard matrices which are special cases of orthogonal arrays.  Earlier research 

involved searching through projections of Hadamard matrices to find designs that 

minimized various design criteria.  Research has shifted to the more general class of 

orthogonal arrays as a result of the complete enumeration of the non-isomorphic OAs of 

certain dimensions.  The next subsections detail the significant work in nonregular design 

construction. 
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2.2.1 Hadamard Matrices 

A Hadamard matrix is a square matrix whose entries are either   .  A Hadamard 

matrix with   rows (columns) is said to be of order  .  The columns of a Hadamard 

matrix   are mutually orthogonal such that        .  A large online repository of 

Hadamard matrices is maintained by Neil Sloane of AT&T Shannon Labs and is located 

at http://www2.research.att.com/~njas/hadamard/.  This website includes all Hadamard 

matrices of orders   up through       , and at least one of every order   up through      . 

The orthogonality of the columns and the fact that their entries are     made 

Hadamard matrices the basis of much nonregular design research.  Tang and Wu (1997) 

generalized the work in Lin (1993) by using Hadamard matrices to construct 

supersaturated designs.  Li and Wu (1997) presented a class of supersaturated design 

construction algorithms called column-wise pairwise exchange algorithms.  A key 

contribution was applying the row-exchange concept of the k-exchange algorithms 

proposed by Johnson and Nachtsheim (1983) to a column-exchange concept with designs 

based on Hadamard matrices.  Ingram (2000) developed a column exchange algorithm 

based on the selection of columns from Hadamard matrices, called the excursion-at-target 

algorithm, to construct minimum G-aberration designs of 24 runs for 9-23 factors.  

Belcher-Novosad and Ingram (2003) improved their excursion-at-target algorithm to 

identify minimum G-aberration designs from Hadamard Matrices of order 28.   

2.2.2 Orthogonal Arrays 

Orthogonal arrays are an important tool to facilitate factorial experimentation, not 

only in industrial contexts but in a growing number of other disciplines as well.  SAS 

http://www2.research.att.com/~njas/hadamard/
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maintains a library of 117,000 orthogonal arrays (of strength two) up through 144 runs at 

http://support.sas.com/techsup/technote/ts723.html.  SAS also provides a set of free 

macros for making orthogonal arrays and D-efficient non-orthogonal designs.   

Orthogonal arrays were introduced by Rao (1947) and included Plackett-Burman 

designs as a special case.  Formally, an OA is a     matrix whose  th column contains    levels.  The OA has strength   if, within any   columns, every  -tuple of levels appears 

equally often.  The general notation is   (           )    In the case of pure level 

arrays where each column has the same number of levels then the notation is shortened to   (      )   Orthogonal arrays include both regular and nonregular designs.  Regular 

designs of resolution   are orthogonal arrays of strength      .  Cheng (1980) 

proved that for the main effects model, orthogonal arrays are universally optimal.  Box 

and Tyssedal (1996) defined a design to be of projectivity   if the projection onto every 

subset of   factors contains at least a    full factorial design.  An orthogonal array of 

strength   is therefore of projectivity  .  Hedayat, Sloane et al. (1999) gives a detailed 

presentation of the theory and application of orthogonal arrays. 

Sun, Li et al. (2002) developed an algorithm for sequentially constructing non-

isomorphic regular and nonregular orthogonal arrays.  Two OAs are said to be 

isomorphic if one design can be obtained from the other by permuting rows, columns or 

relabeling factor levels.  The algorithm was used to obtain a complete catalogue of     

two-level orthogonal designs for   {        } and   {      (   )}.  The catalog 

was used to identify generalized minimum aberration designs.  Zhang, Li et al. (2011) 

present and prove an equivalence relationship between orthogonal arrays and generalized 



18 

difference matrices.  Schoen and Mee (2012) classified all two-level orthogonal arrays of 

strength 3 up to 48 runs. 

2.2.3 Constructing Designs Using Design Evaluation Criteria 

Tang and Deng (2003) constructed minimum G-aberration designs, including 

designs that were not projections of Hadamard matrices, for 3-5 factors and any run size   that is a multiple of four.  Butler (2003) provided construction results that identified 

minimum G2-aberration     designs where   {                 } and   (   )   .  Butler (2004) provided construction results that identified minimum G2-

aberration designs for many of the cases with N =16, 24, 32, 48, 64 and 96 runs.  Li, 

Deng et al. (2004) developed an algorithm to search for minimum G-aberration designs 

of 4-6 factors and   {              } and found designs that were not projections of 

Hadamard matrices.  Butler (2005) used a design construction approach based on subsets 

of saturated orthogonal arrays to produce GMA designs. 

Li (2006) presents screening designs for 12, 16 and 20 runs that are optimal with 

respect to full estimation capacity.  Stufken and Tang (2007) classified all two-level 

orthogonal arrays with       factors and strength   for any run size.  Loeppky, Sitter et 

al. (2007) ranked two-level orthogonal design based on the number of estimable models 

containing a subset of   main effects and all (  ) of their associated two-factor 

interactions.  They presented catalogs of useful designs with 16, 20, 24, and 28 runs.  

Bulutoglu and Margot (2008) classified some orthogonal arrays of strength 3 up to 56 

runs and of strength 4 up to 144 runs for up to eleven factors. 
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2.3 Projection Properties 

When using screening designs, experimenters rely on the principle of effect 

sparsity – a concept that implies relatively few of the factors in the initial experiment will 

be active.  Thus screening designs are often analyzed in terms of their projections onto 

small subsets of factors.  Box and Hunter (1961) were the first to present a rationale for 

examining the projection properties of screening designs.  This paper also presented the 

idea of design resolution, which is related to the projections of a design.  A design has 

resolution   if no  -factor effect is aliased with another effect containing less than     

factors.  For designs of resolution  , the projection onto any   factors results in either a    full factorial or a replicated     .  The projection properties of nonregular designs are 

complex due to the partial aliasing of factors.  Recall from Section 2.2.2 that Box and 

Tyssedal (1996) defined a design to be of projectivity   if the projection onto every 

subset of   factors contains at least a    full factorial design.   

Lin and Draper (1992) looked at all projections of 12, 16, 20, 24, 28, 32, and 

36-run Plackett-Burman designs and found that all projections either contain a    

factorial or replicated      fractional factorial or both.  Cheng (1995) showed that as 

long as the run size   is not a multiple of     , an   (      ) with           has 

projectivity      .  The paper further showed that as long as the run size   of an   (      ) is not a multiple of 8, its projection onto any four factors allows the 

estimation of all the main effects and two-factor Interactions when the higher-order 

interactions are negligible.  Cheng (1998) proved that as long as the run size   of an   (      ) is not a multiple of 16, its projection onto any five factors allows the 

estimation of all the main effects and two-factor interactions.  Wang and Wu (1995) 
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introduced the concept of the hidden projection property, which is a design’s ability to 

estimate interactions without relying on geometric projection.  This property is the result 

of complex aliasing.  Bulutoglu and Cheng (2003) showed that the hidden projection 

property also holds for Paley designs of sizes greater than eight, including those with run 

sizes that are multiples of eight.  Tang (2001) evaluated the minimum G2-aberration 

designs and demonstrated that they have good low-dimensional projection properties.  Ai 

and Zhang (2004) showed that generalized minimum aberration designs have good low-

dimensional projection properties.  Cheng (2006) reviews the projection properties of 

factorial designs and how projection relates to factor screening. 

2.4 Nonregular Screening Design Analysis 

Hamada and Wu (1992) showed that the use of Plackett-Burman designs need not 

be restricted to screening for main effects.  With proper analysis, two-factor interactions 

could be detected as well.  This important discovery initiated a large volume of research 

in the area of nonregular screening design analysis.  The next subsections highlight three 

popular analysis techniques: stepwise regression, the Dantzig selector, and LASSO. 

2.4.1 Stepwise Regression 

The Hamada and Wu (1992) design analysis strategy uses a forward stepwise 

regression procedure that is based on effect sparsity and effect heredity.  Forward 

stepwise regression is a model building technique that starts from a void model and 

model terms are added if the p-value for the t-statistic of that effect is below a threshold.  

At each step a variable is added from a candidate list that improves the model the most 

according to some criteria.  When effect heredity is enforced, if a two-factor interaction 
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or quadratic term is added to the model then all corresponding main effects are 

automatically added to the model.   

The p-value approach mentioned above is one method to evaluate and compare 

potential models.  Another class of model evaluation methods seeks to identify models 

that make the best trade-off between bias and variance.  These criteria all have the 

general form  ‖    ̂‖       ‖ ̂‖             ‖ ̂‖     |{   ̂   }| 
According to Candes and Tao (2007), model selection criteria including the 

Akaike Information Criterion (AIC), the Bayesian Information criterion (BIC) and 

Mallow’s    can be written in this form by choosing appropriate values of  .  The AIC, 

based on the concept of information entropy, was introduced in Akaike (1974) as a 

measure that balances the reward for goodness of fit with a penalty for overfitting.  The 

Akaike’s information criterion corrected (AICc) discussed in Hurvich and Tsai (1989) 

utilizes a bias correction for small sample sizes making it a valuable statistical tool when 

building models from screening designs.   

2.4.2 LASSO 

The least absolute shrinkage and selection operator (LASSO) was introduced by 

Tibshirani (1996) as a method to estimate   by minimizing an objective function that 

included both the sum of squares of the residuals and the    norm of  ̂ as a penalty term.  

According to Tibshirani (2011), the LASSO method increased in popularity due to the 

development of efficient computation algorithms such as the least angle regression 

(LARS) algorithm in Efron, Hastie et al. (2004).  Efron et al. produced another version of 
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LARS that improved on forward stage-wise regression.  Zhao and Yu (2006) showed that 

Lasso is a computationally feasible model selection technique and provided an almost 

necessary and sufficient condition for it to achieve consistent selection.   

2.4.3 Dantzig Selector 

A variant of LASSO called the Dantzig selector, introduced in Candes and Tao 

(2007), is a method to estimate  ̂ when the number of model terms p is greater than the 

number of observations  .  The method uses a convex program with an objective function 

that minimizes the complexity of  ̂ via a   -norm.  Since the convex program can be 

recast as a linear program, this model building technique is efficient even for large values 

of   and  . 

2.5 Recent Developments in Nonregular Screening Designs 

Two important developments in nonregular screening designs in the recent 

literature are the no-confounding designs and the definitive screening designs.  In some 

situations, these designs offer important advantages over the more traditional      

fractional factorials and Plackett-Burman designs.   

2.5.1 No-confounding Designs 

No confounding designs are a class of 16-run nonregular fractional factorial 

designs introduced by Jones and Montgomery (2010) which have the defining feature that 

no main effect is completely confounded with any two-factor interaction.  For many of 

these designs it is also true that no pair of two-factor interactions are completely 

confounded.   

These 16-run designs for investigating six to ten factors are projections of the five 

orthogonal designs for screening up to 15 factors in 16 runs introduced in Hall (1961).  
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The no-confounding design for   factors is the optimal combination of   Hall matrix 

columns that minimize  (  ).   

The lack of complete confounding of model effects presents a significant cost 

savings opportunity to an experimenter.  If effect sparsity holds and there are no 

quadratic terms required in the model, analysis with a model building technique such as 

step-wise regression can produce an accurate model without additional experimentation 

beyond the screening design.  This can result in a significant savings in experimental 

costs.   

2.5.2 Definitive Screening Designs 

Definitive screening designs are a class of three level nonregular screening 

designs introduced by Jones and Nachtsheim (2011) that allow the estimation of all 

possible full quadratic models involving any three factors, as long as at least six factors 

are screened.  To screen   factors, the design uses      runs in a structure that includes 

one center run and   pairs of runs called fold over pairs.  The first run in each fold over 

pair has one factor at the zero level and the other     factors have levels of   .  The 

second run has the factor levels of the first run after multiplication by   .  For every 

factor under investigation, one fold over pair is added to the design.  Table 1 from Jones 

and Nachtsheim (2011) illustrates this structure. 
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Table 1.  General Design Structure for m Factors 
Foldover Pair Run Factor Levels ( )                                                                                                                                                                         
Center point                

 
For these designs, main effects are orthogonal to other main effects as well as 

quadratic effects.  In addition, there is no complete confounding of any pair of second-

order effects.  The alias structure between two-factor interactions and other two-factor 

interactions, as well as between quadratic effects and two-factor interactions is complex.   
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Chapter 3 

NO-CONFOUNDING DESIGNS OF 20 RUNS 

3.1 Introduction 

When an experimenter is unable to utilize a resolution V screening design due to 

budget or resource constraints, a resolution IV      fractional factorial design is often 

used as an alternative.  With these designs, the experimenter must accept the risk of 

finding active two-factor interactions (2FI) which are completely confounded with other 

candidate 2FI.  In this situation there is additional cost in running a foldover experiment 

to disambiguate the experimental results.  As a solution to this problem, Jones and 

Montgomery (2010) identified 16-run nonregular designs, referred to as no-confounding 

designs, which have the property that no pair of main effect (ME) and 2FI estimates are 

completely confounded.  An important advantage of these screening designs is that, when 

the response is determined by a small number of ME and 2FI effects, the no-confounding 

design can estimate all of the model terms without the need for additional 

experimentation beyond the screening design - an advantage which can save considerable 

experimental resources.   

The 16-run no-confounding designs were discovered via an exhaustive search of 

orthogonal arrays (OA) of       rows and   columns for   {      }   Likewise, 

the search for 20-run no-confounding designs also used a completely enumerated catalog 

of non-isomorphic   (       ) for   {      } factors provided by Sun, Li et al. 

(2002).  OAs are an important tool to facilitate factorial experimentation, not only in 

industrial contexts but in a growing number of other disciplines as well.  Formally, an 

OA is a     matrix whose  th column contains    levels.  The OA has strength   if, 
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within any   columns, every  -tuple of levels appears equally often.  The general notation 

is   (           )    In the case of pure level OAs where each of the   columns has 

the same number of levels, the notation is shortened to   (      )   OA   is 

non-isomorphic to OA   if no permutation of rows, columns, or factor levels in   results 

in a copy of  .  Most OAs are categorized in the experimental design literature as 

nonregular designs, defined as factorial designs which produce partially confounded 

effect estimates.   

The economic advantages of the 16-run no-confounding designs were established 

in the original journal article, but there are limitations to the designs.  Unpublished work 

in Shinde (2012) reported the degradation of quality metrics related to model fitting, such 

as the frequency of type I and type II model building errors, when the number of model 

terms was greater than four.  One solution to mitigate this problem is to use a design with 

more runs.   

The research into 20-run no-confounding designs was motivated by the desire to 

provide researchers a no-confounding design option with better model-estimation 

performance for regression models of five to seven terms.  This chapter identifies optimal 

20-run no-confounding designs and discusses the process of identifying these OAs based 

on the empirical results of a Monte Carlo simulation.  The simulation results are used to 

characterize the performance of the designs in terms of two metrics: the percentage of 

simulations in which at least all of the active effects were identified, and the percentage 

of simulations in which the correct model was identified.  These metrics are reported for 

every feasible combination of 2-5 ME and 0-2 2FI.  
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Identifying optimal nonregular designs based on empirical simulation results 

rather than optimality criteria related to the structure of the design matrix is a novel 

approach.  The standard in the literature is for authors to introduce a design optimality 

criterion and provide a theoretical justification for how their criterion identifies designs 

with optimal model-fitting properties.  The optimality criterion is then used to rank 

designs and identify which is optimal.  Unfortunately designs often rank differently under 

various criteria and there are limited empirical studies which inform a practitioner about 

which are the best design-ranking criteria to use in selecting a design.   

Many design-ranking criteria have been introduced and used to catalog and 

identify optimal nonregular designs.  As an example, the optimal 16-run no-confounding 

designs were identified using the  (  ) metric, first suggested by Booth and Cox (1962) 

as a metric to rank supersaturated designs.  Generalized aberration, or G-aberration, is 

also a common design-ranking criteria.  Its introduction in Deng and Tang (1999) spurred 

a large variety of subsequent research into nonregular design evaluation. 

Twenty-four popular and practical design-ranking criteria were used as the 

theoretical foundation for an empirical evaluation of OAs using Monte Carlo simulation.  

First, each OA in the catalog was given a ranking by each of the 24 criteria.  Since many 

designs ranked lower than other designs according to all of the criteria, these dominated 

designs were removed from consideration to produce a Pareto efficient set of designs.  

Using several stages of simulation, an optimal  -factor 20-run no-confounding design 

for   {      } factors was identified from its respective Pareto efficient design set.  

As a second contribution from this chapter, the empirical research indicated that the 



28 

G-aberration criterion may ultimately be the best way to identify optimal designs, 

particularly when using two-stage stepwise regression as an analysis method.  

The remainder of this chapter is organized as follows.  The background section 

discusses popular nonregular design optimality metrics and the concept of a Pareto 

efficient set.  The methodology section discusses the details of the Monte Carlo 

simulation used to empirically determine the model-fitting capability of the OAs.  This 

section also discusses the 24 design-ranking criteria used to reduce the complete 

non-isomorphic catalog of 20-run OAs to a Pareto efficient set of candidate designs.  The 

section concludes with the process used to empirically assess the candidate designs and 

determine the optimal 20-run no-confounding designs.  The optimal 20-run designs for 6-

12 factors are presented in the results section along with the empirical data related to their 

model-fitting capability.  Accompanying these results is a discussion of the high 

correlation between the best empirical results and a high G-aberration rank.  This section 

also provides a summary of two different model-fitting approaches and a comparison of 

their effect on type I and type II variable-selection errors.  The chapter concludes with a 

summarization of the results and suggestions for future research. 

3.2 Background 

This section presents some previous research concerning orthogonal arrays and 

the design-ranking criteria developed to create and evaluate them.  Also included is a 

discussion of the concept of a Pareto efficient set and how it relates to the simultaneous 

optimization of multiple criteria.  The previous research in design optimality criteria sets 

the stage for the empirical approach taken in this chapter to rank nonregular designs.  
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Empirical design analysis is particularly suited for small and completely-enumerated 

design catalogs such as the catalog of 20-run OAs. 

The first to complete a catalog of non-isomorphic   (       ) was Sun, Li et 

al. (2002).  Subsequently, the non-isomorphism of designs in the catalog was verified by 

algorithms developed by Angelopoulos, Evangelaras et al. (2007), Evangelaras, 

Koukouvinos et al. (2007), Bulutoglu and Margot (2008) and Schoen, Eendebak et al. 

(2010).  The complete catalogs of non-isomorphic designs exist for 

the   (       )       (       ).  The complete catalogs of   (       ) exist for 

the cases of       and       (Bulutoglu and Margot 2008).  Unfortunately for      it has been computationally infeasible to obtain the complete catalog of non-

isomorphic OAs of strength two. 

During the past 15 years, articles in the experimental design literature have 

provided incomplete catalogs of non-regular experimental designs.  These designs were 

ranked by a diverse set of design-ranking criteria.  Each criterion relies on a theoretical 

basis for linking the highest ranked designs to optimal design performance in terms of 

model estimation.  Unfortunately there are many sensible design criteria in the literature 

to choose from and designs which rank highest under one criterion do not necessarily 

rank highest under another.   

3.2.1 Generalized Aberration 

Deng and Tang (1999) proposed minimum G-aberration and Tang and Deng 

(1999) proposed minimum G2-aberration to rank nonregular designs.  These criteria use 

the J-characteristics of designs to compare them.  Suppose there is an     design 

matrix   (   )    with       .  Let    {     } be an index set of the columns 
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of D.  For every subset   of   , define   ( )  ∑ ∏           .  The collection of    values 

is known as the J-characteristics of design  .  Let      and     be the frequency of  -

column combinations (  is the cardinality of  ) that give |  |    (         ) for          , where |  | is the absolute value of a J-characteristic.  The confounding 

frequency vector (CFV) of design   is defined to be   ( )     (         ) (         ) (         )   (         )  
Note that (         ) is simply the frequency of non-zero column sums of   in reverse 

order, which for a balanced two-level design are all zero since there are an equal number 

of   . 

Let   (  ) and   (  ) be the  th entries of  (  ) and  (  ), respectively.  Let   

be the smallest integer such that   (  )    (  ).  If   (  )     (  ) then    has less 

G-aberration than   .  If no design has less G-aberration than   , then    has minimum 

G-aberration (Tang and Deng 2003). 

Minimum G2-aberration designs are also derived from the J-characteristics.  Let   ( )      ∑ |  | (   )| |  .  The generalized wordlength pattern is defined to be 

(  ( )     ( )).  For two designs    and   , let   be the smallest integer such that   (  )    (  ).  If   (  )     (  ) then    has less G2-aberration than   .  If no 

design has less G2-aberration than   , then    has minimum G2-aberration.  Both 

G-aberration and G2-aberration criteria reduce to minimum aberration for regular designs 

(Tang and Deng 2003).  Minimum G-aberration and minimum G2-aberration have been 

well researched and have been used to develop several design catalogues.   

The J-characteristics of a design are indications of the non-orthogonality of effect 

columns in the design’s model matrix.   Therefore G-aberration and minimum 
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G2-aberration are both related to the quality of the model coefficient estimates.  

Unfortunately for many designs, the G-aberration and G2-aberration rankings do not 

agree. 

3.2.2 Estimation Capacity 

Another general way to evaluate designs is by model robustness, often measured 

by some variant of estimation capacity.  Estimation capacity, as first introduced by Sun 

(1993), measures the number of estimable models containing all of the ME evaluated in a 

design and a given number of q 2FI’s.  Estimation capacity was used by Li and 

Nachtsheim (2000) and Li (2006) to create model robust designs for screening 

experiments.   

Loeppky, Sitter et al. (2007) introduced a variant of estimation capacity known as 

projection estimation capacity (PEC).  Instead of the potential model space involving all 

ME in the screening design, the model space for PEC involves all   ME in  -factor 

projections of the original design plus all of the associated 2FI.  Using the completed 

catalog of non-isomorphic   (       ) and   (       ), Loeppky et al. were able to 

identify optimal 16-run and 20-run designs in terms of PEC. 

The projection estimation capacity of experimental designs is important when 

screening all of the effects in a full ME and 2FI model.  Schoen (2010) looked at OAs of 

strength three with full estimation capacity (the ability to estimate all terms in a full 

ME+2FI model) and discussed when such an OA performed better than an optimum 

design.  A screening design for   factors will often be supersaturated for the number of 

terms in an  -factor full model.  However, if an experimenter feels that due to factor 

sparsity only a few ME will be active then the experimenter will use the supersaturated 
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design and screen for effects in a full model for a subset of the original ME.  Since it is 

not known in advance which ME are active, the projection estimation capacity can be 

evaluated to get an estimate of the design’s model robustness. 

3.2.3 The Pareto Front 

It is common when ranking designs based on multiple design criteria that a design 

which is optimal for one criterion is not optimal for other criteria.  According to Lu, 

Anderson-Cook et al. (2011), one criterion rarely encompasses all of the qualities a 

design should have to be effective.  Consequently, it is recommended to consider the 

Pareto efficient set, or Pareto front, of designs.  In general, a decision element   is 

included in a Pareto efficient set if there does not exist an element   which outranks 

element   in every optimality criterion.  That is to say element   is not dominated by any 

other element.  Examining the Pareto front of designs allows an experimenter to find a 

design which has favorable qualities across multiple criteria and will therefore have a 

greater chance of performing well in varying experimental contexts. 

3.3 Methodology 

The methodology used to identify and recommend 20-run no-confounding 

designs from the catalog of   (       ) involved a three stage process.  First every 

design in the catalog was evaluated and ranked according to 24 design metrics.  Next a 

candidate set of optimal no-confounding designs was produced by determining the Pareto 

efficient set of designs based on the ranks of the 24 criteria.  Finally, an empirical 

analysis of the model-fitting capability of the designs in the Pareto efficient set was 

conducted.  The results of the empirical analysis ultimately determined which designs 

were recommended as the 20-run no-confounding designs. 



33 

The empirical results were also used as dependent variables in a supplementary 

regression analysis which used the design-ranking criteria as regressor variables.  The 

goal of the analysis was to determine which design-ranking criteria best predicted the 

optimal design in terms of model-fitting capability.  The information concerning design-

ranking criteria will be valuable in studying OAs of larger dimension for which 

exhaustive catalogs do not exist, such as the OA (        ) catalog.  

3.3.1 Developing the Monte Carlo Simulation  

The empirical analysis was accomplished using a Monte Carlo simulation.  The 

simulation was an uncommon aspect of the methodology used to identify the 20-run no-

confounding designs.  Marley and Woods (2010) used a Monte Carlo simulation to 

compare analysis strategies for supersaturated designs, but a journal article concerning 

Monte Carlo simulation as a method to compare designs has not been published.   

Many details of the simulation were rigorously analyzed to ensure that the 

simulation results would accurately model the real-world application of OAs as screening 

designs.  This subsection presents the details of the simulation development process.  It 

covers three important aspects of the Monte Carlo simulation that needed to be 

determined: the analysis method and the associated p-value thresholds; the number of 

potential ME and 2FI in the simulated models; and the number of simulations.  This 

discussion serves as a prelude to the subsequent presentation concerning the methodology 

used to identify the 20-run no-confounding designs. 

The Monte Carlo simulation generated a polynomial response model with a 

randomly generated number of ME and 2FI, as well as random coefficients for the effects 

and random experimental error.  A response vector was created based on the polynomial 
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model and the factor levels in a screening design.  The simulation then automated the 

analysis of the randomly generated responses and fit a model.   

The terms and coefficients in the estimated model were compared to the terms 

and coefficients in the randomly generated model and a binary variable recorded whether 

a type I or type II variable selection error occurred.  The simulation was iterated five 

thousand times, each time generating an original random model.  After a given number of 

iterations, the data was aggregated to report the percentage of models with at least the 

active effects, the percentage of models with type I variable selection errors and the 

percentage of models with type II variable selection errors.  Designs with the minimum 

percentage of type II variable selection errors were identified as the optimal design 

among each of the  -column classes of OAs.  See Figure 1 for a flow chart of the Monte 

Carlo simulation. 

 
Figure 1.  Monte Carlo Simulation Flow Chart 

The number of simulations was based on the Normal approximation of the 

standard deviation for a binomial proportion   ̂  √ (   ) .  It was required that    
      when         to achieve the desired standard deviation of   ̂       .  After 

weighing the simulation time against the requirements for the width of a 95% confidence 
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interval, it was determined that 5000 simulation runs would create sufficiently narrow 

confidence intervals to feasibly compare the various OAs. 

3.3.1.1 Selecting the Analysis Method 

Since the smallest ME+2FI full model under consideration was the 6-factor model 

with 22 terms, an analysis method suitable for supersaturated designs was required.  

Fifteen variants of forward mixed stepwise regression and forward stepwise regression 

were considered for the analysis method.  The variants of stepwise regression involved 

different model selection methods using p-values and the Akaike’s Information Criterion 

Corrected (AICc).  AICc was a candidate model-selection criterion since it is particularly 

suited for situations where there are few active model terms.  For the model selection 

approaches using p-values, several levels were considered for the threshold of the 

entering and exiting variables.   

Doctoral research in Shinde (2012) suggested using a 2-stage forward stepwise 

analysis approach to both improve model accuracy and enable the estimation of larger 

models.  In the first stage, the analysis is conducted considering only ME terms.  In the 

second stage, only the active ME terms from stage one and all associated 2FI involving 

the active ME are considered.  Both the forward mixed stepwise regression (p-values) 

and the forward stepwise regression (using AICc) were examined using a 1 and 2 stage 

process. 

Since the analysis software did not perform bi-directional elimination when the 

AICc criterion was used to rank potential models, a modification of the forward selection 

procedure was considered.  The modification involved eliminating variables in the final 

model which had a p-value above a certain threshold.  Several “post-stepwise variable-
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elimination p-value thresholds” were tested with the one-stage and two-stage stepwise 

procedures to determine if adding this step in the analysis would improve the model-

fitting results. 

To determine which of the 15 analysis techniques should be selected for the 

Monte Carlo simulation used to evaluate the OAs, an initial simulation was conducted to 

determine which analysis procedure resulted in the lowest percentage of type II errors 

and highest percentage of correct models.  The OA chosen for the simulation was OA 

#74 in the   (       ) catalog.  This design was selected due to preliminary analysis 

which indicated this design was in the Pareto efficient set.  Ten thousand Monte Carlo 

simulations were run for each analysis technique.   

The random models had two to five ME and zero to two 2FI.  Li, Sudarsanam et 

al. (2006) conducted a meta-analysis of published experiments involving a DOE 

methodology and reported that for the 113 combined experimental data sets, 41% of the 

potential ME were active and 11% of the potential 2FI were active.  According to these 

results, when considering six potential factors, it is expected that there will be 2-3 active 

ME and 1 active 2FI.  The ranges for the number of ME and 2FI in the polynomial 

models were consistent with the model meta-analysis, as well as with the sparsity-of-

effects principle.   

Each ME coefficient random variable    ranged from               and the 

2FI coefficient random variable    ranged from             .  The sign of the 

coefficient was determined by a binomial random variable with        .  Data was 

collected concerning the percentage of trials out of 10,000 in which at least the correct 

model was estimated (no type II errors occurred) and the percentage of trials out of 
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10,000 in which the correct model was estimated (no type I or type II errors occurred).  

Figure 2 shows the results of this preliminary experiment. 

 
Figure 2.  Simulation Results for Candidate Analysis Methods 

Based on the results in Figure 2, the chosen analysis method was the 2-stage 

forward stepwise regression, with AICc as the model selection criteria and post-stepwise 

variable elimination p-value thresholds of 0.10 and 0.05 for stages 1 and 2 respectively.  

This choice of analysis procedure reflected the author’s preference to risk a 7.78% type II 

error rate in order to have a 73.72% chance (the highest percentage out of all the analysis 

options) at producing a model with no type I or type II errors.  This choice of analysis 

procedure allows some flexibility in comparing OAs on the basis of type II error 

percentages and is also consistent with the philosophy of using no-confounding designs 

under the constraints of a limited experimental budget.  However an alternative analysis 

procedure preferred by some experimenters may be the 1-stage mixed stepwise 

regression using a p-value of        for the threshold to enter or remove variables.  
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This method reduces the type II error rate to a negligible 1% but the percentage of models 

without type I and type II errors falls to 47%.   

3.3.1.2 The Number of ME and 2FI in Simulated Models 

An important consideration for the Monte Carlo simulation was the appropriate 

maximum number of ME and 2FI effects in the randomly generated response models.  

For this research the models were built using the heredity constraint, i.e. 2FI were only 

allowed in the model if both of the ME were also in the model.  Choosing integers   and   such that the simulation generated a random number of 2 to   ME and a random 

number of 0 to   2FI required balancing poor estimation performance with a thorough 

design capability analysis.  A 10,000-run simulation was run using OA #74 in the   (       ) catalog.  A range of values for   and   were investigated with   {     } 
and   {     }.  For the ME and 2FI, the respective coefficient random variables    
and    ranged from           and         .  The sign of the coefficient was 

determined by a Bernoulli random variable with        .  The analysis was conducted 

using 2-stage forward stepwise regression, with a post-stepwise variable-elimination p-

value threshold of 0.10 for stage 1 and 0.05 for stage 2.  Table 2 shows the results in 

terms of the percentage of trials that resulted in models without type II errors.  This in an 

important performance metric for screening designs, as further experimentation will 

generally eliminate inactive effects that are selected during the screening process, but 

effects that are considered inactive in the screening phase are usually omitted in 

subsequent experimentation.   
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Table 2.  Percentage of Type II Errors for p ME Effects and q 2FI Effects 
% At Least 
 Correct Model 

 
Model Simulations = 5000 

 

 
q (2FI)       

  Row 
Totals 

p (ME) 0 1 2 3 4 5  

2 100.00% 100.00%         100.00% 

3 100.00% 98.74% 89.03% 66.12%     88.71% 

4 100.00% 96.29% 74.24% 48.28% 32.23% 22.12% 62.62% 
5 100.00% 90.93% 58.16% 32.65% 17.57% 9.27% 52.06% 

Column Totals 100.00% 97.67% 75.89% 51.71% 25.06% 15.90% 75.97% 

 
Since the no-confounding designs are recommended as an option to experimenters 

with limited budgets who hope to avoid subsequent experimentation to de-alias fully 

confounded effects, a second important metric is the percentage of trials that resulted in 

completely correct models.  Table 3 shows the percentage of simulations that resulted in 

models without type I or type II variable selection errors.   

Table 3.  Percentage of Correct Models for p ME Effects and q 2FI Effects 

% Correct Model 
 

Model Simulations = 5000  

 
q (2FI)         Row Totals 

p (ME) 0 1 2 3 4 5  

2 75.66% 98.74%         87.35% 

3 74.22% 87.89% 85.32% 65.14%     78.22% 

4 65.63% 74.94% 65.66% 43.60% 30.09% 21.18% 50.28% 
5 62.50% 61.28% 47.28% 26.74% 15.10% 8.02% 37.29% 

Column Totals 71.80% 86.53% 68.73% 48.29% 22.76% 14.81% 63.42% 

 
In order to rigorously compare the     in the catalog, it was decided to randomly 

generate models with two to five ME and zero to two 2FI.  This range of models not only 

covered the practical model size of two to five ME and 0 to one 2FI, but included larger 

models that might help differentiate the performance of the best OAs.  As mentioned 

previously in this chapter, limiting the scope of analysis to models of at most seven 

effects was based on research by Li et al. (2006). 
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In summary, the Monte Carlo simulation repeatedly generated random response 

models and used an OA’s factor level settings to generate a vector of responses.  A 

realization of a standard normal random variable     Normal(0,1) was added as a 

random noise term.  There were several aspects of each response model that were 

randomly generated.  The number of ME and 2FI were determined by discrete uniform 

random variables,     (   ) and     (   ), respectively.  The coefficients of the ME 

were realizations of a random variable   which were generated via the equation             , with    Uniform(0,1).  The result produced random coefficient values in the 

range          .  The coefficients of the 2FI were realizations of a random variable    which was generated via the equation             , with    Uniform(0,0.56).  The 

result produced random coefficient values in the range         .  Since the random 

error term was generated by a standard normal random variable, the coefficients can be 

viewed as multiples of        The sign of the coefficients was determined by a 

Bernoulli random variable     Bernoulli(0.5). 

3.3.2 Reducing the Set of Candidate Designs  

In order to identify the optimal OAs for the 20-run no-confounding designs, every 

non-isomorphic OA in the catalog of OA(       ) for   {      } factors was 

evaluated.  Table 4 provides the number of non-isomorphic OA for each value of  . 

Table 4.  Count of Non-isomorphic OAs 
Number of columns 6 7 8 9 10 11 12 

Count of Non-isomorphic OAs 75 474 1603 2477 2389 1914 1300 

 
After computing the confounding frequency vectors, it was observed that             for every   .  Therefore, unlike 16-run OAs, there are no 20-run OAs 
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which produce ME+2FI model matrices that have fully confounded effects.  In other 

words, every   (       ) for   {      } factors is a no-confounding design with 

orthogonal ME.  Consequently, no OAs could be removed from consideration based on 

the presence of fully-confounded effects.  The simulation time required to perform 5000 

simulated model analyses was approximately one hour.  The time requirement for the 

simulation per design made it necessary to reduce the number of candidate designs before 

the simulation phase of the analysis.   

A reduced design set was created for the OA(       ) for   {      } 
factors.  There were only 75 non-isormorphic designs in the OA(       ) catalog so it 

was not reduced.  The flow chart for the design reduction process is shown in Figure 3. 

 

Figure 3.  The Design Reduction Flow Chart 

Twenty-four metric values were used to rank the OAs and create a Pareto efficient 

set of candidate optimal designs.  The G-aberration and G2-aberration metrics were 

calculated in the usual way but with an abridged CFV.  The CFV of a design       (       ) is defined to be   ( )     (         ) (         ) (         )   (         )  
Now since every design     (       ) is balanced and orthogonal, then                       .  Also since it is often assumed that 3FI and higher 
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are insignificant, then (         ) can be disregarded for    .  Thus the abridged 

CFV used to develop the G-aberration, G2-aberration, and several other design metrics is  ( )     (         ) (         ) .  For the   (       ), there was not a case where                 .  Therefore the rankings of G-aberration and G2-aberration for 

the OAs in this chapter using the abridged CFV are completely consistent with the rest of 

the literature. 

The  (  ) metric used previously in Jones and Montgomery (2010) to select the 

16-run no-confounding designs from the   (        ) was calculated in the usual way.  

The “sum of non-zero frequencies” metric is calculated from the CFV as ∑ ∑            .  

The “combined  ( ) G-aberration” metric is calculated by applying the G-aberration 

criteria to a combined CFV,  ( )     (                         ) .  “Combined  ( ) G-aberration” puts equal weight on the degree of non-orthogonality between 2FI 

and the degree of non-orthogonality between ME and 2FI. 

The projection properties of the designs are evaluated with five types of metrics: 

the minimum number of unique factorial points out of all  -column projections for   {     }; the average number of unique factorial points in  -column projections for   {     }; the maximum number of unique factorial points out of all  -column 

projections for   {     }; the projection estimation capacity (PEC) of all 5-column 

projections; and the min, max and average variance inflation factors (VIF) for all  -column projections for   {     }.   
The choice of  -column combinations for the metrics above were based on 

several properties of   (       ).  The 3-factor projections were not considered for 

most metrics because every three-column projection of an   (       ) for   
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{      } factors contains a 23 full factorial.  Hence the min, max, and average unique 

points for these projections always equal eight.  As stated in Loeppky, Sitter et al. (2007), 

if   ( ) is the percentage of estimable models containing   main effects and all 

associated interactions for a design  , then for the   (       ) it is true that              .  Therefore only    was examined.  The VIFs for 6-column projections and     were not evaluated because the full model for 6 factors has 22 terms, which is more 

than can be estimated with the 20-run designs.   

The number of designs in the   (       ) catalog for   {      } factors 

was reduced by identifying the Pareto efficient set of OAs.  The Pareto front was defined 

by the 24 design-ranking criteria.  The OAs on the Pareto front were those designs    for 

which there did not exist a design    which outranked design    in all 24 design ranking 

criteria.  In some cases, such as G-aberration, the design criterion is not based on a single 

scalar value but rather on a vector of values (the CFV).  Therefore criteria ranks were 

used as a surrogate for the actual criteria values so that each of the 24 design-ranking 

criteria could be represented by a scalar.  The design ranks were then organized in a 

matrix with rows corresponding to an OA in the catalog and columns corresponding to 

the 24 criteria.  The following algorithm was then used to identify the designs on the 

Pareto front. 

Step 0: Create a matrix A with rows corresponding to every  -column OA and columns 

corresponding to the design criteria, so that     is the  th OA’s rank by criteria   
Step 1: Select the first non-evaluated design-criteria column   and sort in ascending order 

Step 2: For each row           
a) Check if        for any column      
b) If         then retain the design row in the matrix 
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c) If         for all   then delete the row from the matrix 

Step 3: Return to Step 1 until all columns are evaluated 

Step 4: The remaining matrix rows are the designs on the Pareto front 

 
The Pareto front of designs was the largest portion of the reduced design set, but 

additional designs were added to the reduced design set so that the model fitting 

capability of the entire catalog of   (       ) could be evaluated.  First every design 

in the catalog of   (       ) was assigned an average rank across all 24 design 

ranking criteria.  Then the five worst OAs by average design rank across all 24 criteria 

were added to the reduced design set so that the empirical results of the best designs 

could be compared to the worst designs.  Finally the OAs were sorted by average rank 

and an evenly spaced sample of 30 OAs were added to the reduced design list.  This 

allowed for a more robust multiple regression analysis using the 24 design ranking 

criteria as independent variables and the simulation results as the dependent variables.  

The goal was to create a data sample that represented the complete spectrum of model 

estimation capability.   

3.3.3 Identifying the No-confounding Designs 

The optimal 20-run no-confounding design was determined by the empirical 

results of a Monte Carlo simulation.  The output metric primarily used to assess the 

designs was the percentage of simulations that resulted in the estimation of at least every 

active effect, called the % at least correct.  If inactive effects were also identified as 

active this was deemed acceptable in the function of a screening design.  The percentage 

of simulations that resulted in a model with no type I or type II variable selection errors, 

called the % correct, was used as a secondary comparison metric.   
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The procedure to identify the optimal 20-run no-confounding designs was a multi-

stage process involving an initial Monte Carlo simulation phase, a regression model 

analysis of the simulation output data, a model validation phase, and a secondary round 

of simulations on the final design candidate list.  A flow chart of the optimal design 

identification process is shown in Figure 4. 

 

Figure 4.  The No-confounding Design Identification Process 

A Monte Carlo simulation involving the estimation of 5000 random models was 

run for each of the 75 OAs in the   (       ) catalog and for each design in the 

reduced design set for       factors.  The model-fitting capability metrics were 

recorded for each design.  The percentage of iterations without type II errors (the % at 

least correct) was used as the response variable to build a regression model which used 

the 24 design-ranking criteria and their interactions as independent variables.   
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The regression models were validated and improved using additional Monte Carlo 

simulation on reference OAs which had the highest and lowest average rank across all 24 

design-ranking criteria.  If the best and worst designs as predicted by the model were 

close in performance to the reference designs, the model was considered valid.  Once a 

validated regression model was created, the best design of  -factors according to the 

model was placed in a final design candidate list. 

In addition to the best design as predicted by the model, the final candidate list 

also included the design with the best average design-criteria rank, the design with the 

highest rank according to G-aberration, and the design with the highest rank according to 

PEC.  Research with the 24-run no-confounding designs gave insight into the fact that 

having uncorrelated main effects was the primary indicator of the best performing 

designs.  Unfortunately, there are no resolution IV 20-run designs.  However, 

G-aberration ranks 20-run designs according to the minimum maximum ME correlation 

with 2FI.  Thus designs which ranked first in G-aberration were included in the candidate 

set.  The 24-run design research also indicated that considering PEC in conjunction with 

G-aberration was important.  Therefore designs which ranked first in PEC were also 

included in the candidate set. 

A final round of simulations was conducted for the short list of final design 

candidates.  60,000 simulations were run with random combinations of 2-5 ME and 0-2 

2FI, providing at least 5000 iterations per combination of   ME and   2FI.  The data for 

each design was compared in order to determine the  -factor no-confounding designs. 
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3.4 Results 

The Monte Carlo simulation proved to be an effective tool for the empirical 

analysis of the   (       ).  The simulation data was not only useful in identifying the 

optimal 20-run no-confounding designs, but also in gaining insight into the design-

ranking criteria and the analysis methods.  Subsection 3.4.1 discusses the trade-offs 

involved, in terms of % correct and % at least correct, when using different stepwise 

analysis methods.  Subsection 3.4.2 includes the regression analysis on the 24 

design-ranking criteria.  This subsection shows which criteria were the best predictors of 

the % at least correct in simple and multiple regression models.  Finally the data used to 

identify the 20-run no-confounding designs is presented in subsection 3.4.3. 

3.4.1 The Effects of the Model-Fitting Method on Type I and Type II Errors 

In addition to using 2-stage forward stepwise regression with the AICc, the 

1-stage mixed stepwise regression analysis method was also used to investigate the effect 

of different analysis methods across the entire catalog of   (       ).  Figure 5 is a dot 

plot of the % at least correct after 5000 simulated models were analyzed by each OA. 
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Figure 5.  Analysis Method Comparison on OA(20;26;2) – % at Least Correct 

It is evident that 1-stage mixed stepwise regression is the superior analysis 

method in terms of identifying all of the active model effects, although the average % at 

least correct using 2-stage forward stepwise regression is still close to 93%.  However, 

there is an important trade-off made when using 1-stage mixed stepwise regression, i.e. 

the % correct drops considerably.  This is illustrated in Figure 6, which is a dot plot of 

the % correct out of 5000 simulated models analyzed by each OA.   
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Figure 6.  Analysis Method Comparison on OA(20;26;2) – % Correct 

The figure shows that by using 2-stage forward stepwise regression, the % correct 

improves to a mean of 75% from a mean of 53% using 1-stage mixed stepwise 

regression.   

3.4.2 The Regression Models and the Validation Process 

To aid in identifying the no-confounding designs, simple and multiple regression 

models were built using the 24 design-ranking criteria as independent variables and the 

Monte Carlo simulation results as the dependent variable.  Using the regression model for 

prediction of the optimal design was a methodology more robust to the simulation noise 

than simply picking the design corresponding to the best simulation value.  Table 5 

shows the results of the regression modeling process for all OAs of 6-12 factors. 
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Table 5.  Regression Models 

Factors 
Model 
Type Model Terms R2 R2-Adjusted 

Model 
Best OA 

Model 
Worst 

OA 

6 

Simple 
Regression 

Avg Unique Pts - 5 Col 0.704   74 9 

Multiple 
Regression 

G-aberration 0.8669 0.8613 74,75 7,9 

Avg VIF – 4 Factor         

(G-aber)*(Avg VIF (4-fact)          

7 

Simple 
Regression 

Avg Unique Pts - 6 Col 0.8731   
472  
(16 Tied) 

44 

Multiple 
Regression 

Avg Unique Pts - 6 Col 0.9351 0.9307 337 44 

PEC – 5 Col Proj         

Avg VIF – 3 Col         

(Avg Unique Pts – 6-Col)2         

8 

Simple 
Regression 

Avg VIF – 3 Col 0.345   
1599 
(6 Tied) 

436 

Multiple 
Regression 

Min Unique Pts - 6 Col 0.4122 0.3932 1599 150 

Avg VIF – 3 Col         

9 

Simple 
Regression 

Avg VIF – 4 Col 0.2205   
2476, 
2477 

1116 

Multiple 
Regression 

N/A - No Improvement         

10 

Simple 
Regression 

Avg Unique Pts - 6 Col 0.112   2388 1213 

Multiple 
Regression 

N/A - No Improvement         

11 

Simple 
Regression 

Avg VIF – 5 Col Proj 0.2654   1883 19 

Multiple 
Regression 

N/A - No Improvement         

12 

Simple 
Regression 

Avg VIF – 5 Col 0.0659   1176 14 

Multiple 
Regression 

G-aberration 0.1459 0.1208 885 39 

Min Unique Pts - 5 Col         

PEC – 5 Col         

 
Column 3 in Table 5 lists the design-ranking criteria that are the independent 

variables in the best simple or multiple regression model.  Columns 4 and 5 show the R2 

and R2-adjusted values used to assess and choose between models.  Columns 6 and 7 

show the OA IDs of the best and worst OAs as predicted by the regression models.  For 

example with the 6-factor designs, the best independent variable for the simple linear 
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regression model used to predict the mean % at least correct was the average unique 

points out of all 5-column projections of the OAs.  The model had an R2 value of 0.704 

and predicted OA #74 would have the highest average % at least correct; OA# 9 was 

predicted to have the lowest average % at least correct.   

Table 5 also shows that a multiple regression model improves the R2 value to 

0.8669 by using three independent variables: G-aberration, the average VIF for 4-factor 

full models, and an interaction term involving these variables.  However, the prediction 

becomes more ambiguous as there are now two best models (OA#74 and #75) and two 

worst models (OA #7 and OA #9). 

Figure 7 provides an example of the model validation process.  The designs with 

the highest average design criteria rank (OA #72) and the lowest average design criteria 

rank (OA #7) were used as reference designs to compare with the best and worst 

predicted models.  The analysis simulation of 5000 random models was repeated 25 times 

for each of the candidate and reference designs.  The mean % at least correct metric was 

used to compare the designs.  Figure 7 also includes the minimum and maximum % at 

least correct from the 25 repeated simulations of 5000 random models. 
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Figure 7.  Candidate 6-Factor Optimal Design Comparison – % at Least Correct 

The results show there is little empirical difference between OA #74 and OA #75.  

The data for OA #72 seems to validate that the model has selected the best candidate 

designs.  The figure also shows a statistical difference between the mean % at least 

correct metric for the worst pair of OAs and the best triplet of OAs.  However this 

difference is surprisingly small, as the mean % at least correct metric for the worst 

design is approximately 86%.   

3.4.3 Selecting the 20-Run No-confounding Designs 

A final design candidate list was created to compare the most promising designs 

from the OA catalog.  The column headings in Table 6 are the categories used to identify 

the candidate designs and the rows correspond to the number of columns (factors) in the 

OAs.   
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Table 6.  Final Candidate Designs 
Factors Best per Model 

OA ID 
Best Avg Rank 
OA ID 

G-aber #1 Rank 
OA ID 

PEC #1 Rank 
OA ID 

6 74,75 72 74 74 
7 337 457 472 453 
8 1599 1599 1599 1599 
9 2476,2477 2232 2476,2477 2286 
10 2388 2363 2389 2389 
11 1883 1805 713 713 
12 885 1299 426 426 

 
Column 2 shows the designs that were predicted to be the best designs by the regression 

model.  Column 3 shows the designs in each catalog that had the best average criteria 

rank.  Column 4 shows the designs ranked first by G-aberration.  Column 5 shows the 

designs ranked first by PEC. 

Table 7 illustrates a result from the analysis of the G-aberration and PEC criteria 

which demonstrates the importance of considering multiple criteria in design selection.   

Table 7.  The Count of G-aberration and PEC Designs in the OA Catalog 
Factors G-aberration  

Count of #1 Ranks 
PEC 
Count of #1 Ranks 

Both 
Count of #1 Ranks 

6 2 11 2 
7 2 2 0 
8 2 2 2 
9 2 1 0 
10 1 2 1 
11 2 678 2 
12 2 1 1 

 
Column 2 shows the count of designs in the   (       ) catalog that ranked first in 

G-aberration.  Column 3 shows the count of designs in the   (       ) catalog that 

ranked first in PEC.  Finally, Column 4 shows the count of designs that ranked first in 

both categories.  The rows correspond to           .   

By examining the data in Table 7, it is obvious that both categories are necessary 

to identify the best designs.  Notice that 11 of the 75 designs in the 6-factor OA catalog 



54 

were ranked first in PEC.  However, only two of these designs ranked first in 

G-aberration.  The fact that two designs ranked first in both categories was a fortunate 

occurrence but is not guaranteed.  As can be seen in the seven and nine factor cases, a 

design does not exist that ranks first in both the G-aberration and PEC criteria.   

A final round of Monte Carlo simulation was conducted with each of the final 

candidate designs in Table 6.  60,000 simulations were run with random combinations of 

2-5 ME and 0-2 2FI, providing at least 5000 iterations per combination of   ME and   

2FI.  The % at least correct and the % correct were the metrics used to compare the 

designs.  The % at least correct was the primary metric used in determining the optimal 

no-confounding design.   

Figure 8 through Figure 21 show the simulation results, which are broken out by 

combinations of ME and 2FI.  The notation (ME,2FI) = (4,1) means the data corresponds 

to simulated models with four ME and one 2FI.  For each of the  -factor designs, the 

results for % at least correct are shown first, followed by the results for the % correct. 

 
Figure 8.  6-Factor Design Comparison of % at Least Correct by p ME and q 2FI 
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Figure 9.  6-Factor Design Comparison of % Correct by p ME and q 2FI 

The differences in simulation results between the three 6-factor designs were very 

small and almost always within the range of noise in all but two combinations of ME and 

2FI.  On one of these combinations, the (ME,2FI) = (3,0) case, design 74 performed the 

best.  Since OA #74 also ranked first in G-aberration and PEC, it was chosen as the best 

6-factor no-confounding design.  The design is shown in Appendix Table 75. 
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Figure 10.  7-Factor Design Comparison of % at Least Correct by p ME and q 2FI 

 
Figure 11.  7-Factor Design Comparison of % Correct by p ME and q 2FI 

The data in Figure 10 and Figure 11 show the OA #457 is the best performing 

design overall.  This design has the highest overall average for both % at least correct 

and % correct.  In terms of the % at least correct, there are no instances where the better 
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performance of another design is statistically significant.  The design is shown in 

Appendix Table 76. 

 
Figure 12.  8-Factor Design Comparison of % at Least Correct by p ME and q 2FI 

 
Figure 13.  8-Factor Design Comparison of % Correct by p ME and q 2FI 

For the 8-factor designs, OA #1599 was the only design in the candidate list as it 

was first in all categories in Table 6.  Therefore, the OA was compared to the worst OA 

as predicted by the model (OA#150) in Figure 12 and Figure 13.  It was surprising to see 
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that in terms of % correct, OA #150 outperformed OA #1599 for ME-only models.  

However, in all categories OA#1599 performed significantly better, making this OA the 

best 8-factor no-confounding design.  The design is shown in Appendix Table 77. 

 
Figure 14.  9-Factor Design Comparison of % at Least Correct by p ME and q 2FI 

 
Figure 15.  9-Factor Design Comparison of % Correct by p ME and q 2FI 

Two additional designs were added to the four designs in Table 6 for the 9-factor 

analysis.  Even though OA #2207 and OA #2399 did not rank first in any category, they 
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were in the top 10 designs for G-aberration and PEC.  This was in contrast to OA #2476 

and OA #2477 which ranked first in G-aberration but ranked very poorly in terms of 

PEC.  Neither OA #2207 or OA #2399 were chosen as the best design. 

OA#2477 performed the best overall in terms of % correct and only compared 

poorly to other designs in terms of % at least correct for the cases where (ME,2FI) = 

(4,0) =(5,0).  However, in these cases it performed significantly worse than the other 

designs, particularly OA#2286, which was the best performer overall for % at least 

correct.  Ultimately OA#2286 was chosen as the best 9-factor no-confounding design 

since the % at least correct metric was deemed to be the most important metric.  Also, 

this design ranked first in PEC and the OA performed better or comparable to OA#2477 

when there was zero or one 2FI.  The design is shown in Appendix Table 78. 

 
Figure 16.  10-Factor Design Comparison of % at Least Correct by p ME and q 2FI 
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Figure 17.  10-Factor Design Comparison of % Correct by p ME and q 2FI 

OA #2389 was an obvious choice for the best 10-factor no-confounding design.  It 

ranked first in terms of G-aberration and PEC.  Overall, it ranked highest in terms of % at 

least correct and ranked significantly higher in terms of % correct.  The design is shown 

in Appendix Table 79. 

 
Figure 18.  11-Factor Design Comparison of % at Least Correct by p ME and q 2FI 
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Figure 19.  11-Factor Design Comparison of % Correct by p ME and q 2FI 

OA #713 was the choice for the best 11-factor no-confounding design.  Overall, it 

ranked highest in terms of % at least correct and % correct, although the performance 

difference between the three designs was very close.  In general, as the number of 

columns in the OAs increased, the difference in performance between the best and worst 

designs decreased.  The tie-breaking factor was the fact that OA#713 ranked first in terms 

of both G-aberration and PEC.  The design is shown in Appendix Table 80. 
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Figure 20.  12-Factor Design Comparison of % at Least Correct by p ME and q 2FI 

 
Figure 21.  12-Factor Design Comparison of % Correct by p ME and q 2FI 

OA #426 was an obvious choice for the best 12-factor no-confounding design.  It 

ranked first in terms of G-aberration and PEC.  Overall, it ranked highest in terms of % at 

least correct and % correct.  In the cases where (ME,2FI) = (5,0) and (ME,2FI) = (5,1) 

this design performed significantly better than the other candidate designs.  The design is 

shown in Appendix Table 81. 
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Figure 22 and Figure 23 show the mean % at least correct and mean % correct 

respectively for each of the selected  -factor no-confounding designs.   

 
Figure 22.  No-confounding Design Comparison - % at Least Correct 

 
Figure 23.  No-confounding Design Comparison - % Correct 
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Figure 22 shows that 20-run no-confounding designs perform very well as 

screening designs.  The 6-factor design found at least the active effects 92% of the time 

for models of 2-5 ME and 0-2 2FI, while the 12-factor design found at least the active 

effects over 89% of the time.  In examining the seven no-confounding designs together, 

there is not much difference in terms of the % at least correct metric (approximately 3 

percentage points) between the 6-factor no-confounding design and the 12-factor no-

confounding design.  However, there is a significant difference between the 6-factor no-

confounding design and the 12-factor no-confounding design in terms of the % correct 

metric (approximate 12 percentage points).   

For each of the no-confounding designs, Table 8 - Table 21 show in tabular form 

the breakdown of the simulation metrics by the number of ME and 2FI.  These tables 

give a better perspective on the outstanding performance of these designs in terms of the 

% at least correct metric, given sufficiently small models.  This data was generated from 

pivot tables using data from 60,000 simulated design analyses for each of the  -factor 

no-confounding designs.  For models with at most four ME and one 2FI, the 20-run no-

confounding designs perform extremely well as screening designs, with a minimum % at 

least correct of 95%.   

Table 8.  % at Least Correct for p ME Effects and q 2FI Effects (6-Factor Design) 
% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;26;2) #74 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 100.00% 99.96% 
 

99.98% 

3 100.00% 98.83% 85.80% 94.89% 

4 100.00% 96.38% 74.87% 90.34% 
5 99.98% 92.64% 60.54% 84.32% 

Column Totals 100.00% 97.27% 73.69% 92.36% 
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Table 9.  % Correct for p ME Effects and q 2FI Effects (6-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;26;2) #74 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 75.25% 98.63% 
 

86.91% 

3 73.47% 88.39% 80.99% 80.91% 

4 67.65% 74.61% 61.82% 68.04% 
5 60.96% 65.16% 46.62% 57.56% 

Column Totals 70.00% 83.48% 63.07% 73.31% 
 
Table 10.  % at Least Correct for p ME Effects and q 2FI Effects (7-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;27;2) #457 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 100.00% 99.95% 
 

99.97% 

3 100.00% 98.75% 85.96% 94.88% 

4 100.00% 96.17% 74.29% 90.17% 
5 99.55% 92.32% 59.85% 83.69% 

Column Totals 99.90% 97.15% 73.29% 92.19% 
 
Table 11.  % Correct for p ME Effects and q 2FI Effects (7-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;27;2) #457 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 71.14% 98.18% 
 

84.60% 

3 67.35% 88.01% 81.04% 78.82% 

4 65.09% 75.70% 61.61% 67.46% 
5 60.50% 65.55% 46.53% 57.44% 

Column Totals 66.62% 83.70% 62.95% 72.08% 
 
Table 12.  % at Least Correct for p ME Effects and q 2FI Effects (8-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;28;2) #1599 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 100.00% 99.96% 
 

99.98% 

3 100.00% 98.33% 85.70% 94.62% 

4 99.88% 96.00% 73.56% 89.86% 
5 99.04% 91.94% 59.52% 83.54% 

Column Totals 99.76% 96.91% 72.98% 92.01% 
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Table 13.  % Correct for p ME Effects and q 2FI Effects (8-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;28;2) #1599 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 65.98% 97.82% 
 

81.69% 

3 62.67% 87.53% 81.16% 77.11% 

4 61.13% 75.00% 61.69% 66.06% 
5 55.00% 64.67% 46.04% 55.25% 

Column Totals 61.75% 82.98% 63.05% 70.03% 
 
Table 14.  % at Least Correct for p ME Effects and q 2FI Effects (9-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;29;2) #2286 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 99.97% 99.97%   99.97% 

3 99.72% 98.52% 86.92% 95.07% 

4 99.37% 95.59% 75.33% 90.06% 
5 96.26% 88.62% 58.48% 81.06% 

Column Totals 98.95% 96.12% 73.48% 91.49% 
 
Table 15.  % Correct for p ME Effects and q 2FI Effects (9-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;29;2) #2286 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 61.45% 95.41% 
 

78.36% 

3 60.93% 86.04% 79.88% 75.65% 

4 60.57% 73.66% 62.86% 65.63% 
5 53.80% 62.21% 42.84% 52.93% 

Column Totals 59.43% 81.04% 61.73% 68.08% 
 
Table 16.  % at Least Correct for p ME Effects and q 2FI Effects (10-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;210;2) #2389 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 99.80% 99.97% 
 

99.89% 

3 99.06% 98.70% 86.05% 94.58% 

4 96.51% 96.05% 73.98% 88.80% 
5 86.64% 91.59% 58.42% 78.76% 

Column Totals 95.97% 96.97% 72.74% 90.50% 
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Table 17.  % Correct for p ME Effects and q 2FI Effects (10-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;210;2) #2389 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 56.84% 97.37% 
 

76.94% 

3 55.97% 88.08% 81.19% 75.20% 

4 55.95% 74.91% 62.11% 64.34% 
5 50.56% 67.24% 46.13% 54.55% 

Column Totals 55.05% 83.65% 63.05% 67.75% 
 
Table 18.  % at Least Correct for p ME Effects and q 2FI Effects (11-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;211;2) #713 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 99.67% 99.99% 
 

99.83% 

3 99.12% 98.40% 85.56% 94.35% 

4 96.16% 95.44% 73.95% 88.59% 
5 88.61% 83.69% 55.27% 75.87% 

Column Totals 96.31% 95.00% 71.56% 89.66% 
 
Table 19.  % Correct for p ME Effects and q 2FI Effects (11-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;211;2) #713 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 52.73% 93.74% 
 

73.31% 

3 53.47% 83.62% 77.69% 71.73% 

4 53.63% 73.32% 60.14% 62.49% 
5 48.52% 56.40% 39.64% 48.22% 

Column Totals 52.15% 78.62% 59.12% 63.93% 
 
Table 20.  % at Least Correct for p ME Effects and q 2FI Effects (12-Factor Design) 

% At Least 
 Correct Model 

 
Model Simulations = 10000 

OA(20;212;2) #426 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 99.58% 99.97% 
 

99.78% 

3 99.25% 98.39% 86.91% 94.89% 

4 96.94% 94.92% 74.12% 88.62% 
5 90.85% 82.46% 54.80% 75.88% 

Column Totals 97.00% 94.70% 71.82% 89.84% 
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Table 21.  % Correct for p ME Effects and q 2FI Effects (12-Factor Design) 

% Correct Model 
 

Model Simulations = 10000 

OA(20;212;2) #426 q (2FI)     Row Totals 

p (ME) 0 1 2  

2 48.81% 90.72% 
 

69.61% 

3 49.26% 83.52% 77.49% 70.01% 

4 52.12% 71.95% 58.62% 60.84% 
5 45.01% 54.53% 38.32% 45.83% 

Column Totals 48.80% 77.10% 57.99% 61.62% 
 
Finally, Table 22 provides information concerning the design ranking criteria 

values (or ranks as a substitute for non-scalar values) for each of the chosen  -factor no-

confounding designs. 

Table 22.  Values of the 24 Design-Ranking Criteria for the No-confounding Designs  
Factors 6 7 8 9 10 11 12 
OA ID# 74 457 1599 2286 2389 713 426 

G-aberration (Rank) 1 3 1 7 1 1 1 

G2-aberration (Rank) 1 3 1 7 1 1 1 

Sum Nonzero Freq 35 70 126 210 330 495 715 
Combined F(D) G-aberration 
(Rank) 1 12 1 456 2387 1908 1296 

E(S2) 8.000 11.937 13.257 14.836 18.424 17.343 17.439 

Min Unique Pts – 4 Columns 15 12 12 12 12 12 12 

Avg Unique Pts – 4 Columns 15.000 14.743 14.743 14.476 14.571 14.364 14.327 

Max Unique Pts - 4 Columns 15 15 15 15 15 15 15 

Min Unique Pts – 5 Columns 19 17 17 14 17 13 13 

Avg Unique Pts - 5 Columns 19.333 18.714 18.714 18.381 18.286 18.177 18.182 

Max Unique Pts - 5 Columns 20 20 20 20 20 20 20 

Min Unique Pts – 6 Columns 20 19 19 18 18 18 14 

Avg Unique Pts - 6 Columns 20.000 19.857 19.857 19.679 19.429 19.498 19.554 

Max Unique Pts - 6 Columns 20 20 20 20 20 20 20 

PEC 1.000 0.905 0.929 0.873 0.857 0.848 0.826 

Min VIF -3 Columns 1.042 1.042 1.042 1.042 1.042 1.042 1.042 

Avg VIF -3 Columns 1.042 1.042 1.042 1.054 1.042 1.057 1.061 

Max VIF -3 Columns 1.042 1.042 1.042 1.563 1.042 1.563 1.563 

Min VIF -4 Columns 1.161 1.161 1.161 1.161 1.161 1.161 1.161 

Avg VIF -4 Columns 1.161 1.201 1.201 1.242 1.228 1.260 1.266 

Max VIF -4 Columns 1.161 1.893 1.893 1.893 1.893 1.893 1.893 

Min VIF -5 Columns 1.389 1.328 1.328 1.328 1.328 1.328 1.328 

Avg VIF -5 Columns 1.446 1.812 1.831 1.975 2.112 2.101 2.043 

Max VIF -5 Columns 1.500 5.035 5.035 5.035 5.035 5.035 5.035 
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3.5 Conclusion 

The 20-run no-confounding designs perform very well as screening designs when 

the response model has up to five terms.  For models of at most four ME and one 2FI, 

these designs will identify at least the active effects over 95% of the time, even when 

experimenting with as many as 12 factors.  In the simulations with models of four ME 

and one 2FI, the 6-factor design detected at least the active main effects 96% of the time 

and there were no variable selection errors 75% of the time.  In the best case scenario 

with two ME and one 2FI, the percentage at least correct and the percentage correct was 

100% and 99% respectively.  The 12-factor design detected at least the active main 

effects 95% of the time and there were no variable selection errors 72% of the time in the 

simulations with four ME and one 2FI.  In the best case scenario with two ME and one 

2FI, the percentage at least correct and the percentage correct was 100% and 91% 

respectively.   

When there is more than one active 2FI in the response model, the analysis 

procedure has a difficult time differentiating between potential models.  Consequently the 

type II error rate goes up significantly.  Thus an experimenter who expects the final 

model to contain more than five terms should consider running more experiments. 

The Monte Carlo analysis of the catalog of OAs was an effective technique in 

identifying the optimal no-confounding screening designs and characterizing their model 

estimation capabilities.  The empirical analysis removed much of the confusion caused by 

the lack of a consistent design ranking for OAs across the commonly used design ranking 

criteria.  Furthermore, the simulation results provided a detailed performance analysis of 

the designs across response models comprised of varying numbers of ME and 2FI.   
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The empirical analysis also showed that an experimenter can make trade-offs 

between type II errors and type I errors by selecting the appropriate analysis method.  If 

an experimental budget significantly constrains additional experimentation beyond the 

screening design, there is a relatively high chance of successfully fitting the correct 

model using 2-stage stepwise regression and AICc.  However, if the no-confounding 

design is truly used as a screening design in a multi-stage experiment, the type II error 

rate can be reduced by using a 1-stage mixed stepwise approach.   

Finally, a high rank in terms of G-aberration is common among the selected 

no-confounding designs.  The 6,8,10,11, and 12-factor no-confounding designs are 

ranked 1st, the 7-factor design is ranked 3rd, and the 9-factor design is ranked 7th.  This 

implies that the minimization of the aliasing of ME with 2FI greatly improves model 

fitting results and should be a primary consideration when evaluating designs.  However, 

since many designs are approximately equivalent in terms of G-aberration, it is important 

to consider multiple design-ranking criteria and determine the best designs from the 

Pareto efficient set of OAs. 

There are many opportunities for future research involving no-confounding 

designs.  Extending this work to 28-run designs is natural due to the many similarities in 

the combinatorial structure of 28-run designs and 20-run designs.  Many insights gained 

from analyzing the optimal 20-run designs can be applied to search algorithms for finding 

good 28-run designs.  In particular, optimal 28-run designs may be found by finding OAs 

with minimum G-aberration.  It would also be valuable to determine if design 

performance could be better differentiated and characterized by using other model fitting 

techniques, such as the Dantzig selector.  Designs that appear similar in performance 
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using 2-stage stepwise regression may in fact differ more significantly when fitting 

models with a Dantzig selector.  Finally it may be beneficial to explore whether non-

orthogonal designs offer some model-fitting advantages over orthogonal designs.   
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Chapter 4 

NO-CONFOUNDING DESIGNS OF 24 RUNS 

4.1 Introduction 

When experimental budgets, time, or other resources are significantly constrained, 

it is often the case that sequential experimentation with Resolution IV      fractional 

factorials is impractical or infeasible.  If several two-factor interactions (2FI) are 

significant, a foldover experiment must be run to resolve the ambiguity of fully 

confounded 2FI effects.  Jones and Montgomery (2010) introduced 16-run 

no-confounding designs as alternatives to Resolution IV      fractional factorials.  For 

the no-confounding designs of 6-10 factors, no pair or combination of main effects (ME) 

and 2FI effects are completely confounded.  The absence of fully-confounded effects 

enables the unambiguous estimation of main effect (ME) and 2FI models without further 

experimentation – an advantage which can save significant experimental resources. 

In this chapter, 24-run no-confounding designs are introduced as an additional 

option to resolution IV      fractional factorials.  Compared to the 16-run designs, the 

24-run designs have more capability to accurately screen effects for models of six to 

seven terms.  These designs also provide more accurate coefficient estimates for the cost 

of only eight additional runs.   

The 6-12 factor no-confounding designs are identified through an evaluation, 

using Monte Carlo simulation, of published and algorithmically generated 24-run 

designs.  In the current literature, 24-run nonregular designs have been ranked and 

cataloged by three popular design-ranking criteria: generalized aberration (G-aberration) 

introduced by Deng and Tang (1999); D-optimality; and projection estimation capacity 
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(PEC) introduced by Loeppky, Sitter et al. (2007).  The originators of these design 

criteria offer substantial theoretical justification for their use as a tool to judge the model-

fitting capability of designs.  However, only PEC explicitly considers whether effects are 

fully confounded.  The optimal 24-run designs according to minimum G-aberration, 

D-optimality (6-factor case only) and PEC are used as baseline designs to compare and 

evaluate the model-fitting performance of the algorithmically generated designs.   

The algorithmically generated designs were created by two variants of a column 

exchange search algorithm.  An interesting aspect of both column exchange algorithms 

was that they generated a Pareto efficient set, or Pareto front, of designs.  This is in 

contrast to the more common method of generating a single design which optimizes a 

single design-ranking criterion, or possibly a pre-specified linear combination of multiple 

criteria.  The Pareto efficient set of designs was generated based on three criteria:  (  ), 

projection estimation capacity (PEC) for 6-factor full models, and the average variance 

inflation factor (VIF) of 5-factor projections.  One of the two column exchange 

algorithms was capable of efficiently exploring a design space that included unbalanced, 

non-orthogonal designs as well as balanced and orthogonal designs.   

A second feature of the algorithms was that, unlike previously published column-

exchange algorithms used to create 24-run designs, the exchanged columns were not 

restricted to Hadamard matrix columns.  The algorithms were therefore able to explore 

designs which were not projections of Hadamard matrices.  This was important as 

previous research has provided examples of optimal designs for certain criterion that are 

not Hadamard projections.  See Loeppky, Sitter et al. (2007) for an example. 
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The designs on the Pareto efficient frontier of the multiple design-ranking criteria 

were evaluated via Monte Carlo simulation.  The simulation created 5,000 randomly 

generated polynomial response models and automated the response variable analysis.  

Designs were evaluated based on two simulation metrics: the percentage of simulations 

which produced estimated models comprised of at least every active effect and the 

percentage of simulations that produced the correct model. 

This chapter is organized as follows.  Section 4.2 discusses background material 

on orthogonal arrays, existing research into nonregular design criteria, and the concept of 

the Pareto efficient set.  Section 4.3 presents the methodology used to identify the 24-run 

no-confounding designs, including the details of the column-exchange search algorithm, 

the process of narrowing down and selecting designs from the Pareto efficient set, and the 

design evaluation process using Monte Carlo simulation.   

Section 4.4 reports the results.  It presents the analysis of the Monte Carlo 

simulation output for the baseline and algorithmically generated designs, and provides the 

recommendations for the optimal 24-run no-confounding designs of 6-12 factors.  The 

results of the simulation conclusively show that, in terms of accurately identifying active 

effects, the nonregular minimum G-aberration designs identified in Ingram and Tang 

(2005) are superior to any other published or algorithmically generated designs.  This is a 

bit surprising considering that these designs have a relatively high value of  (  ) 

compared to many of the other candidate designs.  A drawback to these designs is that the 

full 6-factor model is not estimable in any 6-factor projection.   

Fortunately, the column exchange algorithms were able to discover design options 

which can estimate the full 6-factor model for every 6-factor projection without a 
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significant decrease in model fitting capability.  An additional contribution is that two of 

these designs – the seven and nine-factor designs - have the minimum number of 

maximum effect correlations of any published balanced and orthogonal-two-level design.  

Section 4.5 discusses important conclusions concerning the recommended 24-run 

no-confounding designs and suggests ideas for future research. 

4.2 Background 

No-confounding designs are nonregular designs, as opposed to regular designs 

such as the      fractional factorial.  Nonregular designs produce effect estimates that 

are partially confounded with other effects.  More precisely, the alias matrix elements of 

nonregular designs take values other than    or 0.  Sun and Wu (1993) introduced the 

term “nonregular design” when studying Hadamard matrices of order 16.  A Hadamard 

matrix is an     square matrix   with    entries such that     =    .  Hadamard 

matrices are a special case of orthogonal arrays, which are discussed in the next section. 

4.2.1 Orthogonal Arrays 

Nonregular designs with pair-wise orthogonal columns are also known as 

orthogonal arrays.  Orthogonal arrays are an important tool to facilitate factorial 

experimentation, not only in industrial contexts, but in a growing number of other 

disciplines as well.  Orthogonal arrays were introduced by Rao (1947) and included 

Plackett-Burman designs as a special case.  Formally, an OA is a     matrix whose  th 

column contains    levels.  The OA has strength   if, within any   columns, every  -tuple 

of levels appears equally often.  The general notation is   (           )    In the case 

of pure level arrays where each column has the same number of levels the notation is 

shortened to   (      )    
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Orthogonal arrays include both regular and nonregular designs.  Regular designs 

of resolution   are orthogonal arrays of strength      .  Cheng (1980) proved that 

for the main effects model, orthogonal arrays are universally optimal.  An orthogonal 

array of strength   has projectivity  .  Box and Tyssedal (1996) defined a design to be of 

projectivity   if the projection onto every subset of   factors contains at least a    full 

factorial design.  Hedayat, Sloane et al. (1999) give a detailed presentation of the theory 

and application of orthogonal arrays. 

Sun, Li et al. (2002) developed an algorithm for sequentially constructing 

non-isomorphic regular and nonregular orthogonal arrays.  Two OAs are said to be 

isomorphic if one OA can be obtained from the other by permuting rows, columns or 

relabeling factor levels.  Their algorithm was used to obtain a complete catalog of     

two-level orthogonal designs for   {        } and   {      (   )}.  The catalog 

has been used to identify generalized minimum aberration designs.  Schoen and Mee 

(2012) classified all two-level orthogonal arrays of strength 3 with up to 48 runs.  There 

are two non-isomorphic   (       ) for      , and one non-isomorphic   (       ) for   {      }. 
4.2.2 Nonregular Design Evaluation Criteria 

An important advancement in nonregular design evaluation occurred when 

researchers were able to take the concept of minimum aberration, used to rank regular      fractional factorials, and generalize it to nonregular designs.  Experimenters 

identified regular      fractional factorials that had the most favorable alias structure for 

ME and 2FI effects by using the minimum aberration criteria proposed by Fries and 

Hunter (1980).  These designs were identified as having the minimum number of words 



77 

in the defining relation that were of minimum length.  According to Montgomery (2012), 

a minimum aberration design of resolution   has the minimum number of ME aliased 

with (   )-factor interactions and the number of 2FI aliased with (   )-factor 

interactions. 

4.2.3 Generalized Minimum Aberration 

The first to generalize the concept of minimum aberration for nonregular 

fractional factorials was Deng and Tang (1999).  Their paper introduced the concept of 

generalized resolution and minimum generalized aberration (minimum G-aberration).  

For regular designs, minimum G-aberration reduces to the traditional minimum 

aberration criterion.   

In order to define minimum G-aberration, Deng and Tang first developed the idea 

of J-characteristics and the confounding frequency vector (CFV).  Suppose there is an     design matrix   (   )    with       .  Let    {     } be an index set 

of the columns of  .  For every subset   of   , define   ( )  ∑ ∏           .  The 

collection of    values is known as the J-characteristics of design  .  Let      and     

be the frequency of   column combinations (  is the cardinality of  ) that give |  | =  (         ) for          , where |  | is the absolute value of a J-characteristic.  The 

CFV of design   is defined to be  ( )     (         ) (         ) (         )   (         )  
Note that (         ) is simply the frequency of non-zero column sums of   in reverse 

order, which for a balanced two-level design are all zero since all column sums are zero.  

Let   (  ) and   (  ) be the  th entries of  (  ) and  (  ), respectively.  Let   be the 

smallest integer such that   (  )    (  ).  If   (  )     (  ) then    has less G-
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aberration than   .  If no design has less G-aberration than   , then it has minimum 

G-aberration.  Recently, Lin, Sitter et al. (2012) used G-aberration to catalog and rank 

two-level nonregular fractional factorial designs of 32 and 40 runs. 

The CFV mentioned previously has been an important tool in nonregular design 

analysis.  Deng and Tang (2002) used the CFV criterion to identify and rank 

non-isomorphic designs that are projections of Hadamard matrices.  Their research 

demonstrated that the CFV was a powerful method for identifying non-isomorphic 

designs.  Li, Deng et al. (2004) used CFVs to search for non-isomorphic OAs that were 

not projections of Hadamard matrices in order to determine if designs existed with lower 

G-aberration than found in Deng, Li et al. (2000).  They discovered 15 designs outside 

Hadamard matrices but the best of these designs ranked 276th in terms of G-aberration. 

There is an important link between the CFV and the        matrix.  Let   be a 

balanced and orthogonal     model matrix for a ME+2FI full model, and let   be a 

multiple of 4.  In the CFV, if      , for         , then there are       matrix 

elements     in   corresponding to ME and 2FI correlations where      (      )   
Also, if      , for         ,  then there are       matrix elements     in     corresponding to 2FI and 2FI interactions where      (      )   For example 

suppose there is a      design matrix   for which      .  Without loss of generality, 

let this correspond to   ( )    for   {     }.  Recall that   is a column index set and 

here corresponds to effect columns A,B and C.  Let   be   expanded to a 6-factor full 

model matrix with no intercept column.  Then for the     matrix it is true that       
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                           .  Clearly working with CFVs is an efficient 

alternative to computing the frequency of nonzero elements in    . 

4.2.4 E(s2) 

Even before minimum aberration had been developed to compare regular 

fractional factorials, researchers discovered a way to compare supersaturated designs.  A 

supersaturated design is a factorial design with   rows and   effect columns with      .  

Booth and Cox (1962) introduced  (  ) as a solution to the problem of evaluating 

supersaturated designs.  Let    be the  th column of the     model matrix  .  Then 

 (  )  ∑ (     )    (  )⁄  

Minimizing  (  ) is equivalent to minimizing the sum of squared off-diagonal elements 

of    .   

Lin (1993) was the first to rejuvenate interest in the metric.  He constructed 

supersaturated designs of size (   )    (       ) using half fractions of Hadamard 

matrices.  The  (  ) criterion was used to construct and evaluate supersaturated designs 

in Wu (1993), who used Hadamard matrices to develop supersaturated designs of 12 and 

20 runs to investigate up to 66 and 124 factors respectively.  Tang and Wu (1997) 

generalized the work in Lin (1993) by using Hadamard matrices to construct 

supersaturated designs.  Jones and Montgomery (2010) used  (  ) to identify which 

projections of the Hadamard matrices of order 16 were optimal 16-run no-confounding 

designs. 
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4.2.5 Variance Inflation Factors 

Montgomery (2012) mentions that a way to measure the multicollinearity of a 

model matrix is a diagnostic called the variance inflation factor (VIF).  VIFs are 

calculated from the model matrix  .  First, unit length scaling is applied to the columns 

of   to create a new matrix   whose columns have mean zero and unit length.      is 

in the form of a correlation matrix.  The  th main diagonal element of (   )   is the 

VIF for the  th regression coefficient.  

VIFs are commonly applied as a diagnostic tool in regression, where 

multicollinearity between regressor variables is common, but they are utilized much less 

in the context of DOE due to the emphasis on orthogonal designs.  However, VIFs can be 

a useful tool for evaluating nonregular designs which may have orthogonal ME columns, 

but correlated columns in a model matrix for a ME+2FI full model.  Thus far, VIFs have 

not been used in the literature to compare and rank nonregular designs. 

4.2.6 Projection Estimation Capacity 

Another general way to evaluate designs is by model robustness, often measured 

by some variant of estimation capacity.  Estimation capacity was first introduced by Sun 

(1993) and measures the number of estimable models containing all of the ME evaluated 

in a design and a given number of   2FI’s.  Estimation capacity was used by Li and 

Nachtsheim (2000) and Li (2006) to create model robust designs for screening 

experiments.   

Loeppky, Sitter et al. (2007) introduced a variant of estimation capacity known as 

projection estimation capacity (PEC).  Instead of the potential model space involving all 

ME in the screening design, the model space for PEC involves all   ME in  -factor 
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projections of the original design plus all of the associated 2FI.  Some notation is 

introduced here that is used in the remainder of the chapter.  If every  -factor projection 

of a design   is capable of estimating the full  -factor ME+2FI model, then for design   

we have        As another example, if the full  -factor model is only estimable in 50% 

of the possible  -factor projections then for design   we have           
Using the completed catalog of non-isomorphic   (       ) and   (       ), Loeppky et al. were able to identify optimal 16-run and 20-run designs in 

terms of PEC.  The authors also used PEC to create a ranked list of the top six projections 

of Hadamard matrices of orders 24 and 28.   

4.2.7 Historical Research on Orthogonal Designs of 24 Runs 

Evangelaras, Koukouvinos et al. (2007) evaluated and ranked the non-isomorphic   (       ) according to generalized minimum aberration.  The CFV patterns for the 

top seven designs are shown in Table 23.  To be consistent with the source literature, this 

section lists CFVs in the following format.  Let             be the frequency of   

column combinations that give |  |  {         } for          .  Therefore we have  ( )     (         )   (         ) .  As an example, if a design   has six columns 

and (         )   (       )  then of the (  )     possible element-wise products of 

four columns, nine have a column sum of 8 and six have a column sum of 0.   

Table 23.  The CFVs for Minimum G-aberration Designs (Evangelaras et al. 2007) 
G-Aber_24 6.6     [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4(0,0,0,6)5(0,0,0,1)6] 
G-Aber_24 6.7     [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4(0,0,0,6)5(0,1,0,0)6] 
G-Aber_24 6.33   [(0,0,0,6)1(0,0,0,15)2(0,0,2,18)3(0,0,9,6)4(0,0,4,2)5(0,0,0,1)6] 
G-Aber_24 6.235 [(0,0,0,6)1(0,0,0,15)2(0,0,2,18)3(0,0,11,4)4(0,0,2,4)5(0,0,0,1)6] 
G-Aber_24 6.234 [(0,0,0,6)1(0,0,0,15)2(0,0,3,17)3(0,0,8,7)4(0,0,3,3)5(0,0,1,0)6] 
G-Aber_24 6.208 [(0,0,0,6)1(0,0,0,15)2(0,0,3,17)3(0,0,10,5)4(0,0,3,3)5(0,0,1,0)6] 
G-Aber_24 6.227 [(0,0,0,6)1(0,0,0,15)2(0,0,3,17)3(0,1,8,6)4(0,0,1,5)5(0,0,1,0)6] 
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Evangelaras et al. recognized the problem of ranking designs on only one 

criterion.  First they noted that designs 24.6.6, 24.6.7 and 24.6.235 cannot estimate the 

full model with the six main effects and each of the 15 two-factor interactions.  After 

computing the D-efficiency of every OA, it was noted that the design 24.6.33 was ranked 

41st by the D-criterion with a D-efficiency equal to 73%.  The design 24.6.234 was 

ranked 62nd with D-efficiency 70.8%, the design 24.6.207 was ranked 84th with D-

efficiency 69.6%, and the design 24.6.208 was ranked 303rd with D-efficiency 60.15%.   

The authors provided an additional list of eight designs that were not in the list of 

designs with lowest generalized minimum aberration, but could estimate the full 6-factor 

ME+2FI model with the maximum D-efficiency observed (78.4%).  The CFVs for these 

designs are listed in Table 24. 

Table 24.  The CFVs for D-optimal Designs (Evangelaras et al. 2007) 
D-Opt_24 6.217 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4(0,0,2,4)5(0,1,0,0)6] 
D-Opt_24 6.218 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4(0,0,2,4)5(0,1,0,0)6] 
D-Opt_24 6.220 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4(0,1,1,4)5(0,0,1,0)6] 
D-Opt_24 6.221 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4(0,1,1,4)5(0,0,1,0)6] 
D-Opt_24 6.222 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4(0,1,2,3)5(0,0,0,1)6] 
D-Opt_24 6.224 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4(0,1,2,3)5(0,0,0,1)6] 
D-Opt_24 6.231 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 
D-Opt_24 6.232 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 

 
Ingram and Tang (2005) ranked the   (       ) projections of Hadamard 

matrices for   {      } according to minimum G-aberration.  Table 25 shows the 

CFV patterns of the best design for each value of  . 
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Table 25.  The CFVs for Min G-aberration Hadamard Designs (Ingram and Tang 2005) 
G-Aber_24 H.1.6.1   [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4(0,0,0,6)5(0,0,0,1)6] 
G-Aber_24 H.1.7.1   [(0,0,0,7)1(0,0,0,21)2(0,0,0,35)3(0,0,35,0)4(0,0,0,21)5(0,1,0,6)6] 
G-Aber_24 H.1.8.1   [(0,0,0,8)1(0,0,0,28)2(0,0,0,56)3(0,0,70,0)4(0,0,0,56)5(0,4,0,24)6] 
G-Aber_24 H.1.9.1   [(0,0,0,9)1(0,0,0,36)2(0,0,0,84)3(0,0,126,0)4(0,0,0,126)5(0,12,0,72)6] 
G-Aber_24 H.1.10.1 [(0,0,0,10)1(0,0,0,45)2(0,0,0,120)3(0,0,210,0)4(0,0,0,252)5(0,30,0,180)6] 
G-Aber_24 H.1.11.1 [(0,0,0,11)1(0,0,0,55)2(0,0,0,165)3(0,0,330,0)4(0,0,0,462)5(0,66,0,396)6] 
G-Aber_24 H.1.12.1 [(0,0,0,12)1(0,0,0,66)2(0,0,0,220)3(0,0,495,0)4(0,0,0,792)5(0,132,0,792)6] 

 
These designs are all projections of Hadamard matrix H.24.1 as cataloged in 

Sloane (2013).  There are 60 non-isomorphic Hadamard matrices of order 24.  Note that 

H.24.1 is non-isomorphic to the 24 run Plackett-Burman design for 23 factors, which is 

H.24.60.   

Searching through the 60 non-isomorphic Hadamard matrices cataloged in Sloane 

(2013), Loeppky, Sitter et al. (2007) ranked the top six PEC 24-run designs for   {      } factors.  Two search algorithms were used to generate these designs: a 

“bottom-up” algorithm and a “top-down” algorithm.  Using the bottom-up algorithm, 

each of the top three PEC designs for   {      } factors came from Hadamard matrix 

58 (H.24.58).  Using the top-down algorithm, each of the top three PEC designs for   {      } factors came from Hadamard matrix 42 (H.24.42).  Table 26 shows the 

CFV patterns for the top three PEC designs generated by top-down search and bottom-up 

search.   
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Table 26.  The CFVs for PEC-Optimal Designs (Loeppky et al. 2007) 
PEC_24 H.58.6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 
PEC_24 H.58.6.2 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 
PEC_24 H.58.6.3 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4(0,1,1,4)5(0,0,1,0)6] 
PEC_24 H.42.6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 
PEC_24 H.42.6.2 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4(0,1,2,3)5(0,0,0,1)6] 
PEC_24 H.42.6.3 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4(0,1,1,4)5(0,0,1,0)6] 
PEC_24 H.58.7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,8,27)3(0,1,11,23)4(0,2,4,15)5(0,0,4,3)6] 
PEC_24 H.58.7.2 [(0,0,0,7)1(0,0,0,21)2(0,0,9,26)3(0,2,9,24)4(0,0,6,15)5(0,1,2,4)6] 
PEC_24 H.58.7.3 [(0,0,0,7)1(0,0,0,21)2(0,0,9,26)3(0,2,9,24)4(0,1,2,18)5(0,1,2,4)6] 
PEC_24 H.42.7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,8,27)3(0,0,15,20)4(0,1,12,8)5(0,0,0,7)6] 
PEC_24 H.42.7.2 [(0,0,0,7)1(0,0,0,21)2(0,0,10,25)3(0,0,13,22)4(0,1,10,10)5(0,0,2,5)6] 
PEC_24 H.42.7.3 [(0,0,0,7)1(0,0,0,21)2(0,0,10,25)3(0,0,13,22)4(0,1,10,10)5(0,0,2,5)6] 
PEC_24 H.58.8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,13,43)3(0,3,21,46)4(0,5,14,37)5(0,0,6,22)6] 
PEC_24 H.58.8.2 [(0,0,0,8)1(0,0,0,28)2(0,0,13,43)3(0,4,21,45)4(0,4,10,42)5(0,0,10,18)6] 
PEC_24 H.58.8.3 [(0,0,0,8)1(0,0,0,28)2(0,1,13,42)3(0,2,21,47)4(0,4,14,38)5(0,1,6,21)6] 
PEC_24 H.42.8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,19,37)3(0,0,27,43)4(0,2,20,34)5(0,0,12,16)6] 
PEC_24 H.42.8.2 [(0,0,0,8)1(0,0,0,28)2(0,0,17,39)3(0,0,31,39)4(0,1,24,31)5(0,0,8,20)6] 
PEC_24 H.42.8.3 [(0,0,0,8)1(0,0,0,28)2(0,0,21,35)3(0,1,23,46)4(0,1,20,35)5(0,0,12,16)6] 
PEC_24 H.58.9.1 [(0,0,0,9)1(0,0,0,36)2(0,0,0,84)3(0,0,126,0)4(0,0,0,126)5(0,12,0,72)6] 
PEC_24 H.58.9.2 [(0,0,0,9)1(0,0,0,36)2(0,2,18,64)3(0,3,44,79)4(0,8,32,86)5(0,2,16,66)6] 
PEC_24 H.58.9.3 [(0,0,0,9)1(0,0,0,36)2(0,1,21,62)3(0,6,38,82)4(0,7,27,92)5(0,0,24,60)6] 
PEC_24 H.42.9.1 [(0,0,0,9)1(0,0,0,36)2(0,1,25,58)3(0,2,46,78)4(0,3,47,76)5(0,1,24,59)6] 
PEC_24 H.42.9.2 [(0,0,0,9)1(0,0,0,36)2(0,1,24,59)3(0,1,50,75)4(0,1,58,67)5(0,0,26,58)6] 
PEC_24 H.42.9.3 [(0,0,0,9)1(0,0,0,36)2(0,1,26,57)3(0,2,46,78)4(0,2,46,78)5(0,1,26,57)6] 
PEC_24 H.58.10.1 [(0,0,0,10)1(0,0,0,45)2(0,0,0,120)3(0,0,210,0)4(0,0,0,252)5(0,30,0,180)6] 
PEC_24 H.58.10.2 [(0,0,0,10)1(0,0,0,45)2(0,3,16,101)3(0,0,126,84)4(0,9,60,183)5(0,12,0,198)6] 
PEC_24 H.58.10.3 [(0,0,0,10)1(0,0,0,45)2(0,3,18,99)3(0,0,126,84)4(0,6,66,180)5(0,12,0,198)6] 
PEC_24 H.42.10.1 [(0,0,0,10)1(0,0,0,45)2(0,1,39,80)3(0,4,75,131)4(0,2,101,149)5(0,0,71,139)6] 
PEC_24 H.42.10.2 [(0,0,0,10)1(0,0,0,45)2(0,1,40,79)3(0,3,80,127)4(0,2,100,150)5(0,2,60,148)6] 
PEC_24 H.42.10.3 [(0,0,0,10)1(0,0,0,45)2(0,1,39,80)3(0,3,79,128)4(0,2,101,149)5(0,1,67,142)6 
PEC_24 H.58.11.1 [(0,0,0,11)1(0,0,0,55)2(0,0,0,165)3(0,0,330,0)4(0,0,0,462)5(0,66,0,396)6] 
PEC_24 H.58.11.2 [(0,0,0,11)1(0,0,0,55)2(0,4,20,141)3(0,0,210,120)4(0,14,100,348)5(0,30,0,432)6] 
PEC_24 H.58.11.3 [(0,0,0,11)1(0,0,0,55)2(0,4,21,140)3(0,0,210,120)4(0,12,104,346)5(0,30,0,432)6] 
PEC_24 H.42.11.1 [(0,0,0,11)1(0,0,0,55)2(0,1,56,108)3(1,6,115,208)4(0,4,174,284)5(0,2,144,316)6] 
PEC_24 H.42.11.2 [(0,0,0,11)1(0,0,0,55)2(0,1,57,107)3(1,4,119,206)4(0,6,166,290)5(0,3,148,311)6] 
PEC_24 H.42.11.3 [(0,0,0,11)1(0,0,0,55)2(0,1,60,104)3(0,5,118,207)4(0,6,164,292)5(0,4,156,302)6] 
PEC_24 H.58.12.1 [(0,0,0,11)1(0,0,0,55)2(0,0,0,165)3(0,0,330,0)4(0,0,0,462)5(0,66,0,396)6] 
PEC_24 H.58.12.2 [(0,0,0,11)1(0,0,0,55)2(0,4,20,141)3(0,0,210,120)4(0,14,100,348)5(0,30,0,432)6] 
PEC_24 H.58.12.3 [(0,0,0,11)1(0,0,0,55)2(0,4,21,140)3(0,0,210,120)4(0,12,104,346)5(0,30,0,432)6] 
PEC_24 H.42.12.1 [(0,0,0,11)1(0,0,0,55)2(0,1,56,108)3(1,6,115,208)4(0,4,174,284)5(0,2,144,316)6] 
PEC_24 H.42.12.2 [(0,0,0,11)1(0,0,0,55)2(0,1,57,107)3(1,4,119,206)4(0,6,166,290)5(0,3,148,311)6] 
PEC_24 H.42.12.3 [(0,0,0,11)1(0,0,0,55)2(0,1,60,104)3(0,5,118,207)4(0,6,164,292)5(0,4,156,302)6] 

 
Notice in Table 26 that the best design found using the bottom-up search for    {      } has ME which are completely uncorrelated with 2FI.  In addition, this 

design has no complete confounding of 2FI with other 2FI.  This design is isomorphic to 

a design listed as the minimum G-aberration designs in Ingram and Tang (2005).  Table 
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27, reproduced from Loeppky, Sitter et al. (2007), shows the corresponding PEC vectors 

for the designs in Table 26.  See the subsection on PEC for an explanation of the    

notation.   

Table 27.  The p4, p5 and p6 Values for PEC-optimal Designs (Loeppky et al. 2007) 
Design (p4,p5,p6) 

PEC_24 H.58.6.1  
PEC_24 H.58.6.2  
PEC_24 H.58.6.3  
PEC_24 H.42.6.1  
PEC_24 H.42.6.2  
PEC_24 H.42.6.3 

(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 

PEC_24 H.58.7.1  
PEC_24 H.58.7.2  
PEC_24 H.58.7.3  
PEC_24 H.42.7.1  
PEC_24 H.42.7.2  
PEC_24 H.42.7.3 

(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 
(1,1,1.000) 

PEC_24 H.58.8.1  
PEC_24 H.58.8.2  
PEC_24 H.58.8.3  
PEC_24 H.42.8.1  
PEC_24 H.42.8.2  
PEC_24 H.42.8.3 

(1,1,0.786) 
(1,1,0.750) 
(1,1,0.750) 
(1,1,0.964) 
(1,1,0.964) 
(1,1,0.964) 

PEC_24 H.58.9.1  
PEC_24 H.58.9.2  
PEC_24 H.58.9.3  
PEC_24 H.42.9.1  
PEC_24 H.42.9.2  
PEC_24 H.42.9.3 

(1,1.000,0.000) 
(1,0.992,0.655) 
(1,0.992,0.643) 
(1,1.000,0.881) 
(1,1.000,0.869) 
(1,1.000,0.869) 

PEC_24 H.58.10.1  
PEC_24 H.58.10.2  
PEC_24 H.58.10.3  
PEC_24 H.42.10.1  
PEC_24 H.42.10.2  
PEC_24 H.42.10.3 

(1,1.000,0.000) 
(1,0.988,0.362) 
(1,0.988,0.314) 
(1,0.988,0.814) 
(1,0.988,0.800) 
(1,1.000,0.795) 

PEC_24 H.58.11.1  
PEC_24 H.58.11.2  
PEC_24 H.58.11.3  
PEC_24 H.42.11.1  
PEC_24 H.42.11.2  
PEC_24 H.42.11.3 

(1.000,1.000,0.000) 
(1.000,0.987,0.312) 
(1.000,0.987,0.294) 
(0.996,0.976,0.753) 
(0.996,0.971,0.753) 
(1.000,0.982,0.747) 

PEC_24 H.58.12.1  
PEC_24 H.58.12.2  
PEC_24 H.58.12.3  
PEC_24 H.42.12.1  
PEC_24 H.42.12.2  
PEC_24 H.42.12.3 

(1.000,1.000,0.000) 
(1.000,0.987,0.273) 
(1.000,0.967,0.536) 
(0.993,0.957,0.705) 
(0.997,0.959,0.703) 
(0.997,0.965,0.702) 
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Table 27 shows that for the minimum G-aberration designs, every 5-factor 

projection of these designs is capable of fitting the full 5-factor model, i.e. they have       .  However, each of these designs has       , which means that a 6-factor 

projection does not exist that can fit the full model.   

For    {      } factors multiple designs have       .  Therefore the authors 

ranked these designs on   .  For the cases where       and      Loeppky et al. 

found designs where       .  For the case where      , the three projections of 

Hadamard H.42 all have        and           .  For the case where      , the best 

projections of Hadamard H.42 had           .  For the case where       , the best 

projections of Hadamard H.42 had           .  Notice that the minimum G-aberration 

designs were not PEC optimal for    {     }.  This is due to the existence of designs 

for which       and       . 

Recently Smucker, del Castillo et al. (2012) created model robust two-level 

designs for 16, 20, 24 and 28 runs.  They used a coordinate exchange algorithm with 

three steps.  In Step 1, a randomly chosen initial design is constructed.  In step 2, 

coordinate exchange is conducted to maximize the design’s estimation capacity (EC), 

where the nature of the maximization is determined by a chosen model space.  If EC = 1 

after Step 2, Step 3 is conducted in which coordinate exchange is again used to maximize 

the minimum D-efficiency while maintaining EC = 1.  Table 28 lists the CFVs for their 

published 6 and 8-factor designs.  Since these designs are not necessarily balanced and 

orthogonal, the range of   is          and     is the frequency of   column 

combinations that give |  |  {                                 } for          .   
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Table 28.  The CFVs for CLF Designs (Smucker et al. 2012) 
Factors Design CFV 
6 CLF-EC [(0,0,0,0,0,0,0,0,0,2,2,0)1(0,0,0,0,0,2,2,0,2,0,0,0)2(0,2,2,0,2,0,0,0,0,0,0,0)3 

 (2,0,0,0,0,0,0,0,0,1,3,5)4(0,0,0,0,0,1,3,5,5,1,0,0)5(0,1,3,5,5,1,0,0,0,0,0,0)6] 
6 CLF-Maximin [(0,0,0,0,0,0,0,0,0,0,1,3)1(0,0,0,0,0,0,1,3,2,0,0,0)2(0,0,1,3,2,0,0,0,0,0,0,0)3 

 (2,0,0,0,0,0,0,0,0,0,0,2)4(0,0,0,0,0,0,0,2,9,4,0,0)5(0,0,0,2,9,4,0,0,0,0,0,0)6] 
8 CLF-EC [(0,0,0,0,0,0,0,0,0,2,2,3)1(0,0,0,0,0,2,2,3,1,0,0,0)2(0,2,2,3,1,0,0,0,0,0,0,0)3 

(1,0,0,0,0,0,0,0,0,0,3,4)4(0,0,0,0,0,0,3,4,12,9,0,0)5(0,0,3,4,12,9,0,0,0,0,0,0)6] 
8 CLF-Maximin [(0,0,0,0,0,0,0,0,0,0,0,1)1(0,0,0,0,0,0,0,1,7,0,0,0)2(0,0,0,1,7,0,0,0,0,0,0,0)3 

(7,0,0,0,0,0,0,0,0,1,0,7)4(0,0,0,0,0,1,0,7,7,13,0,0)5(0,1,0,7,7,13,0,0,0,0,0,0)6] 

 
From the CFVs for the CLF designs in Table 28, one can see nonzero values in (            ), indicating these designs are not balanced.  Furthermore, nonzero values in (            ), particularly for      imply there are moderately high correlations 

between main effects.  In addition, there are two-factor interactions which are fully 

confounded.  Consequently these designs do not qualify as no-confounding designs and 

will not be considered further. 

4.2.8 The Pareto Front 

According to Lu, Anderson-Cook et al. (2011), one criterion rarely encompasses 

all of the qualities a design should have to be effective.  Consequently, it is preferable to 

consider the Pareto front of designs generated by multiple design criteria.  Examining the 

Pareto front allows an experimenter to find a design which has favorable qualities across 

multiple criteria and will therefore have a greater chance of performing well in varying 

experimental contexts.  However, except for the designs published recently by Smucker, 

del Castillo et al. (2012), 24-run designs introduced in the literature have been evaluated 

on a single criteria.   

In general when attempting to make an optimal decision based on multiple 

criteria, it is common that a choice which optimizes one criterion does not optimize 

another.  One method of handling this problem is the approach used by Smucker et al. to 
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optimize one criterion and then optimize an additional criterion subject to the optimal 

level of the first criteria.  A second approach is to create and evaluate a Pareto efficient 

set, or Pareto front, of choices based on the multiple criteria.  A decision element   is 

included in a Pareto efficient set if there does not exist an element   which outranks 

element   in every criterion.  That is to say element   is not dominated by any other 

element.  Lu, Anderson-Cook et al. (2011) state that the optimal option on the Pareto 

front is often determined by a process of standardizing and weighting the optimality 

criteria.   

4.3 Methodology 

The methodology used to identify and recommend 24-run no-confounding 

designs involved a four stage process: an organization and assessment of nonregular 

designs in the current statistical literature; the creation and utilization of a column 

exchange search algorithm; the creation of a Pareto efficient set of candidate designs; and 

the evaluation of the Pareto efficient set using Monte Carlo simulation.  Five categories 

of designs discussed in the background section of this chapter were organized from the 

literature.  Collectively, these designs will be referred to in this chapter as the baseline 

designs, as they have already been established as optimal designs based on various 

criteria.  These baseline designs serve as the benchmark for judging designs created by 

the column exchange algorithm. 

The nomenclature in Table 29 is used to refer to the baseline designs from the 

literature and the algorithmically created designs.  Although there are two categories of 

G-aberration designs, the categories are not merged in part to allow the reader to trace the 

design back to the literature source via the nomenclature, and in part because the 
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G-aberration designs in Evangelaras, Koukouvinos et al. (2007) only include 6-factor 

designs. 

Table 29.  Nomenclature for Baseline and Algorithmically-Generated Designs 
Design Type (Source) Nomenclature Format Example 

G-aberration 
(Ingram and Tang 2005) 

G-Aber_24 
H.Source_Hadamard_ID.Factors.Literature ID 

G-Aber_24 H.1.6.1 

PEC  
(Loeppky et al. 2007) 

PEC_24 

H.Source_Hadamard_ID.Factors.Literature ID 
PEC_24 H.58.6.1 

G-aberration  
(Evangelaras et al. 2007) 

G-Aber_24 Factors.Literature ID G-Aber_24 6.208 

D-Optimal  
(Evangelaras et al. 2007) 

D-Opt_24 Factors.Literature ID D-Opt_24 6.217 

Min Max Correlation MinMax_24 Factors.Algorithm_Result_ID MinMax_24 6.1 
Column Exchange 
Algorithm 

CEA_24 Factors.Algorithm_Result_ID CEA_24 6.2025 

 
4.3.1 The Baseline Designs 

The first set of baseline designs are the minimum G-aberration designs of 24 runs 

and 6-12 factors from Ingram and Tang (2005).  Recall that these designs have minimum 

G-aberration out of all projections of the 60 non-isomorphic Hadamard matrices of 

order 24.   

Table 30 shows an abbreviated CFV for each of these designs as well as the 

number of nonzero correlations.  The CFV is abbreviated to remove frequencies which 

are always null or involve irrelevant higher-order interactions.  The abbreviated CFV has 

the following format.  Let             be the frequency of   column combinations that 

give |  |  {         } for          .  Then the abbreviated CFV is  ( )     (         )   (         ) .  
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Table 30.  CFVs for G-aberration Designs (Ingram and Tang 2005) 
OA ID CFV Nonzero 

Column Sums 
G-Aber_24 H.1.6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4] 15 
G-Aber_24 H.1.7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,0,35)3(0,0,35,0)4] 35 
G-Aber_24 H.1.8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,0,56)3(0,0,70,0)4] 70 
G-Aber_24 H.1.9.1 [(0,0,0,9)1(0,0,0,36)2(0,0,0,84)3(0,0,126,0)4] 126 
G-Aber_24 H.1.10.1 [(0,0,0,10)1(0,0,0,45)2(0,0,0,120)3(0,0,210,0)4] 210 
G-Aber_24 H.1.11.1 [(0,0,0,11)1(0,0,0,55)2(0,0,0,165)3(0,0,330,0)4] 330 
G-Aber_24 H.1.12.1 [(0,0,0,12)1(0,0,0,66)2(0,0,0,220)3(0,0,495,0)4] 495 

 
The PEC designs from Loeppky, Sitter et al. (2007) are the second set of designs.  

Recall that these designs were created by column exchange algorithms using Hadamard 

matrix columns.  It turned out that the top six designs of  -factors came either from 

Hadamard matrix H.58 or H.42 as indexed in Sloane (2013).  Table 31 shows the CFV 

and count of nonzero column sums for each of the PEC designs. 
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Table 31.  CFVs and Correlations for PEC Designs (Loeppky et al. 2007) 
 

 
The third and fourth sets of baseline designs were discussed in the background 

section of this chapter and come from the complete non-isomorphic catalog of 

OA ID CFV 

 

Nonzero Column Sums 

PEC_24 H.58.6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

PEC_24 H.58.6.2 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

PEC_24 H.58.6.3 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4] 9 

PEC_24 H.42.6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

PEC_24 H.42.6.2 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

PEC_24 H.42.6.3 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4] 9 

PEC_24 H.58.7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,8,27)3(0,1,11,23)4] 20 

PEC_24 H.58.7.2 [(0,0,0,7)1(0,0,0,21)2(0,0,9,26)3(0,2,9,24)4] 20 

PEC_24 H.58.7.3 [(0,0,0,7)1(0,0,0,21)2(0,0,9,26)3(0,2,9,24)4] 20 

PEC_24 H.42.7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,8,27)3(0,0,15,20)4] 23 

PEC_24 H.42.7.2 [(0,0,0,7)1(0,0,0,21)2(0,0,10,25)3(0,0,13,22)4] 23 

PEC_24 H.42.7.3 [(0,0,0,7)1(0,0,0,21)2(0,0,10,25)3(0,0,13,22)4] 23 

PEC_24 H.58.8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,13,43)3(0,3,21,46)4] 37 

PEC_24 H.58.8.2 [(0,0,0,8)1(0,0,0,28)2(0,0,13,43)3(0,4,21,45)4] 38 

PEC_24 H.58.8.3 [(0,0,0,8)1(0,0,0,28)2(0,1,13,42)3(0,2,21,47)4] 37 

PEC_24 H.42.8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,19,37)3(0,0,27,43)4] 46 

PEC_24 H.42.8.2 [(0,0,0,8)1(0,0,0,28)2(0,0,17,39)3(0,0,31,39)4] 48 

PEC_24 H.42.8.3 [(0,0,0,8)1(0,0,0,28)2(0,0,21,35)3(0,1,23,46)4] 45 

PEC_24 H.58.9.1 [(0,0,0,9)1(0,0,0,36)2(0,0,0,84)3(0,0,126,0)4] 126 

PEC_24 H.58.9.2 [(0,0,0,9)1(0,0,0,36)2(0,2,18,64)3(0,3,44,79)4] 67 

PEC_24 H.58.9.3 [(0,0,0,9)1(0,0,0,36)2(0,1,21,62)3(0,6,38,82)4] 66 

PEC_24 H.42.9.1 [(0,0,0,9)1(0,0,0,36)2(0,1,25,58)3(0,2,46,78)4] 74 

PEC_24 H.42.9.2 [(0,0,0,9)1(0,0,0,36)2(0,1,24,59)3(0,1,50,75)4] 76 

PEC_24 H.42.9.3 [(0,0,0,9)1(0,0,0,36)2(0,1,26,57)3(0,2,46,78)4] 75 

PEC_24 H.58.10.1 [(0,0,0,10)1(0,0,0,45)2(0,0,0,120)3(0,0,210,0)4] 210 

PEC_24 H.58.10.2 [(0,0,0,10)1(0,0,0,45)2(0,3,16,101)3(0,0,126,84)4] 145 

PEC_24 H.58.10.3 [(0,0,0,10)1(0,0,0,45)2(0,3,18,99)3(0,0,126,84)4] 147 

PEC_24 H.42.10.1 [(0,0,0,10)1(0,0,0,45)2(0,1,39,80)3(0,4,75,131)4] 119 

PEC_24 H.42.10.2 [(0,0,0,10)1(0,0,0,45)2(0,1,40,79)3(0,3,80,127)4] 124 

PEC_24 H.42.10.3 [(0,0,0,10)1(0,0,0,45)2(0,1,39,80)3(0,3,79,128)4] 122 

PEC_24 H.58.11.1 [(0,0,0,11)1(0,0,0,55)2(0,0,0,165)3(0,0,330,0)4] 330 

PEC_24 H.58.11.2 [(0,0,0,11)1(0,0,0,55)2(0,4,20,141)3(0,0,210,120)4] 234 

PEC_24 H.58.11.3 [(0,0,0,11)1(0,0,0,55)2(0,4,21,140)3(0,0,210,120)4] 235 

PEC_24 H.42.11.1 [(0,0,0,11)1(0,0,0,55)2(0,1,56,108)3(1,6,115,208)4] 179 

PEC_24 H.42.11.2 [(0,0,0,11)1(0,0,0,55)2(0,1,57,107)3(1,4,119,206)4] 182 

PEC_24 H.42.11.3 [(0,0,0,11)1(0,0,0,55)2(0,1,60,104)3(0,5,118,207)4] 184 

PEC_24 H.58.12.1 [(0,0,0,12)1(0,0,0,66)2(0,0,0,220)3(0,0,495,0)4] 495  

PEC_24 H.58.12.2 [(0,0,0,12)1(0,0,0,66)2(0,5,25,190)3(0,0,330,165)4] 360  

PEC_24 H.58.12.3 [(0,0,0,12)1(0,0,0,66)2(0,5,55,160)3(0,25,140,330)4] 225  

PEC_24 H.42.12.1 [(0,0,0,12)1(0,0,0,66)2(0,2,77,141)3(3,6,169,317)4] 257  

PEC_24 H.42.12.2 [(0,0,0,12)1(0,0,0,66)2(0,2,77,141)3(1,6,181,307)4] 267  

PEC_24 H.42.12.3 [(0,0,0,12)1(0,0,0,66)2(0,3,73,144)3(1,8,177,309)4] 262  
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  (       ).  The five designs ranked highest by G-aberration and eight designs ranked 

highest by D-optimality were published in Evangelaras, Koukouvinos et al. (2007).  The 

G-aberration designs are shown in Table 32.  Note that two designs which appeared in 

Table 23 of the background section were removed.  Design G-Aber_24 6.235 was 

removed because      and G-Aber_24 6.227 was removed because there are several 

pairs of 2FI effects which have an excessively high correlation of 2/3. 

Table 32.  CFVs for 6-Factor Minimum G-aberration Designs  

OA ID CFV 
Nonzero  
Column Sums 

G-Aber_24 6.6 [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4] 15 

G-Aber_24 6.7 [(0,0,0,6)1(0,0,0,15)2(0,0,0,20)3(0,0,15,0)4] 15 

G-Aber_24 6.33 [(0,0,0,6)1(0,0,0,15)2(0,0,2,18)3(0,0,9,6)4] 11 

G-Aber_24 6.234 [(0,0,0,6)1(0,0,0,15)2(0,0,3,17)3(0,0,8,7)4] 11 

G-Aber_24 6.208 [(0,0,0,6)1(0,0,0,15)2(0,0,3,17)3(0,0,10,5)4] 13 

 
The CFVs and count of nonzero correlations for the eight designs which ranked 

highest according to D-optimality are shown in Table 33. 

Table 33.  CFVs for 6-Factor D-optimal Designs  

OA ID CFV 
Nonzero  
Column Sums 

D-Opt_24 6.217 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4] 9 

D-Opt_24 6.218 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4] 9 

D-Opt_24 6.220 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4] 9 

D-Opt_24 6.221 [(0,0,0,6)1(0,0,0,15)2(0,0,5,15)3(0,0,4,11)4] 9 

D-Opt_24 6.222 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4] 9 

D-Opt_24 6.224 [(0,0,0,6)1(0,0,0,15)2(0,0,6,14)3(0,0,3,12)4] 9 

D-Opt_24 6.231 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

D-Opt_24 6.232 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

 
A design subcategory was made from three of the PEC baseline designs.  These 

designs have the property that all nonzero correlations between any combination of ME 

and 2FI effects are equal to 1/3.  Recall that the only possible J-characteristics for 24-run 

designs with balanced orthogonal columns are 24, 16, 8 and 0, therefore 8/24 = 1/3 is the 
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minimum possible nonzero correlation in absolute value.  Furthermore, these designs 

have the minimum number of correlations of 1/3 of all published designs for a given 

number of factors.  A 24-run design of 6-12 factors with orthogonal 2FI does not exist (a 

resolution V design).  Therefore over all known designs, these MinMax Correlation 

designs have a minimum frequency and minimum value for their maximum correlation.  

Table 34 shows the CFVs for the MinMax Correlation designs. 

Table 34.  CFVs for MinMax Correlation Designs 
OA ID PEC ID CFV Nonzero 

Column Sums 
MinMax_24 6.1 PEC_24 

H.58.6.1 
[(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

MinMax_24 7.1 PEC_24 
H.42.7.1 

[(0,0,0,7)1(0,0,0,21)2(0,0,8,27)3(0,0,15,20)4] 23 

MinMax_24 8.1 PEC_24 
H.42.8.1 

[(0,0,0,8)1(0,0,0,28)2(0,0,19,37)3(0,0,27,43)4] 45 

 
The MinMax Correlation designs for 9-12 factors are also the G-aberration designs from 

Ingram and Tang (2005).  To avoid confusion, the G-aberration designs will not be 

double labeled as MinMax Correlation designs. 

4.3.2 The Column Exchange Algorithms 

Two column exchange search algorithms were developed to improve on the 

baseline designs from the literature.  Completely enumerated catalogs of   (       ) 

do not exist for     so a search algorithm was required that was capable of producing 

original OAs.  The algorithm did not explicitly search the complete catalog of 

non-isomorphic   (       ) for       and         This is because the   (       ) catalog provided in Bulutoglu and Margot (2008) contains a large number 

(57,389) of OAs and the   (       ) catalog has been thoroughly researched.   
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The search algorithms also provided the flexibility to create and assess 

non-orthogonal designs.  Preliminary research had shown that by relaxing the 

requirement for orthogonal main effects, criteria such as  (  ) could be improved.  Thus 

the search algorithm was designed to search both the space of balanced orthogonal 

designs, as well as unbalanced, non-orthogonal designs.   

Two column-exchange algorithms were developed to search the design space.  In 

the current literature, column exchange algorithms which generated 24-run OAs were 

based on projections of Hadamard matrices.  Research of the complete catalog of 20-run 

non-isomorphic OAs has demonstrated the existence of OAs that are not Hadamard 

projections, yet have superior qualities to those which are projections.  A goal of this 

research was to search the space of orthogonal and non-orthogonal arrays that were not 

projections of Hadamard matrices in order to determine if superior designs existed.  

Consequently, two column-exchange methods were developed that were not dependent 

on Hadamard matrix columns. 

The first column-exchange algorithm, called the Generating-Matrix Column 

Exchange Algorithm was derived from research by Johnson and Jones (2010) on 16-run 

balanced orthogonal designs.  Their paper demonstrated that columns in no-confounding 

designs of 6-8 factors could be constructed in a classical fashion with a    full factorial or 

replicated   .  That is to say that columns E, F, etc. could be constructed from a formula 

involving columns A-D.  For eight of the 27 non-isomorphic designs with six factors and 

16 runs, it is the case that the E and F main effects are only partially correlated with two-

factor and higher interactions involving main effects A, B, C and D.  These eight no-
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confounding designs can all be written as a    factorial for columns A-D with columns E 

and F of the form       (           )       (1) 

Here  , , and   are two-way or higher interaction columns of the A-D ME 

columns, for example AB, BC and CD.  The       term represents the 

component-wise Hadamard product of the three columns, for example AB*BC*CD = 

AD.  The authors also demonstrated that for the 55 designs with 7 factors in 16 runs, the 

subset of these designs with the no-confounding property also had a similar relationship 

among columns.   

The observations in Johnson and Jones (2010) concerning the relationships 

between columns in equation (1) were utilized to create the Generating-Matrix Column 

Exchange Algorithm.  For the 16-run designs, the interaction columns were created from 

the columns of a    full factorial.  Since a    full factorial option was not available for 

the 24-run case, the 5-factor 24-run resolution IV design with uncorrelated ME and 2FI 

was used as a substitute.   

There is only one non-isomorphic OA with 24 runs and 5 factors of strength 3.  In 

OA notation this is   (       ).  As this will be relevant to future discussion in this 

chapter, note that according to Schoen and Mee (2012) there is only one non-isomorphic   (       ) for   {                }   There are two non-isomorphic   (       ) for   {   }.  An   (       ) for      has not been found.   

Two approaches were tested to determine how many columns should be held 

constant in the search algorithm.  The first approach was to make columns A-E the 

5-factor 24-run resolution IV design.  The second approach was to only hold columns 
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A-C constant.  An analysis of the baseline designs revealed that three columns of every 

design could be found such that if the rows were properly sorted, the first column would 

have twelve -1’s followed by twelve +1’s.  The second column would have six -1’s 

followed by six +1’s, repeated twice.  The third column would have three -1’s followed 

by three +1’s, with this pattern repeated four times.  Note that these three columns are 

pair-wise orthogonal.  Assessment of the algorithm performance revealed that holding 

three columns constant instead of five created more favorable diversity in the generated 

designs.  Consequently, three columns were held constant rather than five.   

For the Generating-Matrix Column Exchange Algorithm, the interaction columns 

used as arguments in equation (1) were generated from the columns of the 5-factor 24-run 

OA of strength 3.  The power set of all possible component-wise column products was 

generated.  From the power set, all 2FI,…,5FI columns were selected and placed in a 26-

column matrix notated as  .  A candidate design column was generated by selecting three 

columns from   and plugging these columns into equation (1).  The following are the 

steps of the Generating-Matrix Column Exchange Algorithm to construct a 24-run  -factor no-confounding design. 

The Generating-Matrix Column Exchange Algorithm 

1. Generate the matrix  , the matrix of 2FI,…,5FI effects from the  5-factor 24-run 

resolution IV design 

2. Generate a semi-random design   with the 3 constant columns and     random 

columns from the   (        ) 

3. For column       to   
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3.1. Select a new 3-column group from   and generate a candidate column   using 

equation (1) 

3.2. Substitute   into column   of   

3.3. Screen out undesirable designs 

3.3.1. If   has fully confounded effects, break and return to 3.1 

3.3.2. If   <1 for  , break and return to 3.1 

3.4. Compute three design metrics for   

3.4.1.  (  ) 

3.4.2. PEC for 6-factor projections (  ) 

3.4.3. Average average VIF for the 5-factor full model over all 5-factor 

projections 

3.5. Check if   belongs on the Pareto front for the three design metrics and add   if 

appropriate 

3.6. Remove any dominated designs from the Pareto front 

3.7. Repeat for all (   ) possible arguments for  , , and   from   

4. Go back to Step 3 and repeat for   cycles 

5. Output the Pareto front of designs 

The Pareto front of designs created by the Generating-Matrix Column Exchange 

Algorithm produced good designs relative to the baseline designs for     .  However, 

when     , it required over 24 hours to make one cycle through the algorithm.  This 

was due primarily to the computationally expensive design metrics, PEC and average 

VIF, which potentially had to be calculated (   )   (   ) times per cycle.   
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In order to create more diversity in the generated designs, a modification was 

made to the Generating-Matrix Column Exchange Algorithm where the arguments   and   in equation (1) were fixed for an algorithm cycle and only z was changed to the 26 

possible columns in  .  For the next 26 cycles,   was changed to a new column of   and 

again z was changed to each of the 26 possible columns.  Finally, after all possible values 

of   had been tried,   was changed.  This process was repeated until all possible column 

combinations of   had been tried.  This modified algorithm created more diversity in the 

generated designs. 

The second algorithm, called the Random Structured-Column Exchange 

Algorithm was created as a computationally less expensive alternative to the Generating-

Matrix Column Exchange Algorithm.  Generating a completely random 2-level column 

was not efficient since there are                 of such columns.  By considering 

only random balanced columns, the column search space is reduced to  (    )            possible columns.  In an effort to reduce the column search space further, the 

baseline designs were examined.  It was discovered that for each of these designs, if a 

column was divided into four consecutive sub-columns of six, every block contained at 

least two +1’s and at least two -1’s.  Furthermore, if the columns were divided into two 

sub-columns of twelve runs, each sub-column contained six +1’s and six -1’s.  If this 

structure of    was enforced within a column, there would be            possible 

columns – a reduction in the column search space by 2 orders of magnitude from the 

completely random column approach (see Appendix B for the computations.) 
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The following are the steps in the Random Structured-Column Exchange 

Algorithm to construct a 24-run  -factor no-confounding design. 

The Random Structured-Column Exchange Algorithm. 

1. For column       to   

1.1. While no improvement or for a max of 50 random columns do the following 

1.1.1.   Generate a balanced, structured random column,   

1.1.2.   Substitute   into column   of   

1.1.3.   Screen out undesirable designs 

1.1.3.1. If   has fully confounded effects, break and return to 1.1 

1.1.3.2. If   <1 for  , break and return to 1.1 

1.1.4.   Compute three design metrics for   

1.1.4.1. Compute  (  ) 

1.1.4.2. Compute PEC for 6-factor projections (  ) 

1.1.4.3. Compute the average average VIF for the 5-factor full model over 

all 5-factor projections 

1.1.5. Check if   belongs on the Pareto front for the three design metrics and 

add   if appropriate 

1.1.6.   Remove any dominated designs from the Pareto front 

1.2. Next   
2. Go back to step 1 and repeat for   cycles 

3. Output the Pareto front of designs 

Three metrics were chosen to create the Pareto front of designs:  (  ),   , and 

average average VIF for 5-factor full models.  These design evaluation criteria were 
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defined in the background section.  More criteria were not used due to the significant 

increase in computation time as a result of evaluating four or more metrics:  The three 

evaluation criteria were chosen based on their ability to assess the designs both on their 

projection properties as well as their coefficient estimation capability. 

The  (  ) was used to evaluate the 16-run no-confounding designs and was used 

to maintain some consistency with previous research.  In addition it has proven to be an 

excellent metric for evaluating supersaturated designs, which is applicable to the case of 

24-run designs when used to estimate full models of more than seven ME.  An aspect of  (  ) that contrasts with G-aberration is that it does not prioritize the minimization of 

correlations of ME and 2FI over 2FI correlations, but rather gives both types of effect 

correlations equal weight. 

PEC is an important quality in screening designs, as it is rare that all factors 

considered in the screening stage will ultimately be found to be active.  Ideally         since 24-run designs have enough runs to estimate the full model for up to six 

factors.  However, Evangelaras, Koukouvinos et al. (2007) noted that the designs in the 

complete catalog of   (       ) which had minimum G-aberration had     .  If an 

experimenter anticipates that only a subset of the considered factors will be active, then 

requiring that      may be overly restrictive.  Therefore, designs with a value of       were rejected, but     was used to define the efficient frontier of designs, in order 

to allow for designs which may perform well when there is a small number of active 

effects despite a relatively low value of   . 

Since these designs have many partially correlated effects, there is a risk that the 

variance of some effect estimates is unacceptably high.  The VIF is a method of 
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quantifying the variance of effect estimates.  Unfortunately in the case of non-orthogonal 

designs the VIFs vary across effects.  In order to assess a design in terms of VIFs, all 

possible 5-factor projections were examined and the VIFs for the 5-factor full model 

were computed.  The VIFs were averaged across effects, and then averaged across every 

5-factor projection.  The result was termed the average average VIF.   

4.3.3 Reducing the Size of the Pareto Efficient Set 

Despite the fact that only three design metrics were used in the search algorithm, 

the Pareto front generated by the algorithm was populated with over 80 designs for    .  It was infeasible in terms of time to evaluate the entire list of designs on the 

Pareto front.  Furthermore, many of these designs were very similar, differing in their 

metrics by a relatively small amount.   

To reduce the quantity of designs on the Pareto front, the CFVs were generated 

for both the baseline designs and the Pareto front designs.  The CFV had the form  ( )     (         ) (         ) (         ) (         )  
Where (         ) corresponded to the frequencies of the following J-characteristics: (                 ).  The CFVs were summarized in six categories listed in Table 35. 
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Table 35.  CFV Summary Categories 
Category 

Expression 

Description 

∑     
    

Total ME correlations greater than 1/3  

    Total ME correlations equal to 1/3 ∑∑    
   

 
    

Total correlations greater than 1/3 involving ME, ME and 2FI, and 2FI and 2FI 

∑    
    

Total correlations equal to 1/3 involving ME, ME and 2FI, and 2FI and 2FI 

∑∑    
   

 
    

Total nonzero correlations involving ME, ME and 2FI, and 2FI and 2FI 

∑∑    
   

 
    

Total correlations greater than 1/6 involving ME, ME and 2FI, and 2FI and 2FI 

 
The six CFV summary categories in Table 35 were computed for each design on the 

Pareto front.  A second Pareto front based on this data was then generated.  This reduced 

the total candidate design list for all factors to a manageable 267. 

4.3.4 The Monte Carlo Simulation 

A Monte Carlo simulation was used to narrow down the 267 designs.  This was a 

rarely used approach in design comparison.  In Marley and Woods (2010) a Monte Carlo 

simulation was used to compare analysis strategies for supersaturated designs, but a 

journal article concerning Monte Carlo simulation as a method to compare designs has 

not been published.   

The simulation automated the analysis of the randomly generated responses and 

produced an estimated model.  The terms and coefficients in the estimated model were 

compared to the terms and coefficients in the randomly generated model and a binary 

variable recorded whether a type I or type II variable selection error occurred.  Data was 



103 

also recorded for the minimum, average, and maximum percent error in the coefficient 

estimates for all model terms.  After a given number of simulations, the data was 

aggregated to report two simulation metrics: the percentage of models with at least the 

active effects, and the percentage of correct models (those models without type I or 

type II variable selection errors.   

The number of simulations was determined using the Normal approximation of 

the standard deviation for a binomial proportion   ̂  √ (   ) .  When p = 0.5, if it is 

desired that   ̂        then it is required that            After weighing the 

simulation time against the requirements for the width of a 95% confidence interval, it 

was determined that 5000 simulation runs would allow sufficiently small confidence 

intervals to compare the various OAs.   

Since the ME+2FI full model for seven or more factors has more than 24 terms, 

an analysis method suitable for supersaturated designs was required.  The method chosen 

was a modified two-stage forward stepwise analysis approach based on doctoral research 

in Shinde (2012).  In the first stage, the analysis is conducted considering only ME terms.  

In the second stage, only the active ME terms from stage one and all associated 2FI 

involving the active ME are considered.   

The Akaike’s information criterion corrected (AICc) discussed in Hurvich and 

Tsai (1989) and Akaike (1974) was used as the model selection criterion.  Since the 

analysis software did not perform bi-directional elimination when the AICc criterion was 

used to rank potential models, a modification of the forward selection procedure was 

used.  The modification involved eliminating variables in the final model which had a p-
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value above a certain threshold.  The p-value thresholds of 0.10 in stage 1 and 0.05 in 

stage 2 were used.  The added step of removing variables after the stepwise regression 

reduced the type I variable-selection error rate.  This approach was identical to that used 

for the research in Chapter 3 of this dissertation.  

An important consideration for the Monte Carlo simulation was the appropriate 

maximum number of ME and 2FI that the random response models might be composed 

of.  Choosing integers   and   such that the simulation generated a random number of 2 

to   ME and a random number of 0 to   2FI required balancing poor estimation 

performance with a thorough design capability analysis.  Li, Sudarsanam et al. (2006) 

conducted a meta-analysis of published experiments involving a DOE methodology and 

reported that for the 113 combined experimental data sets, 41% of the potential ME were 

active and 11% of the potential 2FI were active.  According to these results, when 

considering six potential factors, it is expected that there are 2-3 active ME and 1 active 

2FI.   

For this simulation the number of ME was a random number in the range        and the number of 2FI was a random number in the range        .  

These ranges for the number of ME and 2FI in the polynomial models were consistent 

with the model meta-analysis in Li, Sudarsanam et al. (2006), as well as with the sparsity-

of-effects principle.  For the ME and 2FI, the respective coefficient random variables   

and   ranged from          and        .  The sign of the coefficient was 

determined by a Bernoulli random variable with p = 0.5. 

After reviewing the results of the simulation for the 267 designs on the Pareto 

front, the list was reduced to 90 designs which ranked highest according to the simulation 
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metrics.  At least 10 designs of   factors,   {      }, were chosen so that good 

designs which performed relatively poorly due to sampling variation would not be 

overlooked.  Note that 5000 simulation runs were used to prevent large sample variance 

in the average simulation metrics.   

To determine which of the 90 designs produced the best simulation results, a 

much larger simulation study was conducted.  The simulation was repeated 20 times for 

each candidate design for a total of 20x5000 = 100,000 simulations.  For each design, 

two design performance metrics were recorded: the average percentage of trials which 

produced correct models, and the average percentage of trials which produced at least the 

correct model.  The binomial approximation was used to calculate the 95% confidence 

interval for the average simulation metrics over 100,000 simulations.  The interval 

differed from the metric point estimate only in the 4th decimal place, allowing for precise 

differentiation between designs.  For each number of factors  , the highest ranking 

design according to each of the two performance metrics was selected as the best 

algorithm design.  These designs were then compared to the baseline designs to 

determine which should be recommended as the 24-run no-confounding designs.   

4.4 Results 

The results of the Monte Carlo simulation showed that the minimum G-aberration 

designs listed in Ingram and Tang (2005) are clearly the best 24-run no-confounding 

designs in terms of the average percentage of trials which produced correct models, and 

the average percentage of trials which produced at least the correct model.  Even though 

the MinMax Correlation designs have fewer nonzero correlations between effects overall, 
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these designs have more ME correlated with 2FI, which according to the simulation this 

leads to inferior model-fitting performance.   

The Generating-Matrix Column Exchange Algorithm and the Random Structured-

Column Exchange Algorithm were able to discover two unpublished MinMax Correlation 

design for seven and nine factors respectively.  Table 36 is an updated version of Table 

34 with the CFV of the newly discovered MinMax Correlation designs (their original 

nomenclature was CEA_24_7_102 and CEA_24_9_2025).  The CFVs in Table 36 have 

the form  ( )     (         ) (         ) (         ) (         ) , where (         ) corresponds to the frequencies of the J-characteristics (         ). 

Table 36.  CFVs for Updated List of MinMax Correlation Designs 
Original ID MinMax ID CFV Nonzero 

Column Sums 

PEC_24 58.6.1 MinMax_24 6.1 [(0,0,0,6)1(0,0,0,15)2(0,0,4,16)3(0,0,5,10)4] 9 

CEA_24 7.102 MinMax_24 7.1 [(0,0,0,7)1(0,0,0,21)2(0,0,6,29)3(0,0,15,20)4 21 

PEC_24 42.8.1 MinMax_24 8.1 [(0,0,0,8)1(0,0,0,28)2(0,0,19,37)3(0,0,27,43)4] 45 

CEA_24 9.2025 MinMax_24 9.1 [(0,0,0,9)1(0,0,0,36)2(0,0,10,74)3(0,0,98,28)4] 108 

 
The remainder of this section reports the simulation results in terms of two 

metrics.  The first simulation metric is the percentage of models fit to the simulated 

responses which contained at least the active effects, referred to as the % at least correct.  

The second simulation metric is the percentage of models fit to the simulated responses 

which contained only the active effects, referred to as the % correct.  The results include 

metrics for each baseline design and the best design created by the column exchange 

algorithms.  In the event that an algorithmically created design is not ranked highest for 

both metrics, the results are reported for two designs.  The results for the 6-factor designs 

include the additional 13 6-factor baseline designs from Evangelaras, Koukouvinos et al. 
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(2007).  Figure 24 shows the simulation results for % at least correct for the 13 D-

optimal and minimum G-aberration designs.   

 
Figure 24.  % at Least Correct for G-aberration and D-Optimal 6-Factor Designs 

Figure 24 shows that the two non-isomorphic OAs of strength three, G-Aber_24 6.6 and 

G-Aber_24 6.7 outperform the D-optimal and other G-aberration designs in terms of % at 

least correct. 

Figure 25 shows the simulation results for % at least correct for the G-aberration 

design in Ingram and Tang (2005) and the PEC designs in Loeppky, Sitter et al. (2007).   
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Figure 25.  % at Least Correct for 6-Factor G-aberration and PEC Designs 

Figure 25 shows that the minimum G-aberration design, G-Aber_24 H.1.6.1 (which is 

isomorphic to G-Aber_24 6.6), performs significantly better than the PEC designs despite 

the fact that        for the PEC designs and        for the minimum G-aberration 

design.   

Figure 26 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   
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Figure 26.  Comparison of % at Least Correct for 6-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.6.1 (also identified as 

G-Aber_24 6.6), is the best performing design and is shown in Appendix Table 82.  

However, since        for this design, a second design option is provided where       .  The remaining four designs performed similarly in terms of the % at least 

correct, but CEA_24 6.2009, produced by the Random Structured-Column Exchange 

Algorithm performed slightly better in terms of % correct.   

Table 37 lists the CVF and nonzero correlations for the best 6-factor design of 

each design type.  The CFVs have the form  ( )     (         ) (         ) (         ) (         ) , where (         ) 

corresponds to the frequencies of the J-characteristics (                 ). 
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Table 37.  CFVs and Nonzero Column Sums of Best 6-Factor Designs 
OA ID CFV Nonzero 

Column Sums 
CEA_24 
6.2009 

[(0,0,0,0,0,0,6)1(0,0,0,0,0,6,9)2(0,0,0,0,0,10,10)3(0,0,0,0,0,6,9)4] 22 

D-Opt_24 
6.231 

[(0,0,0,0,0,0,6)1(0,0,0,0,0,0,15)2(0,0,0,0,4,0,16)3(0,0,0,0,5,0,10)4] 9 

G-Aber_24 
H.1.6.1 

[(0,0,0,0,0,0,6)1(0,0,0,0,0,0,15)2(0,0,0,0,0,0,20)3(0,0,0,0,15,0,0)4] 15 

MinMax_24 
6.1 

[(0,0,0,0,0,0,6)1(0,0,0,0,0,0,15)2(0,0,0,0,4,0,16)3(0,0,0,0,5,0,10)4] 9 

PEC_24 
H.42.6.2 

[(0,0,0,0,0,0,6)1(0,0,0,0,0,0,15)2(0,0,0,0,4,0,16)3(0,0,0,0,5,0,10)4] 9 

 
The table shows that CEA_24 6.2009 is not orthogonal for ME, but does not have 

any correlations above 1/6.  Therefore, CEA_24 6.2009 is recommended as the 6-factor 

no-confounding design when enforcing       .  CEA_24 6.2009 is shown in Appendix 

Table 89. 

Figure 27 shows the % at least correct for the 7-factor G-aberration design in 

Ingram and Tang (2005) and the 7-factor PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 27.  % at Least Correct for 7-factor G-aberration and PEC Baseline Designs 
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The minimum G-aberration design, G-Aber_24 H.1.7.1 performs significantly better than 

the PEC designs.   

Figure 28 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   

 
Figure 28.  Comparison of % at Least Correct for 7-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.7.1 is the best performing design and 

is shown in Appendix Table 83.  However, since        for this design, a second design 

option is provided where       .  The design produced by the algorithm performed 

slightly better in terms of both simulation metrics.  Table 38 lists the CVF and nonzero 

correlations for the best 7-factor designs for each design type.   
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Table 38.  CFVs and Nonzero Column Sums of Best 7-Factor Designs 
OA ID CFV Nonzero 

Column Sums 
CEA_24 
7.3002 

[(0,0,0,0,0,0,7)1(0,0,0,0,0,2,19)2(0,0,0,0,4,10,21)3(0,0,0,1,7,17,10)4] 41 

G-Aber_24 
H.1.7.1 

[(0,0,0,0,0,0,7)1(0,0,0,0,0,0,21)2(0,0,0,0,0,0,35)3(0,0,0,0,35,0,0)4] 35 

MinMax_24 
7.1 

[(0,0,0,0,0,0,7)1(0,0,0,0,0,0,21)2(0,0,0,0,6,0,29)3(0,0,0,0,15,0,20)4 21 

PEC_24 
H.58.7.1 

[(0,0,0,0,0,0,7)1(0,0,0,0,0,0,21)2(0,0,0,0,8,0,27)3(0,0,1,0,11,0,23)4] 20 

 
The new MinMax_24 7.1, discovered by the Generating-Matrix Column 

Exchange Algorithm, is superior in both simulation metrics to CEA_24 7.3002 and 

PEC_24 H.58.7.1, and in addition has orthogonal ME.  MinMax_24 7.1 is clearly the best 

design option among these designs when enforcing       .  MinMax_24 7.1 is shown in 

Appendix Table 90. 

Figure 29 shows the % at least correct for the 8-factor G-aberration design in 

Ingram and Tang (2005) and the 8-factor PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 29.  % at Least Correct for 8-factor G-aberration and PEC Baseline Designs 
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The minimum G-aberration design, G-Aber_24  H.1.8.1, performs significantly better 

than the PEC designs.   

Figure 30 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category. 

 
Figure 30.  Comparison of % at Least Correct for 8-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.8.1 is the best performing 

design and is shown in Appendix Table 84.  However, since        for this design, a 

second design option is provided where       .  Design CEA_24 8.3002, produced by 

the Random Structured-Column Exchange Algorithm, performed slightly worse than the 

PEC_24 H.58.8.1 design in terms of both simulation metrics.  However, examining the 

CFVs for both designs in Table 39 reveals that for the PEC_24 H.58.8.1 design, there are 

several pairs of 2FI correlated at 2/3.  For CEA_24 8.3002, no pair of effects has a 

correlation above 1/2.  Furthermore,        for CEA_24 8.3002 while            for 
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PEC_24 H.58.8.1.  Consequently CEA_24 8.3002 is recommended as the best design 

option when enforcing       .  CEA_24 8.3002 is shown in Appendix Table 91. 

Table 39.  CFVs and Nonzero Column Sums of Best 8-Factor Designs 
OA ID CFV Nonzero 

Column Sums 
CEA_24 
8.3002 

[(0,0,0,0,0,0,8)1(0,0,0,0,0,4,24)2(0,0,0,0,9,20,27)3(0,0,0,5,11,31,23)4] 80 

G-Aber_24 
H.1.8.1 

[(0,0,0,0,0,0,8)1(0,0,0,0,0,0,28)2(0,0,0,0,0,0,56)3(0,0,0,0,70,0,0)4] 70 

MinMax_24 
8.1 

[(0,0,0,0,0,0,8)1(0,0,0,0,0,0,28)2(0,0,0,0,19,0,37)3(0,0,0,0,27,0,43)4] 46 

PEC_24 
H.58.8.1 

[(0,0,0,0,0,0,8)1(0,0,0,0,0,0,28)2(0,0,0,0,13,0,43)3(0,0,3,0,21,0,46)4] 37 

 
Figure 31 shows the % at least correct for the 9-factor G-aberration design in 

Ingram and Tang (2005) and the PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 31.  % at Least Correct for 9-Factor G-aberration and PEC Baseline Designs 

The minimum G-aberration design, G-Aber_24 H.1.9.1, performs significantly better than 

the PEC designs with the exception of PEC_24 58.9.1, which is isomorphic to 

G-Aber_24 H.1.9.1.   
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It is important to point out here that the group of six PEC designs of 6-8 factors 

does not include the corresponding minimum G-aberration design.  However for designs 

of 9-12 factors, the group of six PEC designs always includes the minimum G-aberration 

design.  This is because the algorithm used by Loeppky, Sitter et al. (2007) discovered 

designs such as the MinMax Correlation designs which, similar to the minimum 

G-aberration designs, had       .  However the PEC designs dominated the minimum 

G-aberration designs in terms of   , i.e. the minimum G-aberration design had        

while the six PEC designs had       .  See Table 27 for the data.  However, for designs 

of 9-12 factors, the only designs which the PEC algorithm could find with        were 

the minimum G-aberration designs (with the exception of PEC_24 H.42.10.3).  Therefore 

for each of the 9-12 factor designs, a minimum G-aberration design is represented among 

the top six PEC designs.  The column exchange algorithms developed for the research in 

this chapter were able to find designs of 9-12 factors where        . 

Figure 32 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   
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Figure 32.  Comparison of % at Least Correct for 9-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.9.1, is the best performing 

design and is shown in Appendix Table 85.  However, since        for this design, a 

second design option is provided where       .  Design MinMax_24 9.1, produced by 

the Random Structured-Column Exchange Algorithm, performed slightly better than 

PEC_24 H.58.9.2 and CEA_24 9.105 in terms of the % at least correct metric.  It 

performed significantly better than PEC_24 H.58.9.2 in terms of the % correct metric.  In 

addition,            for the PEC design.  Table 40 shows that for MinMax_24 9.1, no 

pair of effects has a correlation above 1/3 and is therefore the recommended design 

option when enforcing       .  MinMax_24 9.1 is shown in Appendix Table 92. 
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Table 40.  CFVs and Nonzero Column Sums of Best 9-Factor Designs 
OA ID CFV Nonzero 

Column Sums 
CEA_24 
9.105 

[(0,0,0,0,0,0,9)1(0,0,0,0,0,6,30)2(0,0,0,0,6,12,66)3(0,0,0,0,88,26,12)4] 138 

G-Aber_24 
H.1.9.1 

[(0,0,0,0,0,0,9)1(0,0,0,0,0,0,36)2(0,0,0,0,0,0,84)3(0,0,0,0,126,0,0)4] 126 

MinMax_24 
9.1 

[(0,0,0,0,0,0,9)1(0,0,0,0,0,0,36)2(0,0,0,0,10,0,74)3(0,0,0,0,98,0,28)4] 108 

PEC_24 
H.58.9.2 

[(0,0,0,0,0,0,9)1(0,0,0,0,0,0,36)2(0,0,2,0,18,0,64)3(0,0,3,0,44,0,79)4] 125 

 
Figure 33 shows the % at least correct for the 10-factor G-aberration design in 

Ingram and Tang (2005) and the 10-factor PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 33.  % at Least Correct for 10-Factor G-aberration and PEC Baseline Designs 

The minimum G-aberration design, G-Aber_24 H.1.10.1, performs better than the PEC 

designs in terms of both simulation metrics with the exception of PEC_24 58.10.1, which 

is isomorphic to G-Aber_24 H.1.10.1.   

Figure 34 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   
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Figure 34.  Comparison of % at Least Correct for 10-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.10.1 is the best performing 

design and is shown in Appendix Table 86.  However, since        for this design, a 

second design option is provided where       .  Design CEA_24 10.108, produced by 

the Generating-Matrix Column Exchange Algorithm, performed slightly better than 

PEC_24 H.58.10.2 in terms of the % correct metric and only slightly worse in terms of 

the % at least correct metric.  In addition,            for the PEC design.  Table 41 

shows that for CEA_24 10.108, no pair of effects has a correlation above 1/2 and only a 

few 2FI effects are correlated above 1/3.  Therefore CEA_24 10.108 is the recommended 

design option when enforcing       .  CEA_24 10.108 is shown in Appendix Table 93. 
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Table 41.  CFVs and Nonzero Column Sums of Best 10-Factor Designs 

OA ID CFV 
Nonzero 
Column Sums 

CEA_24 
10.1020 

[(0,0,0,0,0,0,10)1(0,0,0,0,0,3,42)2(0,0,1,1,9,17,92)3(0,0,0,0,140,46,24)4] 217 

CEA_24 
10.108 

[(0,0,0,0,0,0,9)1(0,0,0,0,0,7,38)2(0,0,0,0,10,14,96)3(0,0,0,2,148,40,20)4] 221 

G-Aber_24 
H.1.10.1 

[(0,0,0,0,0,0,10)1(0,0,0,0,0,0,45)2(0,0,0,0,0,0,120)3(0,0,0,0,210,0,0)4] 210 

PEC_24 
H.58.10.2 

[(0,0,0,0,0,0,10)1(0,0,0,0,0,0,45)2(0,0,3,0,16,0,101)3(0,0,0,0,126,0,84)4] 145 

 
Figure 35 shows the % at least correct for the 11-factor G-aberration design in 

Ingram and Tang (2005) and the 11-factor PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 35.  % at Least Correct for 11-Factor G-aberration and PEC Baseline Designs 

The minimum G-aberration design, G-Aber_24 H.1.11.1, performs better than the PEC 

designs in terms of both simulation metrics with the exception of PEC_24 58.11.1, which 

is isomorphic to G-Aber_24 H.1.11.1.   

Figure 36 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   
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Figure 36.  Comparison of % at Least Correct for 11-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.11.1 is the best performing 

design and is shown in Appendix Table 87.  However, since        for this design, a 

second design option is provided where       .  Design CEA_24 11.1016, produced by 

the Random Structured-Column Exchange Algorithm, performed slightly worse than 

PEC_24 H.58.11.2 in terms of the % at least correct metric and significantly better in 

terms of the % correct metric.  In addition,            for the PEC design.  Table 42 

shows that for CEA_24 11.1016, no pair of effects has a correlation above 1/2 and only a 

limited number of ME and 2FI effects are correlated above 1/3.  Therefore 

CEA_24 11.1016 is the recommended design option when enforcing       .  

CEA_24 11.1016 is shown in Appendix Table 94. 
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Table 42.  CFVs and Nonzero Column Sums of Best 11-Factor Designs 

OA ID CFV 
Nonzero 
Column Sums 

CEA_24 
11.1016 

[(0,0,0,0,0,0,11)1(0,0,0,0,0,4,51)2(0,0,0,4,10,20,131)3(0,0,0,0,230,64,36)4] 332 

CEA_24 
11.104 

[(0,0,0,0,0,1,10)1(0,0,0,0,0,4,51)2(0,0,1,1,12,20,131)3(0,0,0,0,230,64,36)4] 333 

G-Aber_24 
H.1.11.1 

[(0,0,0,0,0,0,11)1(0,0,0,0,0,0,55)2(0,0,0,0,0,0,165)3(0,0,0,0,330,0,0)4] 330 

PEC_24 
H.58.11.2 

[(0,0,0,0,0,0,11)1(0,0,0,0,0,0,55)2(0,0,4,0,20,0,141)3(0,0,0,0,210,0,120)4] 234 

 
Figure 37 shows the % at least correct for the 12-factor G-aberration design in 

Ingram and Tang (2005) and the 12-factor PEC designs in Loeppky, Sitter et al. (2007).   

 
Figure 37.  % at Least Correct for 12-Factor G-aberration and PEC Baseline Designs 

The minimum G-aberration design, G-Aber_24 H.1.12.1, performs better than the PEC 

designs in terms of both simulation metrics, with the exception of PEC_24 58.12.1, 

which is isomorphic to G-Aber_24 H.1.12.1.   

Figure 38 compares the % at least correct for the best designs produced by the 

column exchange algorithm to the best performing baseline design in each category.   
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Figure 38.  Comparison of % at Least Correct for 12-Factor Designs 

The minimum G-aberration design, G-Aber_24 H.1.12.1, is the best performing 

design and is shown in Appendix Table 88.  However, since        for this design, a 

second design option is provided where       .  Design CEA_24 12.1033, produced by 

the Random Structured-Column Exchange Algorithm, performed slightly worse than 

PEC_24 H.58.12.2 in terms of the % at least correct metric and significantly better in 

terms of the % correct metric.  In addition,            for the PEC design.  Table 43 

shows that for CEA_24 12.1033, no pair of effects has a correlation greater than 1/2 and 

only a limited number of ME and 2FI effects have a correlation greater than 1/3.  

Therefore CEA_24 12.1033 is the recommended design option when enforcing       .  

CEA_24 12.1033 is shown in Appendix Table 95. 
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Table 43.  CFVs and Nonzero Column Sums of Best 12-Factor Designs 

OA ID CFV 
Nonzero 
Column 
Sums 

CEA_24 
12.1033 

[(0,0,0,0,0,0,12)1(0,0,0,0,0,9,57)2(0,0,0,2,14,16,188)3(0,0,0,6,366,87,36)4] 500 

G-Aber_24 
H.1.12.1 

[(0,0,0,0,0,0,12)1(0,0,0,0,0,0,66)2(0,0,0,0,0,0,220)3(0,0,0,0,495,0,0)4] 495 

PEC_24 
H.58.12.2 

[(0,0,0,0,0,0,12)1(0,0,0,0,0,0,66)2(0,0,5,0,25,0,190)3(0,0,0,0,330,0,165)4] 360 

 
 The performance of the minimum G-aberration designs varies for different 

combinations of terms in the response models.  A final round of simulations was 

conducted to produce data characterizing the performance across different response 

models.  For each of the optimal no-confounding designs, 60,000 simulations were run 

with a random number of   ME where          and a random number of   2FI 

where         .  Table 44 through Table 57 concern the minimum G-aberration 

designs and break down the % at least correct and % correct for each combination of   

ME and   2FI. 

Table 44.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.6.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 100.00% 99.48% 92.35%   97.99% 

4 100.00% 100.00% 98.18% 86.88% 64.79% 89.76% 

5 100.00% 100.00% 94.40% 72.95% 46.61% 82.78% 

6 100.00% 99.78% 85.92% 48.37% 20.70% 70.55% 

Grand Total 100.00% 99.97% 94.66% 75.46% 44.28% 88.14% 
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Table 45.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.6.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 73.16% 100.00%       86.69% 

3 68.74% 90.69% 94.93% 92.35%   86.47% 

4 63.27% 77.67% 78.38% 74.41% 59.07% 70.47% 

5 54.47% 61.45% 62.53% 53.42% 37.93% 53.93% 

6 52.96% 59.27% 54.81% 35.67% 15.95% 43.58% 

Grand Total 65.11% 83.30% 73.62% 64.87% 37.90% 68.11% 
 
Table 46.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.7.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 100.00% 99.43% 93.94%   98.35% 

4 100.00% 100.00% 98.17% 86.40% 66.07% 90.14% 

5 100.00% 100.00% 95.93% 74.17% 49.31% 84.20% 

6 100.00% 99.79% 85.10% 49.36% 20.35% 70.42% 

Grand Total 100.00% 99.97% 94.97% 77.02% 44.75% 88.64% 
 
Table 47.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.7.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 67.55% 100.00%       83.61% 

3 64.68% 89.47% 93.80% 93.94%   85.33% 

4 57.90% 76.32% 76.63% 74.96% 59.80% 69.28% 

5 49.15% 61.31% 63.11% 55.90% 39.74% 53.96% 

6 51.98% 56.66% 53.04% 35.15% 15.93% 42.28% 

Grand Total 60.60% 82.42% 73.02% 66.66% 38.06% 66.93% 
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Table 48.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.8.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 100.00% 99.46% 92.75%   98.02% 

4 100.00% 100.00% 98.03% 85.68% 63.76% 89.54% 

5 100.00% 99.96% 94.05% 72.12% 47.07% 83.15% 

6 100.00% 99.76% 84.39% 49.17% 21.24% 71.08% 

Grand Total 100.00% 99.96% 94.24% 76.05% 43.83% 88.33% 
 
Table 49.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.8.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 62.28% 100.00%       81.30% 

3 60.58% 89.48% 94.77% 92.75%   84.54% 

4 53.98% 77.56% 78.57% 73.33% 58.46% 68.40% 

5 45.08% 60.98% 62.84% 52.98% 38.19% 52.23% 

6 48.14% 56.45% 54.56% 35.13% 16.94% 42.40% 

Grand Total 56.10% 82.37% 73.74% 65.43% 37.70% 65.73% 
 
Table 50.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.9.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 100.00% 99.54% 93.62%   98.32% 

4 100.00% 99.96% 98.45% 86.22% 65.88% 89.89% 

5 100.00% 100.00% 94.35% 71.39% 47.74% 82.72% 

6 100.00% 99.87% 84.68% 46.37% 20.56% 70.31% 

Grand Total 100.00% 99.98% 94.56% 75.31% 45.06% 88.24% 
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Table 51.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.9.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 56.77% 100.00%       78.46% 

3 53.02% 89.94% 94.53% 93.59%   82.59% 

4 50.89% 76.81% 80.56% 72.44% 59.95% 68.26% 

5 42.46% 61.71% 63.53% 52.97% 38.14% 51.78% 

6 45.59% 57.80% 52.28% 32.02% 16.06% 40.76% 

Grand Total 51.43% 82.77% 74.04% 64.35% 38.39% 64.36% 
 

Table 52.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.10.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 99.98%       99.99% 

3 100.00% 100.00% 99.36% 93.90%   98.29% 

4 100.00% 100.00% 97.78% 85.16% 65.37% 89.35% 

5 100.00% 100.00% 93.95% 72.26% 47.55% 83.00% 

6 100.00% 99.88% 85.37% 47.04% 21.40% 70.31% 

Grand Total 100.00% 99.98% 94.44% 75.91% 44.77% 88.18% 
 
Table 53.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.10.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 52.06% 99.98%       76.24% 

3 45.94% 90.32% 94.42% 93.90%   80.75% 

4 45.61% 76.99% 78.31% 72.00% 58.79% 66.24% 

5 39.02% 62.82% 63.20% 53.55% 39.38% 51.60% 

6 44.21% 57.89% 55.11% 33.22% 16.43% 41.15% 

Grand Total 46.82% 82.93% 74.06% 65.25% 38.22% 63.20% 
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Table 54.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.11.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 100.00% 99.33% 93.91%   98.33% 

4 100.00% 100.00% 97.75% 85.87% 65.60% 89.97% 

5 100.00% 100.00% 94.79% 72.84% 47.33% 82.85% 

6 100.00% 99.87% 84.21% 49.58% 20.21% 70.80% 

Grand Total 100.00% 99.98% 94.28% 76.69% 44.06% 88.37% 
 
Table 55.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.11.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 47.27% 99.98%       73.29% 

3 43.02% 90.79% 94.09% 93.85%   80.46% 

4 41.56% 77.15% 80.03% 74.15% 59.38% 66.67% 

5 34.40% 62.33% 63.04% 54.44% 38.29% 50.41% 

6 41.19% 58.09% 54.71% 35.56% 15.76% 41.05% 

Grand Total 42.85% 83.09% 74.18% 66.19% 37.48% 62.33% 
 
Table 56.  Matrix of % at Least Correct for p ME and q 2FI - G-Aber_24 H.1.12.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 99.98%       99.99% 

3 100.00% 100.00% 99.60% 94.16%   98.39% 

4 100.00% 100.00% 98.12% 84.83% 67.77% 89.98% 

5 100.00% 99.87% 95.31% 73.04% 48.59% 83.36% 

6 100.00% 99.92% 85.52% 47.99% 20.06% 71.24% 

Grand Total 100.00% 99.96% 94.92% 76.41% 45.96% 88.60% 
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Table 57.  Matrix of % Correct for p ME and q 2FI - G-Aber_24 H.1.12.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 42.79% 99.98%       71.28% 

3 39.28% 90.68% 95.10% 94.13%   79.92% 

4 38.39% 75.53% 79.68% 71.86% 61.37% 65.25% 

5 32.45% 62.42% 64.48% 53.79% 39.07% 50.17% 

6 39.83% 58.05% 54.71% 33.74% 15.52% 40.52% 

Grand Total 39.47% 82.80% 74.80% 65.62% 39.11% 61.45% 
 

Table 58 - Table 71 concern the alternative no-confounding designs and break 

down the % at least correct and % correct for each combination of   ME and   2FI. 

Table 58.  Matrix of % at Least Correct for p ME and q 2FI - CEA_24 6_2009 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 99.98%       99.99% 

3 100.00% 99.90% 97.18% 86.07%   95.69% 

4 100.00% 99.41% 91.99% 73.16% 52.13% 83.26% 

5 100.00% 98.67% 83.45% 58.37% 36.67% 75.60% 

6 100.00% 96.47% 70.83% 41.74% 21.84% 66.39% 

Grand Total 100.00% 99.16% 86.65% 66.43% 36.92% 84.22% 
 
Table 59.  Matrix of % Correct for p ME and q 2FI - CEA_24 6_2009   

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 73.20% 99.21%       86.17% 

3 69.21% 89.70% 92.07% 85.91%   84.25% 

4 63.79% 76.98% 75.18% 62.10% 46.39% 64.87% 

5 52.00% 60.25% 54.83% 43.68% 28.64% 47.93% 

6 49.12% 51.97% 41.94% 27.09% 16.26% 37.36% 

Grand Total 64.31% 81.31% 67.82% 57.04% 30.48% 64.18% 
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Table 60.  Matrix of % at Least Correct for p ME and q 2FI – MinMax_24 7.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.64% 97.32% 89.28%   96.63% 

4 100.00% 98.73% 93.20% 77.85% 58.01% 85.36% 

5 100.00% 98.15% 87.66% 64.96% 43.22% 78.79% 

6 100.00% 97.08% 76.82% 48.00% 27.26% 70.08% 

Grand Total 100.00% 99.05% 89.26% 71.33% 43.00% 86.28% 
 
Table 61.  Matrix of % Correct for p ME and q 2FI - MinMax_24 7.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 69.57% 96.12%       83.10% 

3 64.83% 86.18% 91.95% 88.81%   82.87% 

4 57.87% 73.65% 74.84% 65.42% 52.79% 64.85% 

5 48.32% 58.43% 57.74% 47.37% 34.70% 49.31% 

6 47.92% 51.42% 47.15% 32.42% 20.50% 40.01% 

Grand Total 60.66% 78.88% 69.39% 60.45% 36.16% 64.18% 
 
Table 62.  Matrix of % at Least Correct for p ME and q 2FI – CEA_24 8_3002 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.76% 95.36% 84.84%   95.05% 

4 100.00% 98.95% 89.76% 72.29% 55.61% 83.34% 

5 100.00% 97.27% 81.93% 58.02% 38.43% 74.89% 

6 100.00% 95.90% 74.52% 43.13% 25.61% 67.62% 

Grand Total 100.00% 98.79% 85.93% 65.62% 39.73% 84.13% 
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Table 63.  Matrix of % Correct for p ME and q 2FI - CEA_24 8_3002 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 62.36% 94.34%       78.25% 

3 59.94% 84.77% 88.29% 83.13%   78.93% 

4 55.84% 74.03% 70.34% 60.60% 50.02% 62.16% 

5 45.41% 59.31% 54.99% 43.21% 31.14% 46.78% 

6 48.71% 52.71% 44.96% 29.17% 18.43% 38.70% 

Grand Total 56.45% 78.22% 65.92% 55.50% 33.04% 60.89% 
 
Table 64.  Matrix of % at Least Correct for p ME and q 2FI - MinMax_24 9.1 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.67% 98.06% 91.11%   97.18% 

4 99.92% 99.50% 95.22% 81.63% 60.61% 87.28% 

5 99.83% 98.71% 90.08% 68.77% 43.89% 80.43% 

6 99.01% 97.92% 80.25% 50.50% 23.50% 70.26% 

Grand Total 99.82% 99.37% 91.32% 74.40% 42.79% 87.10% 
 
Table 65.  Matrix of % Correct for p ME and q 2FI - MinMax_24 9.1 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 57.89% 95.48%       77.01% 

3 53.52% 88.08% 91.77% 89.93%   80.78% 

4 52.38% 73.99% 76.72% 70.17% 56.05% 65.79% 

5 44.23% 59.81% 60.35% 49.63% 35.67% 50.12% 

6 49.40% 56.01% 50.13% 34.48% 18.14% 41.65% 

Grand Total 52.98% 79.89% 70.90% 63.20% 36.76% 63.15% 
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Table 66.  Matrix of % at Least Correct for p ME and q 2FI - CEA_24 10_108 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.69% 97.31% 88.90%   96.46% 

4 99.92% 99.39% 93.74% 77.55% 58.95% 86.18% 

5 99.92% 98.23% 87.60% 64.65% 42.79% 78.39% 

6 99.41% 97.04% 76.08% 44.63% 22.22% 68.00% 

Grand Total 99.89% 99.16% 89.22% 70.15% 41.34% 85.87% 
 
Table 67.  Matrix of % Correct for p ME and q 2FI - CEA_24 10_108 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 53.43% 96.53%       74.83% 

3 49.66% 86.19% 91.19% 88.13%   78.95% 

4 48.66% 74.27% 76.20% 65.56% 52.71% 63.58% 

5 41.18% 61.14% 58.51% 47.10% 33.47% 48.23% 

6 45.67% 54.48% 47.92% 30.85% 16.45% 39.15% 

Grand Total 49.10% 79.97% 69.85% 59.67% 34.20% 61.00% 
 
Table 68.  Matrix of % at Least Correct for p ME and q 2FI - CEA_24 11_1016 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.60% 97.21% 89.66%   96.59% 

4 99.96% 99.17% 94.49% 78.55% 60.90% 86.48% 

5 99.87% 97.96% 88.59% 66.29% 42.12% 78.89% 

6 99.51% 96.45% 78.04% 45.27% 21.81% 68.42% 

Grand Total 99.90% 98.97% 90.03% 71.45% 41.59% 86.08% 
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Table 69.  Matrix of % Correct for p ME and q 2FI - CEA_24 11_1016 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 48.30% 93.93%       71.54% 

3 45.30% 84.49% 89.75% 87.08%   76.53% 

4 45.21% 72.44% 73.42% 65.98% 54.78% 62.31% 

5 38.01% 57.31% 59.23% 48.50% 34.32% 47.46% 

6 42.96% 51.31% 46.31% 31.65% 15.83% 37.66% 

Grand Total 44.96% 77.20% 68.48% 60.46% 34.95% 59.11% 
 
Table 70.  Matrix of % at Least Correct for p ME and q 2FI - CEA_24 12_1033 

% At Least Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 100.00% 100.00%       100.00% 

3 100.00% 99.73% 98.19% 89.79%   96.89% 

4 99.88% 99.46% 94.13% 79.71% 58.23% 86.22% 

5 99.79% 98.66% 87.79% 66.48% 41.78% 78.90% 

6 98.64% 96.69% 78.15% 44.45% 22.15% 68.23% 

Grand Total 99.75% 99.19% 89.93% 71.38% 40.89% 86.03% 
 
Table 71.  Matrix of % Correct for p ME and q 2FI - CEA_24 12_1033 

% Correct 

  Number of 2FI   

Number of ME 0 1 2 3 4 Grand Total 

2 44.22% 95.99%       69.96% 

3 41.08% 85.12% 90.70% 87.93%   76.43% 

4 40.51% 73.70% 75.47% 66.75% 52.46% 61.67% 

5 35.20% 59.15% 58.37% 50.53% 32.99% 47.24% 

6 40.25% 53.65% 49.56% 30.99% 16.38% 38.28% 

Grand Total 41.16% 79.04% 69.56% 60.94% 34.10% 58.71% 
 
4.5 Conclusions 

The results of the Monte Carlo simulation show that the 24-run no-confounding 

designs are outstanding screening designs.  In terms of the fewest type I and type II 

model building errors, the minimum G-aberration designs with uncorrelated ME were 

clearly the best of the published and algorithmically generated OAs evaluated in this 
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research.  Furthermore the simulation metrics for the percent at least correct were almost 

identical no matter how many design columns (investigated factors) there were.  It 

appears that having ME uncorrelated with other ME and 2FI provides a significant 

advantage in reducing type I and type II model building errors, at least when 2-stage 

stepwise regression is the analysis method.   

The percent at least correct for the minimum G-aberration designs was extremely 

high – even for models with as many as seven combined ME and 2FI terms.  When there 

were between two and five ME and zero to one 2FI, the 24-run no-confounding designs 

detected all active effects over 99% of the time.  When there were between two and five 

ME and zero to two 2FI, the worst case percent at least correct fell to only 94%.  

Furthermore, the worst case for the percent correct was 45%.  These results show that 

no-confounding designs are an extremely cost-effective screening design option. 

Even though it was not possible to exhaustively search the entire space of 24-run 

OAs, the data gives a strong indication that a design does not exist which performs better 

than a minimum G-aberration no-confounding design.  The only downside to these 

designs was their inability to estimate the 6-factor full model in any 6-factor projection, 

i.e. p6 = 0 for these designs.  Therefore if an experimenter expects to fit a large model of 

more than five ME and two 2FI, other screening design options may be more preferable.  

The algorithm was able to find alternative designs for all cases of 6-12 factors 

with p6 =1.  Interestingly, the simulation results for these algorithmically created designs 

were inferior to the minimum G-aberration designs.  The alternative designs however, 

were superior to the baseline PEC designs, both in performance and in the magnitude of 

p6.  The design search algorithms were able to find designs superior to the baseline 
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designs by investigating non-orthogonal designs and orthogonal arrays that were not 

projections of Hadamard matrices.  No designs were discovered that provided a 

compelling reason to use unbalanced columns since effective balanced-column 

alternatives were always available. 

The search algorithms discovered two unpublished MinMax Correlation designs 

of 7 and 9 factors.  Both of these designs were recommended as alternative 

no-confounding designs.  These designs are not OAs of strength three, but can estimate 

every term in the 6-factor full model unlike the minimum G-aberration designs. 

There is some evidence that the Random Structured-Column Exchange Algorithm 

is preferable to the Generating-Matrix Column Exchange Algorithm as a search 

algorithm.  Five of the seven no-confounding designs with p6 = 1 were discovered by the 

Random Structured-Column Exchange Algorithm.  The Generating-Matrix Column 

Exchange Algorithm cycled through the columns of a design   far less frequently than 

the Random Structured-Column Exchange Algorithm.  When the number of columns in   

was greater than nine, the Generating-Matrix Column Exchange Algorithm would only 

cycle through the columns of   between 1-2 cycles in a 24 hour period.  In contrast, the 

Random Structured-Column Exchange Algorithm would spend only 5-10 minutes per 

column doing random column exchanges before advancing to the next column.  

Consequently, the diversity in the design space searched by the Generating-Matrix 

Column Exchange Algorithm was relatively small compared to the diversity of the space 

explored by the Random Structured-Column Exchange Algorithm.  Ultimately, both 

algorithms proved to be effective search tools.  
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There are several avenues of future research in the area of no-confounding 

designs.  A simulation using other model building techniques, such as those based on the 

Dantzig selector, may reveal designs which offer even better performance in terms of 

type I and type II model building errors.  Designs that appear similar in performance 

using 2-stage stepwise regression may in fact differ more significantly when building 

models with a Dantzig selector.   

The Random Structured-Column Exchange Algorithm only searched the balanced-

column design space.  If this algorithm was modified to allow for unbalanced columns, 

perhaps superior no-confounding designs could be discovered.  Furthermore, considering 

other structures of the random sub-columns may perhaps lead to the discovery of better-

performing designs.  For example, the sub-column structure could be expanded to include 

a sub-column of one +1 or -1 and five elements of opposite sign. 

Finally, it is expected that the results for the minimum G-aberration 24-run 

designs extend to the 32-run design case.  That is to say a minimum G-aberration 

no-confounding design of 32 runs is likely optimal over all other OAs of similar 

dimensions.  Monte Carlo simulation could be used to verify this.  It would also be 

interesting to use the Monte Carlo simulation to compare the      designs to a 32-run 

no-confounding designs of strength three.  Just as the 16-run no-confounding designs 

provide alternatives to 16-run      designs, perhaps no-confounding designs would be 

economically advantageous in the 32-run case as well. 
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Chapter 5 

A SCREENING DESIGN SELECTION METHODOLOGY 

5.1 Introduction 

When experiments involve more than four continuous factors, it can be cost-

prohibitive to use a full factorial experimental design.  When the experimental budget or 

resources are significantly constrained, a more affordable alternative is to use a multi-

stage experiment involving a screening design.  Often an experimental budget must be 

established prior to the experiment.  However, when experimenting in stages, it becomes 

more difficult to provide an initial estimate of the total cost of the experiment.  This is 

because the total number of runs in each stage of experimentation - usually the key driver 

of experimental cost - depends on the number of significant main effects (ME), two-

factor interactions (2FI) and quadratic effects (QE) required to adequately model the 

response variable.   

The total number of experimental runs is heavily influenced by the choice of 

screening design.  The screening design determines aspects of the data such as whether 

active effects are completely confounded with other effects and whether quadratic effects 

can be estimated in the screening phase.  These aspects affect how many experimental 

runs are required in the later stages of experimentation.  In this chapter, a methodology is 

provided to select a screening design from a set of alternatives such that the complete 

experiment has the lowest expected cost, as determined by the number of experimental 

runs and other cost factors.  

Early work on design selection based on budgetary constraints includes Neuhardt, 

Bradley et al. (1973) and (1978) who examined the problem of selecting the lowest cost 
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     fractional factorial experiment based on the assignment of a cost    to each “cell” 

(factor level combination) in the full factorial experiment.  Neuhardt, Bradley et al. 

(1978) discuss a dynamic programming approach to obtaining an optimal cost fractional 

factorial based on cell costs.  See Mount-Campbell and Neuhardt (1980) and (1982) for 

discussions concerning cost-optimal      fractional factorial designs and          

fractional factorials respectively.   

Pignatiello (1985) introduced a procedure to determine cost-optimal      fractional 

factorials (for prime  ) that simultaneously considered cell costs and the ability to 

estimate a rank ordered list of specified main effects and two-factor interactions.  

Rafajlowicz (1989) developed an algorithm to find cost-efficient fractional factorials 

based on a specified information matrix. 

 Tack and Vandebroek (2001) were the first to simultaneously consider resource 

costs and run-transition costs as criteria for constructing cost-optimal designs.  In Tack 

and Vandebroek (2002) they extend their cost-efficient and time trend-resistant optimal 

design approach to block designs.  In Tack and Vandebroek (2004) the work is extended 

to situations where there is a budgetary constraint.  Additional optimal design research 

was conducted by Park, Montgomery et al. (2006), who developed a genetic algorithm to 

create cost-constrained designs with good G-efficiency. 

Our work extends the previous research on cost-constrained experimental design 

in three important ways.  First, while the previous methods optimized the construction of 

a one-stage experimental design, our method minimizes the expected start-to-finish 

experimental cost of a multi-stage experiment involving a screening design, fold over 

runs, and axial runs.  Second, instead of using an algorithm to select cost-optimal runs for 
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a fractional factorial design, our methodology is a process for design selection from a 

candidate list of cataloged screening designs.  The methodology can be used with any 

traditional or modern experimental design, such as a definitive screening or no-

confounding design.  Finally, an expanded scope of three cost sources is considered: the 

cost of the experimental runs; the cost of building a model that omits significant model 

terms or includes superfluous model terms; and the cost of building a model with 

inaccurate estimates of the regression coefficients.  The screening design with the lowest 

expected cost is reported for all feasible combinations of model probability and cost 

penalty values.  This facilitates a sensitivity analysis that informs the experimenter of 

how robust the optimal screening design is to changes in the probability and cost penalty 

assumptions.  Instead of making predictions or assumptions about specific probabilities 

or inaccurate model cost penalties, the experimenter has the easier task of predicting a 

region of probabilities and penalties. 

5.2 Background 

When experimenters investigate a set of continuous independent variables to 

determine how they affect a response variable, a common objective it to build a linear 

regression model for the response.  This model has the form 

       

Where    is the     vector of responses,   is the     model matrix,   is the     

vector of model coefficients, and    is the     vector of independent and normally 

distributed random errors with mean   and variance   . 
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The screening design process is part of the first of three stages in a linear model 

building process known as response surface methodology (RSM).  In stage one, a 

screening design is used to determine which of a set of candidate factors affect the 

response variable.  An orthogonal design involving the active effects is then used to fit a 

first order model and compute a path of steepest ascent or descent.  In stage two, single 

experiments are performed sequentially along the path to identify a region of the factor 

space which likely contains the optimal response.  Finally, in stage three a response 

surface model is built to identify the optimum factor settings.  See Myers, Montgomery et 

al. (2009) for a complete presentation of RSM.  Cheng and Wu (2001) proposed a two-

stage response surface analysis strategy applicable to situations where the first and third 

stages of the response surface methodology are conducted in the same experimental 

region.  The focus of this chapter is also on experimental scenarios where the second 

stage of the response surface methodology is not required and there are very limited 

resources for experimentation in stage three. 

5.2.1 Types of Screening Designs 

Screening designs have been used in the first stage of the model building process 

since the introduction of the Plackett-Burman designs Plackett and Burman (1946).  The 

traditional      fractional introduced in Box and Hunter (1961) is the predominant 

choice for factor screening, owing to its compatibility with standard design analysis and 

the ease of design augmentation into a central composite design if higher order terms are 

active.  Recently, designs such as the no-confounding design in Jones and Montgomery 

(2010) and the definitive screening designs in Jones and Nachtsheim (2011) have been 

presented in the literature.   
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5.2.1.1 Traditional Screening Designs 

The      fractional factorial design and the Plackett-Burman designs are 

traditional screening designs that are very commonly used for product and process design 

and for process improvement.       fractional factorials, which use only a subset of the 

runs in a full factorial, rely on two important concepts: the sparsity of effects principle 

and sequential experimentation Montgomery (2012).  Sparsity of effects is the idea that a 

system or process is likely to be determined by a relatively small number of main effects 

and low-order interactions.  Sequential experimentation is the concept that the runs from 

separate fractional factorials can be combined to form a larger design to estimate the 

active effects and interactions in a process.  A significant drawback of the      is the 

relatively large number of experimental runs required for a sequential fold over 

experiment when two-factor interactions are completely confounded with other effects.  

The Plackett-Burman design was introduced in 1946 as way to investigate up to     factors with   experimental runs, where   is a multiple of four.  All columns in 

the design matrix are pair-wise orthogonal, meaning main effects are completely de-

aliased, but every main effect is partially aliased with every two-factor interaction not 

involving itself.  Designs which produce effect estimates that are partially confounded 

with other effects are known as nonregular designs.  Due to the complex alias structure of 

Plackett-Burman designs, experimenters have historically been cautioned about using 

them when several two-factor interactions are believed to be active.  However, it has been 

demonstrated that the good projection properties of these designs can be exploited to 

allow for estimation of active main effects even when there are active two-factor 

interactions Tyssedal and Samset (1997). 
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5.2.1.2 Definitive Screening Designs 

Definitive screening designs are a class of three-level nonregular screening 

designs that allow the estimation of all possible full quadratic models involving any three 

factors, as long as at least six factors are screened.  To screen   factors, the design uses      runs in a structure that includes one center run and runs called fold over pairs.  

The first run in each fold over pair has one factor at the zero level and the other     

factors have levels of   .  The second run has the factor levels of the first run after 

multiplication by   .  For every factor under investigation, one fold over pair is added to 

the design.   

For definitive screening designs, main effects are orthogonal to other main effects 

as well as quadratic effects.  In addition, there is no complete confounding of any pair of 

second-order effects.  The alias structure between two-factor interactions and other two-

factor interactions, as well as between quadratic effects and two-factor interactions is 

complex.  A full discussion of definitive screening designs can be found in Jones and 

Nachtsheim (2011). 

5.2.1.3 No-confounding Designs 

No confounding designs are a class of nonregular fractional factorial designs 

which have the defining feature that no main effect is completely confounded with any 

two-factor interaction.  For many of these designs it is also true that no pair of two-factor 

interactions are completely confounded.   

The 16-run designs for investigating six to ten factors are projections of the five 

orthogonal designs introduced in Hall (1961) for screening up to 15 factors in 16 runs.  

The no-confounding design for   factors is the optimal combination of   Hall-matrix 
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columns that minimizes  (  ).  Let    be the  th column of the     model matrix  .  

Then 

 (  )  ∑ (     )    (  )⁄  

The  (  ) criterion was proposed by Booth and Cox (1962) as a metric to compare 

supersaturated designs.  Minimizing  (  ) is equivalent to minimizing the sum of 

squared off-diagonal elements of the correlation matrix of the model matrix.   

The lack of complete confounding of model effects presents a significant cost 

savings opportunity to an experimenter.  If effect sparsity holds and there are no 

quadratic terms required in the model, analysis with a model building technique such as 

step-wise regression can produce an accurate model without additional experimentation 

beyond the screening design (Jones and Montgomery 2010).  This can represent a 

significant savings in experimental costs.  

5.2.2 Selecting Screening Designs 

Nonregular two-level designs have the potential, when used in conjunction with 

model building techniques such as stepwise regression, to estimate the terms in a model 

with only main effects and two-factor interactions without additional experimentation 

beyond the original screening design.  If a third factor level is added then it is possible to 

estimate terms in a quadratic model.  When the screening design has the potential to be 

the terminal design, a potential largely influenced by effect sparsity, the number of runs 

in the screening design becomes an important cost consideration.  Choosing the number 

of runs in a screening design involves a trade-off between experimental costs and the 

power to identify active effects.  Small screening designs provide fewer degrees of 
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freedom to compute the mean square error (MSE) which results in a relatively larger 

variance for the estimate of   .  This affects the power to detect active factors, especially 

when the effect size of the active factor is less than    .   

The number of runs in the design matrix also affects the variance of the estimates 

of the regression coefficients  ̂.  Since Var( ̂)    (   )  , where   is the design 

matrix in model form, then the variance of  ̂  is minimized when the diagonal elements of     are as large as possible and   is orthogonal.  When all factor settings are at the two 

levels of    then the magnitude of the diagonal elements of     is equal to the number of 

runs in the design.  Therefore if   is orthogonal then adding more runs with levels at    

will always decrease the variance of  ̂  for all   - as long as orthogonality is preserved.  It 

is up to the experimenter’s judgment how to make trade-offs between saving 

experimental resources and running enough experiments to have good estimates of    

and  . 

5.2.3 Screening Designs Analysis 

An experimenter should carefully choose the analysis method used to develop a 

response model, as some analysis strategies fail to capitalize on the advantages of 

nonregular designs. Traditional design analysis methods and statistical tools such as 

ANOVA and normal probability plots are often used with factorial and regular     fractional factorial designs.  See Montgomery (2012) for a complete presentation of     fractional factorial analysis.  Hamada and Wu (1992) introduced an analysis strategy 

for nonregular designs that uses a forward stepwise regression procedure based on effect 

sparsity and effect heredity.   
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Forward stepwise regression is a model building technique that starts from a void 

model and sequentially adds variables in steps.  At each step a variable is added from a 

candidate list that improves the model the most according to some criteria.  When effect 

heredity is enforced, if a two-factor interaction or quadratic term is added to the model 

then all corresponding main effects are automatically added to the model.  

Two-stage forward stepwise regression was suggested by Shinde (2012) as a 

method to reduce type I and type II model building errors in screening design analysis.  

First, forward stepwise regression is conducted considering only ME as candidate model 

terms.  After the active ME are identified in the first stage, a second iteration of forward 

stepwise regression is conducted.  In this second stage, the candidate model terms are 

based on the full model or full quadratic model for the active ME identified in stage one.  

There is an important caveat when using forward stepwise regression with two-level 

designs that include center runs.  If all quadratic terms are included as potential model 

terms, the procedure will identify at most one quadratic term as active - even if the 

response model has more than one active quadratic effect.  Obviously the quadratic terms 

are completely confounded due to only one unique run with a third factor (the center run) 

so the effect estimate is inaccurate. Thus the selection of a quadratic term in the second 

stage of the stepwise regression is a signal to augment the original screening design with 

runs involving a third level for each ME and re-estimate the second order terms.   

The choice of model evaluation criteria used to select candidate variables and 

rank potential models is an important aspect of model building.  For the example in this 

chapter a version of the Akaike information criterion (AICc) with a bias correction 

proposed by Hurvich and Tsai (1989) is used.  The AIC, based on the concept of 
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information entropy, was introduced in Akaike (1974) as a measure that balances the 

reward for goodness of fit with a penalty for overfitting.  The AICc utilizes a bias 

correction for small sample sizes making it a valuable statistical tool when building 

models from screening designs.   

It is clear that an experimenter has many options to consider when selecting a 

screening design, but it is often unclear which option is the optimal choice.  The primary 

difficulty in selecting a screening design is the lack of information regarding how many 

two-factor interaction or quadratic terms will ultimately be required in the regression 

model.  The next section presents an expected cost methodology to select an optimal 

screening design under model uncertainty. 

5.3 An Expected Cost Approach to Screening Design Selection  

Selecting a screening design is a non-intuitive decision due to the competing 

requirements of the experiment; the experimenter wants to fit the most accurate model of 

the true system while consuming the minimum amount of testing resources.  The 

difficulty of the decision comes from the fact that the advantages and disadvantages of a 

screening design relative to other designs are dependent on the nature of the response 

model, which is unknown.  For example, 12-run Plackett-Burman designs are a suitable 

and economical choice when a small number of main effects and two-factor interactions 

are active but require augmentation when quadratic effects are active.  On the other hand 

a definitive screening design, while having more initial runs than the 12-run Plackett-

Burman, offers the prospect of estimating a full quadratic model in a small subset of 

factors without additional experimentation.   
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Our solution to the problem of selecting a screening design in the presence of 

model uncertainty is a methodology that involves the use of decision trees.  In decision 

theory, decision trees are a tool that facilitates decision making when the consequence of 

the decision is subject to the chance outcome of a future event.  The optimal decision is 

the course of action which leads to the optimal expected value of the decision 

consequence as measured by some metric.  For more details on decision trees see Clemen 

and Reilly (2001).   

The decision tree for the design selection methodology has the candidate 

screening designs as the decision nodes, categories of polynomial response functions as 

branches from the chance nodes, and the total end-to-end cost of experimentation as the 

metric evaluated at the end nodes.  Polynomial response models are placed into mutually 

exclusive categories such as main effects models, main effects plus two-factor interaction 

models, and quadratic models.  For each category of polynomial response model and for 

each candidate screening design, the experimenter assumes he will use a standard 

experimental process to estimate the regression model coefficients.  For example, the 

experimenter could create the following standard analysis rule set to analyze a      

fractional factorial: 

 

1. Add four center runs to a two-level screening design to enable a lack-of-fit test  

2. Augment the screening design with a fold over to resolve any ambiguities associated 

with completely confounded effects.   

3. Conduct a lack-of-fit test and, if required, augment the design again with two axial 

runs per active main effect in order to estimate the quadratic terms.   
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Note that the standard analysis method may have to be tailored to general classes 

of screening designs so that the most accurate analysis is performed.  An experimenter 

may even outline a specific strategy for each screening design under consideration.  The 

purpose is to make a realistic assessment of the total runs required across all experimental 

stages given a realization of the chance outcome of one of the polynomial response 

models.  That is, for a given screening design and response function, the experimenter 

needs to assess the required number of screening runs, center runs, fold over runs and 

axial runs.  The following sections present the cost model and the details of computing 

the expected cost for the end nodes of the decision tree.  It should be emphasized that the 

methodology is a general construct for evaluating any candidate set of screening designs 

in the presence of uncertainty about a wide variety of possible response models.   

5.3.1 The Experimental Cost Model 

The experimental cost model in the screening design selection methodology has 

three components: the cost of experimental resources; the cost of utilizing a model with 

inactive effects or omitted active effects; and the cost of utilizing a model with inaccurate 

estimates of the regression model coefficients.  The cost of experimental resources 

includes material, personnel and facility costs.  There are several possible methodologies 

for assessing the resource costs in a multi-stage experimental environment.  It is 

important to note here that much of the existing literature concerning cost-constrained 

designs uses the “cell” cost methodology as seen in Neuhardt, Bradley et al. (1978) and 

subsequent work.  In this traditional methodology, the specific combination of factor 

levels drives the resource cost.  However, suppose that the difference between the least 

expensive run and most expensive run was $500 and the average cost of an experiment 
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was $5000.  In this situation the number of runs in the experiment drives the resource 

cost.  Consider a second example where the cost to set up a stage of an experiment is 

$40,000 and the resources for each run average $500.  Here the number of stages in the 

experiment drives the resource cost.  The use of the expected cost methodology requires 

an experimenter to use a cost modeling strategy that best matches the unique 

circumstances of their particular experiment. 

The second source of design cost is the cost of producing a final model with 

incorrect model terms.  If inactive effects are included in the model, a type I model 

building error has occurred.  If active effects are not included in the model, a type II 

model building error has occurred.  There are costs associated with including inactive 

effects in a model or excluding active effects.  Examples of these costs include the costs 

of managing inactive factors, the cost of wasted resources when using a suboptimal 

model, and lost profits from producing a suboptimal product. 

The third source of design cost in the methodology is the cost of producing a final 

model with inaccurate estimates of the regression model coefficients  ̂.  The accuracy of 

an estimate  ̂  is determined both by the variance of random errors during the 

experiment, as well as the correlation between factor level settings of the independent 

variables.  Increasing the number of experiments in the design and minimizing 

correlation of all model matrix columns mitigates against these sources of estimation 

inaccuracy.  The costs associated with inaccurate estimates of  ̂ are similar to those for 

building an inaccurate model, i.e. the cost of wasted resources when using a suboptimal 

model and lost profits from producing an inferior product. 



149 

When an experimenter chooses a screening design, the final realization of the 

three sources of cost discussed above is determined in large part by the true nature of the 

system that generates the response data.  For example, given that one of the active effects 

is a two-factor interaction, a foldover design is often required when screening with a      

fractional factorial of resolution III or IV.  A full foldover experiment will double the cost 

of the total experiment.  However if the response model involves only main effects, the 

original      design is often sufficient to estimate the coefficients in the response 

function.   

5.3.2 Computing the Total Experimental Runs 

The expected cost screening design selection methodology has the flexibility to 

handle any experimental cost paradigm, whether it is based on run-to-run cost variation, 

experimental set-up costs or average run costs.  To simplify the presentation of the 

methodology it is assumed that the variation in run-to-run cost due to the change in factor 

levels is small relative to the cost of the resources to conduct one run.  This construct 

enables us to compute an average cost for an experimental run and convert the cost of an 

experiment from dollars to its number of runs.  For example, instead of saying an 

experiment costs $32,000, the cost of the experiment is said to be 16 runs, where the 

average run cost is $2,000.   

Given a response function, a candidate screening design and a standard 

experimental strategy, the number of experimental runs required is simply the sum of the 

number of runs in the screening design, the number of center runs, the number of fold 

over runs and the number of axial runs (or other appropriate type of design 

augmentation).  Notice that by assuming a standard experimental strategy the screening 
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design determines the value of all the variables in this sum.  Hence the number of total 

runs becomes deterministic once the screening design and the response function are 

fixed.  For example refer to Table 72 which shows the number of experimental runs 

required given the use of a      fractional factorial to investigate six factors and estimate 

terms in a full quadratic model with three main effects, one two-factor interaction and 

two quadratic terms.   

Table 72.  Run Total for 26-2 Experiment 
Experimental 
Run Type 

Number  
of Runs 

Screening 16 
Center Runs 4 
Fold Over 16 
Axial (Assuming 3 active ME) 6 
Total 42 

 
Using the standard analysis procedure from the previous section, the number of runs in 

the complete experimental process is 42. 

5.3.3 Computing the Cost of an Incorrect Model 

The second experimental cost under consideration is the cost of having an 

incorrect model.  This is defined as building a response functions with superfluous effects 

or omitting active effects in the model.  Extra terms in a model result in the problem of 

overfitting the response variable and omitting terms results in a model whose coefficients 

are biased by absent active terms.  The consequences of an inaccurate model include the 

opportunity costs of forgone revenue or cost savings that could have been realized had 

the experimenter built and used a better regression model.  These costs are different from 

experimental run resource costs in that they are not paid out by the testing organization.  

In the expected cost methodology these costs function as a penalty assessed against 
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designs which produce relatively inferior models.  A model that lacks active effects or 

includes inactive effects will be labeled as an incorrect model to distinguish it from an 

inaccurate model discussed in the next subsection.   

The methodology requires that the cost penalty for an incorrect model is in units 

of experimental runs, so one example of a reference incorrect model cost is the number of 

runs required to repeat the experiment in the future to determine the correct model.  This 

penalty could be the number of runs in the largest screening design in the set of candidate 

designs.   

The establishment of a reference cost has many advantages.  The experimenter 

has the flexibility to choose a number of runs above or below this value that best reflect 

the unique circumstances of the experiment.  Choosing a number of runs below the 

baseline implies that there is little opportunity cost from using a relatively inferior model 

and that a subsequent experiment to improve the model would not be required.  Selecting 

a number over the baseline implies that the opportunity costs associated with using an 

inaccurate model for a period of time are significant and should be added to the cost of 

performing an improved experiment in the future. 

The baseline cost of having an incorrect model does not depend on the screening 

design or the truth model.  However, the cost of an incorrect model can be multiplied by 

a term that represents the probability of an incorrect model given a combination of 

response function and screening design.  Let   be the cost penalty for an incorrect model 

in units of runs and let     be the probability that given truth model    an incorrect model 

will result from using screening design  .  Then the cost penalty for screening design   
given truth model   is      .   
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5.3.4 Computing the Cost of an Inaccurate Model 

The third experimental cost under consideration is the cost of an inaccurate 

model, defined as the costs incurred as the result of using a model with inaccurate 

estimates of the regression model coefficients.  As with the incorrect model cost, the 

inaccurate model cost represents an opportunity cost and must be in the units of 

experimental runs.  Again, a reference inaccurate cost penalty will be used as a decision 

making tool that facilitates the conversion of accuracy cost penalties from units of dollars 

to units of runs.   

The reference penalty makes all designs equivalent in terms of the average 

relative variance of the model coefficients and allows the experimenter to place a value 

on the lower average relative variance of the larger screening designs.  The relative 

variance allows us to isolate how the structure of the model matrix   affects the variance 

of  ̂ independent of the effect of the random error variance.  The vector of relative 

variances of the elements of  ̂ is the vector of diagonal elements of (   )  .  Since the 

relative variances depend only on    it is a useful diagnostic tool to compare the ability of 

screening designs to provide accurate estimates of  ̂.  The relative variance is not 

necessarily the same for every coefficient estimate in the regression model.  Since one 

design comparison metric is more convenient, the relative variance for every model term 

is averaged to produce the average relative variance of a design.   

The following is the procedure to compute the inaccurate model cost reference 

value for design   {       } given response model category   {       }.   
1. Create a specific response model   for every model category 
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2. Obtain the final model matrix     which includes all augmentation necessary to 

estimate the   terms in model   starting with screening design   
3. Let       be the relative variance of the  th term in the model with   terms 

constructed by using screening design   to analyze responses generated by response 

function  .  Compute       as the kth element of the diagonal of (       )   

4. For each design  , compute the average relative variance given truth model   as 

  ̅̅ ̅̅       ∑       
    

5. Determine the minimum average relative variance given truth model   as   ̅̅ ̅̅          {  ̅̅ ̅̅      ̅̅ ̅̅        ̅̅ ̅̅   } 
6. For each truth model  , augment design   using the D-optimality criteria until   ̅̅ ̅̅        ̅̅ ̅̅     , where   ̅̅ ̅̅     is the average relative variance of the augmented design      

7. Let     be the number of runs in     and      be the number of runs in     . 

Compute the inaccurate model cost reference value as               

The     reference value is more nuanced than simply using the difference in runs 

between a design   and the design which produced   ̅̅ ̅̅     .  A smaller design may have 

a correlation structure that is superior to that of a larger design and so it is more efficient 

in terms of reduction in the relative variance per number of additional runs.  In that case      would be smaller than the difference in runs between design   and the design whose 

average relative variance is equal to   ̅̅ ̅̅̅    .  Note that the actual experimental designs 

would not contain the augmentation runs used to calculate      but this process 
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establishes the reference value from which an experimenter can estimate the value of a 

smaller relative variance.   

The experimenter can multiply     by a quantity   to decrease or increase the 

reference inaccurate cost penalty.  For         this implies that the increased average 

relative variance of smaller designs has a smaller opportunity cost penalty than the cost of 

the additional runs required to achieve the minimum average relative variance.  

Conversely, setting     implies that the opportunity cost of using a less accurate 

model exceeds the cost of the additional runs required to achieve the minimum average 

relative variance.  The next subsection discusses how the three cost components are 

combined in an expected cost construct to identify a cost-optimal screening design from 

among a set of alternatives. 

5.3.5 Computing the Expected Cost  

The screening design selection expected cost methodology is as follows: 

1. Create a candidate set of   screening designs 

2. Create a set of   candidate response functions for each of the   model categories 

3. Establish a standard analysis procedure for each screening design   
4. For each combination of design   and model   determine the following:      = The number of screening experiments in design        = The number of center runs      = The number of fold over experiments       = The number of axial runs required to estimate quadratic effects 
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5. Let       be the cost of an incorrect model and      be the cost of an inaccurate-

model as calculated above.  Compute the total cost (in units of runs) for design   
given model   as     =( ∑         )         +      

6. Let     Probability that model   is the true response function,          .  

Compute the expected cost in units of runs for design   as      =∑ (          ) 

7. Identify the cost-optimal screening experiment as design   where        =     {     ,      ,…,      } 

A significant advantage to this approach is that the experimenter does not have to 

be precise about the estimates of the parameters   ,   and  .  Rather the experimenter 

can compute the cost-optimal screening experiment for every factorial combination of a 

discretized set of levels of these parameters.  Naturally, the combinations of    are 

restricted due to the fact that ∑         .  The output of this process will define regions 

of parameter settings where one screening design is cost-optimal.  Now the experimenter 

can decide which region of parameter settings correspond to his particular situation and 

also determine the sensitivity of the design choice to those assumptions.   

5.4 An Application of the Expected Cost Method  

The expected cost methodology is now demonstrated by employing it in a 

scenario where six factors are under investigation and a screening design must be 

selected from five alternatives.  Recall that to use the expected cost method the 

experimenter must create a candidate list of screening designs, create categories of 
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possible response function models and establish a standard analysis method.  As 

previously mentioned, this is a general methodology which can be applied to any 

candidate set of screening designs and set of potential response models.  The designs and 

response models chosen in this illustrative example are not intended to be taken as 

prescriptive recommendations but rather as a reference point for the reader to consider as 

they evaluate their own particular experimental situation.  The following screening design 

candidate set was chosen to accomplish the additional contribution of a comparison of 

traditional screening designs to designs introduced in the recent literature.  Evidence is 

provided that situations exist where it is advantageous to use the recently introduced 

definitive screening and no-confounding designs over the traditional      and Plackett-

Burman designs. 

The five screening designs chosen for this example are in Table 73.   

Table 73.  The Candidate Screening Designs 

Design Runs 
Plackett-Burman 12 
Definitive Screening 17 
No-confounding 16 
No-confounding 24 
26-2 fractional factorial 16 

 
Note that a D or I-optimal design was not included in the candidate list, although 

it is likely that many experimenters would choose to consider such a design.  Optimal 

designs using the D and I criteria were investigated but since a full 6-factor quadratic 

model has 28 terms, a trade-off had to be made between model-robustness and the 

number of design runs.  A candidate optimal design tended to be either too large to 

compete with the smaller designs, or lacked the model-robustness to compete with the 

larger designs.  The analysis indicated that since an optimal design is created based on an 
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assumed response model, a D or I-optimal design (when compared to the model-robust 

designs in this example) only had a minimum expected cost over a small portion of the 

model probability space.  Since D and I-optimal designs were in most cases dominated by 

the other designs in this example, they were omitted as incorporating them did not 

enhance the demonstration of the methodology and significantly increased the complexity 

of the results. 

A 24-run no-confounding design was selected for this example that had a value of  (  ) equal to the best published value for any 24-run two-level design with six balanced 

and orthogonal columns.  This was the alternative 24-run no-confounding design from 

Chapter 4 of this dissertation.  It is important to note that the 13-run definitive screening 

design for six factors was not used due to the presence of relatively high correlation 

values in its extremely complex alias structure.  The problem was mitigated by using a 

larger design: the 17-run definitive screening design for eight factors with two columns 

removed.  The complex alias structure was less of a problem for the 12-run Plackett-

Burman design for which the non-zero values in the alias matrix are only  1/3.  When 

center runs were added to the Plackett-Burman design, the degree of correlation between 

effects was not deleterious.  Four center runs were added to all of the candidate designs 

except the 17-run definitive screening design, which already incorporated a third level for 

each factor.   

The standard analysis procedure used for the Plackett-Burman and the no-

confounding designs was as follows: 

1. Use 2-stage forward stepwise regression with the AICc as the model evaluation 

criterion, considering all terms in a six-factor full quadratic model as potential terms 
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2. If any quadratic terms are significant then augment the design with two runs per 

active main effect using the I-optimality criteria 

3. Re-run the 2nd stage of the forward stepwise regression to obtain the effect estimates 

The analysis used for the definitive screening design was as follows: 

1. Estimate the effects using 2-stage forward stepwise regression with AICc as the 

model evaluation criterion.  Consider all terms in a six-factor full quadratic model as 

potential terms 

The standard analysis procedure used for the regular      factorial designs was as 

follows: 

1. Use 2-stage forward stepwise regression with the AICc as the model evaluation 

criterion, considering all terms in a six-factor full quadratic model as potential terms 

2. If confounded two-factor interactions are active, augment the design with 8-runs 

using the I-optimality criteria and re-run stage 2 of the forward stepwise regression 

3. If any quadratic terms are significant then augment the design with two runs per 

active main effect using the I-optimality criterion, specifying a full quadratic model in 

the active ME 

4. Re-run stage 2 of the forward stepwise regression and estimate the effects 

When choosing the number of model categories, the experimenter must assess the 

tradeoffs between cost estimation accuracy and the interpretability of the results.  Li, 

Sudarsanam et al. (2006) conducted a meta-analysis of published experiments involving a 

DOE methodology and reported that for the 113 combined experimental data sets, 41% of 

the potential ME were active and 11% of the potential 2FI were active.  According to 

these results, when considering six potential factors, it is expected that there are 2-3 
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active ME and 1 active 2FI.  Effect sparsity is another valid justification for assuming 

that there will not be a large number of terms in a model.  If an experimenter expects a 

model of at most 7 effects, it seems reasonable to categorize models based on the types of 

terms in the model (ME, 2FI, QE) rather than by the presence or absence of specific 

effects.  This categorization is even more reasonable if the alias structure of the screening 

design is similar within categories of effect types, as is the case with the Plackett-

Burman,     , no-confounding designs and definitive screening designs.  

Three regression models were chosen for this example: a model with 2-4 possible 

ME; a model involving 2-4 ME and up to 3 2FI; and a model involving 2-4 ME, up to 3 

2FI and up to 2 QE.  The advantage of using three model categories is that the results are 

easily visualized on a triangle simplex coordinate system where the axes represent the 

model category probabilities.  The disadvantage is that the results have less resolution, 

particularly with respect to the impact of incorrect and inaccurate model estimation 

penalties.  For example, there may be a lower probability of a type II model-building 

error if a screening design is used to estimate a model with two ME and one 2FI than if 

that design was used to estimate a model with four ME and three 2FI.   

The     term in the incorrect model penalty was computed via Monte Carlo 

simulation.  10,000 randomly generated response models were analyzed for each 

combination of screening design and response model category.  The responses used for 

the analysis were generated by randomly producing a polynomial equation involving a 

random number of 2-4 ME, 0-3 2FI and 0-2 QE.  The coefficients of the ME were 

realizations of a random variable   which was generated via the equation            , 

with    Uniform(0,1).  The equation produced random ME coefficient values in the 
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range         .  The coefficients of the 2FI were realizations of a random variable   which was generated via the equation            , with    Uniform(0,0.56).  The 

equation produced random 2FI coefficient values in the range        .  The 

coefficients of the QE were realizations of a random variable   which was generated via 

the equation            , with    Uniform(0,1).  The equation produced random QE 

coefficient values in the range         .  The sign of the coefficient was determined 

by a binomial random variable with p = 0.5.  The random error term for each response 

was a standard normal random variable and hence the coefficients were specified to be 

multiples of the random error variance     .  At each of the 10,000 iterations, a 

response column was generated by plugging the factor level combinations for each design 

row into the randomly generated polynomial equation and adding the random error term 

to the computed response.   

The inaccurate model penalty was computed as discussed in the previous section.  

The only assumption made was that an average of six additional runs would be required 

to estimate quadratic effects when the random responses came from the quadratic 

response model category.  Table 74 summarizes the runs in each cost category for every 

design and response model combination.    
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Table 74.  Experimental Cost (in Runs) by Design and Model 
Design Truth 

Model 
Screening 
Runs 

Center 
Runs 

Fold 
over 
Runs 

Augment 
Runs 

Incorrect 
Model 
Probability     

Inaccurate 
Model  
Reference      

Total 
Runs 

12-Run 
Plackett-
Burman 

ME 12 4 0 0 0.2354 12 28 

ME+2FI 12 4 0 0 0.3909 11 27 

Quadratic 12 4 0 6 0.6028 3 25 

26-2 

Fractional 
Factorial 

ME 16 4 0 0 0.3339 8 28 

ME+2FI 16 4 8 0 0.2812 0 28 

Quadratic 16 4 8 6 0.4035 0 34 

17-Run 
Definitive 
Screening 

ME 17 0 0 0 0.3621 11 28 

ME+2FI 17 0 0 0 0.2908 10 27 

Quadratic 17 0 0 0 0.4019 11 28 

16-Run No-
confounding 
Design 

ME 16 4 0 0 0.3129 8 28 

ME+2FI 16 4 0 0 0.3106 7 27 

Quadratic 16 4 0 6 0.4729 1 27 

24-Run No-
confounding 
Design 

ME 24 4 0 0 0.3541 0 28 

ME+2FI 24 4 0 0 0.2037 2 30 

Quadratic 24 4 0 6 0.3389 1 35 

 
The final step in the expected cost method was to determine which candidate 

screening design had the lowest expected cost given the possible combinations of the 

parameters   ,   and  .  Recall that   is the cost penalty for an incorrect model and   is 

the multiple of the inaccurate model cost reference value that is used to calculate the 

inaccurate model penalty.     was defined as follows:    – The probability of a response model with only main effects    – The probability of a response model with main effects and two-factor 

interactions    – The probability of a full quadratic model response model 

 

A simplex coordinate system for three components was used to plot the results for 

each of the settings of   , given fixed values of   and  .  This coordinate system is often 

used for mixture experiments and other situations where the coordinate axes correspond 
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to three variables whose values always sum to one.  It was practical to discretize the 

parameter values to an appropriate level of resolution in the following way:    ranged 

from 0 to 1 in increments of 0.02;   took values 0, 34 and 68; and   took values of 0.00, 

1.00, and 2.00.   

Figure 39 shows the screening design with the lowest expected cost for all 

possible combinations of the discretized values of    when     and          The 

data was interpolated for probability combinations between the discretized values so that 

the results could be presented as continuous regions in the figures.  The legend for the 

figures is interpreted as follows: “DS” is the definitive screening design; “P-B” is the 12-

run Plackett-Burman design; “NC(16)” is the 16-run no-confounding design; “NC(24)” is 

the 24-run no-confounding design; “    ” is the      fractional factorial design.  Figure 

40-Figure 47 show the screening design with the lowest expected cost for all possible 

combinations of the discretized values of    for the remaining combinations of the 

discretized values of   and  . 



163 

 
Figure 39.  Results with     and   = 0.00 
 

 
Figure 40.  Results with     and   = 1.00 
 



164 

 
Figure 41.  Results with     and   = 2.00 
 

 
Figure 42.  Results with      and   = 0.00 
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Figure 43.  Results with      and   = 1.00 
 

 
Figure 44.  Results with      and   = 2.00 
 



166 

 
Figure 45.  Results with      and   = 0.00 
 

 
Figure 46.  Results with      and   = 1.00 
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Figure 47.  Results with      and   = 2.00 

The results in Figure 39 - Figure 47 provide valuable information to help an 

experimenter choose the most cost-effective design.  Suppose an experimenter decides 

that the cost penalties for an incorrect or inaccurate model are negligible and there is little 

a priori knowledge about the type of model (ME, ME+2FI, quadratic) to be fit.  By 

examining Figure 1 they can conclude that since the area corresponding to the definitive 

screening design is significantly greater than the Plackett-Burman design, the definitive 

screening design has the highest probability of having the lowest overall experimental 

cost.  However, if there is very strong a priori evidence that there are no quadratic terms 

in the model then Figure 1 shows that a Plackett-Burman design is most likely to have the 

lowest cost. 

Now suppose the experimenter decides that the inaccurate model cost is 

equivalent to the cost of running the extra experiments required to equal the lowest 

average relative variance of the coefficients among the alternative designs.  Also it is 

decided the incorrect model penalty is equivalent to the cost of re-running the largest 
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alternative experiment.  Then by referring to Figure 5 they can conclude that, under the 

assumption of equal probability for any model (         {     }) or the assumption 

that the probability of a ME-only model is less than 30% (      )  the definitive 

screening design is most likely to have the lowest cost.  If the probability of a ME-only 

model is above 50% (      ) then the Plackett-Burman design is most likely to have 

the lowest cost.  If            and if the probability of a ME and 2FI model is 

higher than the quadratic model, then the 16-run no-confounding design is most likely to 

have the lowest cost.  For a very small set of circumstances, i.e. (          ) 
and (     ), the 24-run no-confounding design is expected to have the lowest cost. 

5.5 Conclusion 

This chapter has introduced an expected cost methodology to facilitate the 

selection of a screening design from a set of candidate experimental designs.  The 

methodology gives an experimenter insight into which screening design will have the 

lowest expected cost given assumptions about the current experimental situation, i.e. the 

experimental resource costs and the opportunity cost of using an inferior regression 

model.  Just as importantly, the methodology provides a sensitivity analysis for the 

optimal design choice vis-à-vis these assumptions.  This methodology is a solution to a 

design selection problem that has become more challenging due to the large number of 

screening designs that have been introduced in the past decade.  

The screening design selection example in this chapter demonstrates that one 

particular screening design will not have the lowest expected cost in all experimental 

circumstances.  When the opportunity cost for an inaccurate model is relatively low, the 

small nonregular designs such as the Plackett-Burman and the definitive screening design 
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have the lowest expected cost.  This is largely because an experimenter can often save 

considerable experimental resources by using a model building technique, such as 

stepwise regression, to obtain unambiguous effect estimates without augmenting the 

screening design.   

Designs with fewer runs become less cost effective as the opportunity cost of 

using an inferior model increases.  However, it is not simply the largest experiment, in 

terms of runs, which has the lowest expected cost.  As was seen in Figure 41, the design 

with the lowest expected cost changed depending on which response model had a 

probability greater than 50%. 

When an experimenter has the data to make reasonably accurate estimates of the 

probability distribution of potential response model categories, it is advantageous to 

increase the number of screening designs in the candidate set.  Considering an additional 

screening design increases the granularity of the analysis.  In the worst case nothing in 

the analysis changes, but in the best case the experimenter finds a design which, for his 

particular experimental situation, has a lower expected cost than the designs currently in 

the candidate set.  For example, assume two screening designs are considered in the 

candidate set.  Then the probability space (shown by the simplex coordinate system in the 

previous example) will be divided into either one or two regions, each representing a 

design with minimum expected cost.  Now suppose a third design is considered.  Either 

the probability space is divided in the previous way, or the new design has the minimum 

expected cost for some region in the probability space.  The minimum expected cost for 

the new region will be lower than it was when only two screening designs were 

considered. 



170 

There are several ways future research could augment the concepts in this chapter.  

The empirical simulation study used to estimate    , the incorrect model penalty term, 

could be modified to study how alternative analysis methods affect the     estimates.  

Another avenue for research involves the development of a more complex experimental 

resource cost estimation model.  The cost model used in this research was based on the 

number of experimental runs, but a more sophisticated model that simultaneously 

includes set-up costs and factor combination costs (cell costs) would give more resolution 

to the expected cost estimate.  Finally, it might be beneficial to explore a simulation 

method to estimate the inaccurate model penalty rather than relying on the relative 

variance of the effect coefficients. 
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Chapter 6 

CONCLUSION 

The analysis of the catalog of   (       ) and the   (       ) using Monte 

Carlo simulation has been an effective technique in identifying the optimal no-

confounding designs and characterizing their model-fitting capabilities.  The empirical 

analysis removed much of the confusion caused by the conflicting ranks assigned to each 

design by the multitude of commonly used design ranking criteria.  Furthermore, the 

simulation results provided a detailed performance analysis of the designs across 

response models comprised of varying numbers of ME and 2FI.   

The research in this dissertation has shown that 20 run no-confounding screening 

designs are very effective when the response model is comprised of 1-4 ME and 0-1 2FI.  

These designs will identify at least the active effects over 95% of the time, even when 

experimenting with as many as 12 factors.  In the simulations with models of four ME 

and one 2FI, the 6-factor design detected at least the active main effects 96% of the time 

and there were no variable selection errors 75% of the time.  In the best case scenario 

with two ME and one 2FI, the percentage at least correct and the percentage correct was 

100% and 99% respectively.  The 12-factor design detected at least the active main 

effects 95% of the time and there were no variable selection errors 72% of the time in the 

simulations with four ME and one 2FI.  In the best case scenario with two ME and one 

2FI, the percentage at least correct and the percentage correct was 100% and 91% 

respectively.   

When there was more than one active 2FI in the response model, the analysis 

procedure had a difficult time differentiating between potential models.  Consequently 
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the type II error rate went up significantly.  Thus an experimenter who expects the final 

model to contain more than five terms should consider running more experiments. 

The empirical analysis of the 6-factor 20-run OAs also showed that an 

experimenter can make trade-offs between type II errors and type I errors by selecting the 

appropriate analysis method.  If an experimental budget significantly constrains 

additional experimentation beyond the screening design, there is a relatively high chance 

of successfully fitting the correct model using 2-stage stepwise regression and AICc.  

However, if the no-confounding design is truly used as a screening design in a 

multi-stage experiment, the type II error rate can be reduced by using a 1-stage mixed 

stepwise approach.   

Finally, a high rank in terms of G-aberration is common among the selected no-

confounding designs.  The 6,8,10,11, and 12-factor no-confounding designs are ranked 1st 

in G-aberration, the 7-factor design is ranked 3rd, and the 9-factor design is ranked 7th.  A 

conclusion that can be drawn is that minimizing the aliasing of ME with 2FI greatly 

improves model fitting results and should be a primary consideration in designs.  

However, since many designs are approximately equivalent in terms of G-aberration, it is 

important to consider multiple factors and find designs which belong to the Pareto 

efficient set of OAs. 

The empirical results from the analysis of the 24-run designs show that adding 

four additional runs significantly improves the model fitting capability over the 20-run 

designs.  The simulation output indicated that no-confounding designs make outstanding 

screening designs.  When there were between two and five ME and zero to two 2FI, the 

24-run designs detected all active effects over 94% of the time.  Furthermore, the worst 



173 

case for identifying the correct model was 45%.  These results show that no-confounding 

designs are an extremely cost-effective screening design option. 

In terms of the fewest type I and type II model building errors, the OAs of 

strength three with minimum G-aberration were the best no-confounding designs by a 

significant margin.  Furthermore the simulation metrics for the percent at least correct 

were almost identical no matter how many design columns (investigated factors) there 

were.  It appears that having ME uncorrelated with other ME and 2FI provides a 

significant advantage in reducing type I and type II model building errors, at least when 

2-stage stepwise regression is the analysis method.   

Even though it was not possible to exhaustively search the entire space of 24-run 

OAs, the data gives a strong indication there does not exist a design which performs 

better than the minimum G-aberration no-confounding designs of strength three.  The 

only downside to these designs was their inability to estimate the 6-factor full model in 

any 6-factor projection, i.e. for these designs p6 =0.  Therefore if an experimenter expects 

to fit a large model of more than five ME and two 2FI, other screening design options 

may be more effective.  

The algorithm was able to find alternative designs for all cases of 6-12 factors 

with p6 =1.  Interestingly, the simulation results for these algorithmically created designs 

were inferior to the minimum G-aberration designs.  The alternative designs however, 

were superior to the baseline PEC designs, both in performance and in the magnitude of 

p6.   

Both column exchange algorithms were effective at identifying good OAs.  The 

Generating-Matrix Column Exchange Algorithm was able to find designs superior to 
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most of the baseline designs by investigating non-orthogonal designs.  No designs were 

discovered that provided a compelling reason to use unbalanced columns since effective 

balanced-column alternatives were always available. 

The screening design selection methodology in Chapter 5 proved to be an 

important tool in choosing between designs.  The example of the methodology 

demonstrated that one particular screening design option will not have the lowest 

expected cost in all experimental circumstances.  When the opportunity cost for an 

inaccurate model is relatively low, the small nonregular designs such as the Plackett-

Burman and the definitive screening design have the lowest expected cost.  This is 

largely because an experimenter can often save considerable experimental resources by 

using an appropriate model building technique, such as stepwise regression, to obtain 

unambiguous effect estimates without augmenting the screening design.  Designs with 

fewer runs become less cost effective as the opportunity cost of using an inferior model 

increases.  However, it is not simply the largest experiment, in terms of runs, which has 

the lowest expected cost.   

When an experimenter has the data to make reasonably accurate estimates of the 

probability distribution of potential response model categories, it is advantageous to 

increase the number of screening designs in the candidate set.  Considering an additional 

screening design increases the granularity of the analysis.  In the worst case nothing in 

the analysis changes, but in the best case the experimenter finds a design which, for that 

particular experimental environment, has a lower expected cost than the designs currently 

in the candidate set.   
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There are several ways the research in this dissertation could be extended.  For 

designs with more than 12 factor columns, no-confounding designs of 28 and 32 runs 

may be required to achieve satisfactory model-fitting performance.  Using simulations to 

characterize the performance of these larger designs would help experimenters weigh the 

risks of investigating more than 12 factors with only 32 runs.  It would be very interesting 

to explore under what conditions a 32-run OA of strength three would be preferable to a      fractional factorial of similar dimension. 

For both the 20-run and 24-run designs, perhaps design performance could be 

better differentiated and characterized by using other model fitting techniques, such as 

those based on the Dantzig selector.  Designs that appear similar in performance using 

2-stage stepwise regression may in fact differ more significantly when fitting models with 

a Dantzig selector.  It may also be that other analysis techniques could take advantage of 

aspects of non-orthogonal designs.  Perhaps using a different analysis method, the 

non-orthogonal designs might perform better than the OAs of strength three. 

The expected cost screening design selection methodology could be expanded and 

improved in many ways.  The empirical simulation used to estimate the incorrect model 

penalty term could be modified to study how alternative analysis methods affect the 

penalty estimates.  Another avenue for research involves the development of a more 

complex experimental resource-cost estimation model.  The cost model used in this 

research was based on the number of experimental runs, but a more sophisticated model 

that simultaneously includes set-up costs and factor combination costs (cell costs) would 

give more resolution to the expected cost estimate.  Finally, it might be beneficial to 
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explore a simulation method to estimate the inaccurate model penalty rather than relying 

on the relative variance of the effect coefficients. 

  



177 

REFERENCES 

Ai, M.-Y. and R.-C. Zhang (2004). "Projection Justification of Generalized Minimum 
Aberration for Asymmetrical Fractional Factorial Designs." Metrika 60: 279-285. 

Akaike, H. (1974). "A new look at the statistical model identification." IEEE 
Transactions on Automatic Control 19(6): 716-723. 

Angelopoulos, P., H. Evangelaras, et al. (2007). "An effective step-down algorithm for 
the construction and the identification of nonisomorphic orthogonal arrays." 
Metrika 66(2): 139-149. 

Belcher-Novosad, S. and D. Ingram (2003). "Identifying Minimum G Aberration Designs 
from Hadamard Matrices of Order 28." Journal of the Arkansas Academy of 
Science 57: 202-205. 

Booth, K. H. V. and D. R. Cox (1962). "Some systematic supersaturated designs." 

Technometrics 4: 489–495. 

Box, G. and J. Tyssedal (1996). "Projective properties of certain orthogonal arrays." 
Biometrika 83(4): 950-955. 

Box, G. E. P. and J. S. Hunter (1961). "The 2k-p Fractional Factorial Designs, Part I." 
Technometrics 3: 311-352. 

Box, G. E. P. and J. S. Hunter (1961). "The 2k-p Fractional Factorial Designs, Part II." 

Technometrics 3: 449–458. 

Bulutoglu, D. A. and C. S. Cheng (2003). "Hidden projection properties of some 
nonregular fractional factorial designs and their applications." Annals of Statistics 
31(3): 1012-1026. 

Bulutoglu, D. A. and F. Margot (2008). "Classification of orthogonal arrays by integer 
programming." Journal of Statistical Planning and Inference 138(3): 654-666. 

Butler, N. A. (2003). "Some Theory for Constructing Minimum Aberration Fractional 
Factorial Designs." Biometrika 90(1): 233-238. 

Butler, N. A. (2004). "Minimum G2-Aberration Properties of Two-Level Foldover 
Designs." Statistics and Probability Letters 67: 121-132. 

Butler, N. A. (2005). "Generalised Minimum Aberration Construction Results for 
Symmetrical Orthogonal Arrays." Biometrika 92(2): 485-491. 

Candes, E. and T. Tao (2007). "The Dantzig Selector: Statistical Estimation When p is 
Much Larger than n." The Annals of Statistics 35(6): 2313-2351. 



178 

Cheng, C.-S. (1980). "Orthogonal Arrays with Variable Numbers of Symbols." The 
Annals of Statistics 8(2): 447-453. 

Cheng, C.-S. (1997). "E(s2)-optimal supersaturated designs." Statistica Sinica 7: 929-
940. 

Cheng, C.-S. (2006). Projection Properties of Factorial Designs for Factor Screening. 
Screening. A. Dean and S. Lewis, Springer New York: 156-168. 

Cheng, C. S. (1995). "Some projection properties of orthogonal arrays." Annals of 
Statistics 23(4): 1223-1233. 

Cheng, C. S. (1998). "Some hidden projection properties of orthogonal arrays with 
strength three." Biometrika 85(2): 491-495. 

Cheng, S. W. and C. F. J. Wu (2001). "Factor screening and response surface 
exploration." Statistica Sinica 11(3): 553-580. 

Clemen, R. T. and T. Reilly (2001). Making Hard Decisions with Decision Tools. 
Belmont, CA, Duxbury Press. 

Deng, L.-Y., Y. Li, et al. (2000). "Catalogue of small runs nonregular designs from 
hadamard matrices with generalized minimum aberration." Communications in 
Statistics - Theory and Methods 29(5-6): 1379-1395. 

Deng, L. Y. and B. X. Tang (1999). "Generalized resolution and minimum aberration 
criteria for Plackett-Burman and other nonregular factorial designs." Statistica 
Sinica 9(4): 1071-1082. 

Deng, L. Y. and B. X. Tang (2002). "Design selection and classification for Hadamard 
matrices using generalized minimum aberration criteria." Technometrics 44(2): 
173-184. 

Efron, B., T. Hastie, et al. (2004). "Least Angle Regression." The Annals of Statistics 
32(2): 451-495. 

Evangelaras, H., C. Koukouvinos, et al. (2007). "Further Contributions to Nonisomorphic 
Two Level Orthogonal Arrays." Journal of Statistical Planning and Inference 137: 
2080-2086. 

Fang, K.-T., A. Zhang, et al. (2007). "An Effective Algorithm for Generation of Factorial 
Designs with Generalized Minimum Aberration." Journal of Complexity 23: 740-
751. 

Fries, A. and W. G. Hunter (1980). "Minimum Aberration 2k-p Designs." Technometrics 
22(4): 601-608. 



179 

Hall, M. J. (1961). Hadamard matrix of order 16. Jet Propulsion Laboratory Research 

Summary: 21–26. 

Hamada, M. and C. F. J. Wu (1992). "Analyzing Designed Experiments with Complex 
Aliasing." Journal of Quality Technology 24: 30-37. 

Hedayat, A., N. J. A. Sloane, et al. (1999). Orthogonal arrays: theory and applications, 
Springer Verlag. 

Hurvich, C. M. and C.-L. Tsai (1989). "Regression and Time Series Model Selection in 
Small Samples." Biometrika 76: 297-330. 

Ingram, D. (2000). The Construction of Generalized Minimum Aberration Designs by 
Efficient Algorithm. Ph.D. Dissertation, University of Memphis. 

Ingram, D. and B. Tang (2005). "Minimum G Aberration Design Construction and 
Design Tables for 24 Runs." Journal of quality technology 37(2): 101-114. 

Johnson, M. E. and B. Jones (2010). "Classical Design Structure of Orthogonal Designs 
with Six to Eight Factors and Sixteen Runs." Quality and Reliability Engineering 
International 27: 61-70. 

Johnson, M. E. and C. J. Nachtsheim (1983). "Some Guidelines for Constructing Exact 
D-Optimal Designs on Convex Design Spaces." Technometrics 25(3): 271-277. 

Jones, B. and D. C. Montgomery (2010). "Alternatives to Resolution IV Screening 
Designs in 16 Runs." International Journal of Experimental Design and Process 
Optimisation 1(4): 285-295. 

Jones, B. and C. Nachtsheim (2011). "A Class of Three-Level Designs for Definitive 
Screening in the Presence of Second-Order Effects." Journal of Quality 
Technology 43(1): 1-15. 

Li, W. (2006). Screening Designs for Model Selection. Screening. A. Dean and S. Lewis, 
Springer New York: 207-234. 

Li, W. and C. Nachtsheim (2000). "Model-Robust Factorial Designs." Technometrics 42: 
345-352. 

Li, W. and C. F. J. Wu (1997). "Columnwise-Pairwise Algorithms with Applications to 
the Construction of Supersaturated Designs." Technometrics 39(2): 171-179. 

Li, X. A., N. Sudarsanam, et al. (2006). "Regularities in data from factorial experiments." 
Complexity 11(5): 32-45. 

Li, Y. F., L. Y. Deng, et al. (2004). "Design catalog based on minimum G-aberration." 
Journal of Statistical Planning and Inference 124(1): 219-230. 



180 

Lin, C. D., R. R. Sitter, et al. (2012). "Creating catalogues of two-level nonregular 
fractional factorial designs based on the criteria of generalized aberration." 
Journal of Statistical Planning and Inference 142(2): 445-456. 

Lin, D. K. J. (1993). "A New Class of Supersaturated Designs." Technometrics 35(1): 28-
31. 

Lin, D. K. J. (1995). "Generating Systematic Supersaturated Designs." Technometrics 
37(2): 213-225. 

Lin, D. K. J. and N. P. Draper (1992). "Projection Properties of Plackett and Burman 
Designs." Technometrics 34: 423-428. 

Liu, M. and R. Zhang (2000). "Construction of E(s2) Optimal Supersaturated Designs 
Using Cyclic BIBDs." Journal of Statistical Planning and Inference 91: 139-150. 

Loeppky, J. L., R. R. Sitter, et al. (2007). "Nonregular Designs With Desirable Projection 

Properties." Technometrics 49: 454–466. 

Lu, L., C. M. Anderson-Cook, et al. (2011). "Optimization of Designed Experiments 
Based on Multiple Criteria Utilizing a Pareto Frontier." Technometrics 53(4): 
353-365. 

Ma, C.-X. and K.-T. Fang (2001). "A Note on Generalized Aberration in Factorial 
Designs." Metrika 53(85-93): 85. 

Marley, C. J. and D. C. Woods (2010). "A Comparison of Design and Model Selection 
Methods for Supersaturated Experiments." Computational Statistics and Data 
Analysis 54: 3158-3167. 

Montgomery, D. C. (2012). Design and Analysis of Experiments. Hoboken, New Jersey, 
Wiley. 

Mount-Campbell, C. A. and J. B. Neuhardt (1980). "Selecting Cost-Optimal Main-Effect 
Fractions of 3n Factorials." AIIE  Transactions 12: 80-86. 

Mount-Campbell, C. A. and J. B. Neuhardt (1982). "Selection of Cost-Optimal Fractional 
Factorials, 3m-r 2n-s Series." TIMS/Studies in the Management Sciences: 
Optimization in Statistics 19: 221-231. 

Myers, R. H., D. C. Montgomery, et al. (2009). Response Surface Methodology: Process 
and Product Optimization Using Designed Experiments. Hoboken, NJ, Wiley. 

Neuhardt, J. B., H. E. Bradley, et al. (1973). "Computational Results in Selecting Multi-
Factor Experimental Arrangements." Journal of the American Statistical 
Association 68: 608-611. 



181 

Neuhardt, J. B., H. E. Bradley, et al. (1978). "A Dynamic Program for Designing 
Factorial Experiments with Budget Constraints." AIIE  Transactions 10(2): 125-
130. 

Neuhardt, J. B., H. E. Bradley, et al. (1978). "Selection of Cost-Optimal 2k-p Fractional 

Factorials." Communications in Statistics – Simulation and Computation 7(4): 
369-383. 

Nguyen, N.-K. (1996). "An Algorithmic Approach to Constructing Supersaturated 
Designs." Technometrics 38(1): 69-73. 

Park, Y., D. C. Montgomery, et al. (2006). "Cost-constrained G-efficient Response 
Surface Designs for Cuboidal Regions." Quality and Reliability Engineering 
International 22(2): 121-139. 

Pignatiello, J. J. (1985). "A Minimum Cost Approach for Finding Fractional Factorials." 
IIE Transactions 17(3): 212-218. 

Plackett, R. L. and J. P. Burman (1946). "The Design of Optimum Multifactorial 

Experiments." Biometrika 33(4): 305–325. 

Rafajlowicz, E. (1989). "Minimum Cost Experimental Design with a Prescribed 
Information Matrix." Theory of Probability and its Applications 34(2): 367-370. 

Rao, C. R. (1947). "Factorial Experiments Derivable from Combinatorial Arrangements 
of Arrays." Supplement to the Journal of the Royal Statistical Society 9(1): 128-
139. 

Schoen, E. D. (2010). "Optimum Designs Versus Orthogonal Arrays for Main Effects 
and Two-Factor Interactions." Journal of quality technology 42(2): 197-208. 

Schoen, E. D., P. T. Eendebak, et al. (2010). "Complete Enumeration of Pure-Level and 
Mixed-Level Orthogonal Arrays." Journal of Combinatorial Designs 18(6): 488-
488. 

Schoen, E. D. and R. W. Mee (2012). "Two-level designs of strength 3 and up to 48 
runs." Journal of the Royal Statistical Society Series C-Applied Statistics 61: 163-
174. 

Shinde, S. (2012). Analysis Methods for Nonregular Fractional Factorial Designs. Ph.D. 
Dissertation, Arizona State University. 

Sloane, N. J. A. (2013). "A Library of Hadamard Matrices."   Retrieved 10 May, 2013, 
from http://www2.research.att.com/~njas/hadamard/. 

http://www2.research.att.com/~njas/hadamard/


182 

Smucker, B. J., E. del Castillo, et al. (2012). "Model-robust two-level designs using 
coordinate exchange algorithms and a maximin criterion." Technometrics 54(4): 
367-375. 

Stufken, J. and B. Tang (2007). "Complete Enumeration of Two-Level Orthogonal 
Arrays of Strength d with d+2 Constraints." The Annals of Statistics 35(2): 793-
814. 

Sun, D. and C. Wu (1993). J. Statistical Properties of Hadamard Matrices of Order 
16//Kuo W. Quality Through Engineering Design, Elsevier Science Publishers. 

Sun, D. X. (1993). Estimation Capacity and Related Topics in Experimental Design, 
University of Waterloo. 

Sun, D. X., W. Li, et al. (2002). An Algorithm for Sequentially Constructing Non-
Isomorphic Orthogonal Designs and Its Applications. Technical Report 
SUNYSB-AMS-02-13, State University of New York at Stony Brook, Dept. of 
Applied Mathematics and Statistics. 

Tack, L. and M. Vandebroek (2001). "(Dt,C)-optimal run orders." Journal of Statistical 

Planning and Inference 98(1–2): 293-310. 

Tack, L. and M. Vandebroek (2002). "Trend-resistant and cost-efficient block designs 
with fixed or random block effects." Journal of quality technology 34(4): 422-
436. 

Tack, L. and M. Vandebroek (2004). "Budget constrained run orders in optimum design." 
Journal of Statistical Planning and Inference 124(1): 231-249. 

Tack, L. and M. Vandebroek (2004). "Trend-resistant and cost-efficient cross-over 
designs for mixed models." Computational Statistics & Data Analysis 46(4): 721-
746. 

Tang, B. and L.-Y. Deng (1999). "Minimum G2-Aberration for Nonregular Fractional 
Factorial Designs." The Annals of Statistics 27(6): 1914-1926. 

Tang, B. and L.-Y. Deng (2003). "Construction of Generalized Minimum Aberration 
Designs of 3,4 and 5 Factors." Journal of Statistical Planning and Inference 113: 
335-340. 

Tang, B. and C. F. J. Wu (1997). "A Method for Constructing Supersaturated Designs 
and its Es2 Optimality." The Canadian Journal of Statistics 25(2): 191-201. 

Tang, B. X. (2001). "Theory of J-characteristics for fractional factorial designs and 
projection justification of minimum G(2)-aberration." Biometrika 88(2): 401-407. 



183 

Tang, B. X. and L. Y. Deng (1999). "Minimum G(2)-aberration for nonregular fractional 
factorial designs." Annals of Statistics 27(6): 1914-1926. 

Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso." Journal of the 
Royal Statistical Society. Series B (Methodological) 58(1): 267-288. 

Tibshirani, R. (2011). "Regression Shrinkage and Selection Via the Lasso: A 
Retrospective." Journal of the Royal Statistical Society, Ser B 73(3): 273-282. 

Tyssedal, J. and O. Samset (1997). Analysis of the 12-run Plackett-Burman design, The 
Norwegian University of Science and Technology. 

Wang, J. C. and C. F. J. Wu (1995). "A Hidden Projection Property of Plackett-Burman 
and Related Designs." Statistica Sinica 5: 235-250. 

Wu, C. F. J. (1993). "Construction of Supersaturated Designs Through Partially Aliased 
Interactions." Biometrika 80(3): 661-669. 

Xu, H. (2003). "Minimum moment aberration for nonregular designs and supersaturated 
designs." Statistica Sinica 13: 691-708. 

Xu, H. and C. F. J. Wu (2001). "Generalized Minimum Aberration for Assymetrical 
Fractional Factorial Designs." The Annals of Statistics 29(2): 549-560. 

Xu, H. Q. and L. Y. Deng (2005). "Moment aberration projection for nonregular 
fractional factorial designs." Technometrics 47(2): 121-131. 

Zhang, Y., W. Li, et al. (2011). "Orthogonal Arrays Obtained by Generalized  Difference 
Matrices with g Levels." Science China Mathematics 54(1): 133-143. 

Zhao, P. and B. Yu (2006). "On Model Selection Consistency of Lasso." Journal of 
Machine Learning Research 7: 2541-2563. 

 



184 

APPENDIX A  

20-RUN NO-CONFOUNDING DESIGNS  

 

  



185 

The 20-run No-confounding Design Matrices 

 
Table 75.  OA(20;26;2) #74 

A B C D E F 
-1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 
-1 -1 -1 1 1 -1 
-1 -1 1 -1 1 -1 
-1 -1 1 1 -1 1 
-1 1 -1 -1 1 -1 
-1 1 -1 1 -1 1 
-1 1 1 -1 1 1 
-1 1 1 1 -1 -1 
-1 1 1 1 1 1 
1 -1 -1 -1 1 1 
1 -1 -1 1 1 -1 
1 -1 1 -1 -1 1 
1 -1 1 1 -1 -1 
1 -1 1 1 1 1 
1 1 -1 -1 -1 1 
1 1 -1 1 -1 -1 
1 1 -1 1 1 1 
1 1 1 -1 -1 -1 
1 1 1 -1 1 -1 
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Table 76.  OA(20;27;2) #457 
A B C D E F G 
-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 1 
-1 -1 -1 -1 1 1 -1 
-1 -1 1 1 -1 -1 -1 
-1 -1 1 1 1 1 1 
-1 1 -1 1 -1 1 1 
-1 1 -1 1 1 -1 -1 
-1 1 1 -1 -1 1 1 
-1 1 1 -1 1 -1 1 
-1 1 1 1 1 1 -1 
1 -1 -1 1 -1 1 1 
1 -1 -1 1 1 -1 1 
1 -1 1 -1 -1 1 -1 
1 -1 1 -1 1 1 1 
1 -1 1 1 1 -1 -1 
1 1 -1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 
1 1 -1 1 -1 1 -1 
1 1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 1 

 
Table 77.  OA(20;28;2) #1599 

A B C D E F G H 
-1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 1 1 
-1 -1 -1 -1 1 1 -1 1 
-1 -1 1 1 -1 -1 -1 -1 
-1 -1 1 1 1 1 1 1 
-1 1 -1 1 -1 1 1 -1 
-1 1 -1 1 1 -1 -1 1 
-1 1 1 -1 -1 1 1 1 
-1 1 1 -1 1 -1 1 -1 
-1 1 1 1 1 1 -1 -1 
1 -1 -1 1 -1 1 1 -1 
1 -1 -1 1 1 -1 1 -1 
1 -1 1 -1 -1 1 -1 1 
1 -1 1 -1 1 1 1 -1 
1 -1 1 1 1 -1 -1 1 
1 1 -1 -1 1 -1 1 1 
1 1 -1 -1 1 1 -1 -1 
1 1 -1 1 -1 1 -1 1 
1 1 1 -1 -1 -1 -1 -1 
1 1 1 1 -1 -1 1 1 
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Table 78.  OA(20;29;2) #2286 
A B C D E F G H I 
-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 1 1 1 
-1 -1 -1 -1 1 1 -1 -1 1 
-1 -1 -1 1 -1 1 1 1 -1 
-1 -1 1 1 1 -1 -1 1 -1 
-1 1 -1 1 1 -1 1 -1 1 
-1 1 1 -1 -1 1 -1 1 1 
-1 1 1 -1 1 -1 1 -1 -1 
-1 1 1 1 -1 1 -1 -1 -1 
-1 1 1 1 1 1 1 1 1 
1 -1 -1 1 1 1 1 -1 -1 
1 -1 1 -1 -1 1 1 -1 1 
1 -1 1 -1 1 1 -1 1 -1 
1 -1 1 1 -1 -1 1 1 1 
1 -1 1 1 1 -1 -1 -1 1 
1 1 -1 -1 1 -1 -1 1 1 
1 1 -1 -1 1 1 1 1 -1 
1 1 -1 1 -1 -1 -1 1 -1 
1 1 -1 1 -1 1 -1 -1 1 
1 1 1 -1 -1 -1 1 -1 -1 

 

Table 79.  OA(20;210;2) #2389 
A B C D E F G H I J 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 1 
-1 -1 -1 -1 1 1 1 1 1 -1 
-1 -1 1 1 -1 -1 1 1 1 1 
-1 -1 1 1 1 1 -1 -1 1 -1 
-1 1 -1 1 -1 1 1 1 -1 -1 
-1 1 -1 1 1 -1 -1 1 1 1 
-1 1 1 -1 -1 1 1 -1 1 1 
-1 1 1 -1 1 1 -1 1 -1 1 
-1 1 1 1 1 -1 1 -1 -1 -1 
1 -1 -1 1 -1 1 -1 1 1 1 
1 -1 -1 1 1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 1 1 -1 -1 
1 -1 1 -1 1 -1 1 -1 1 1 
1 -1 1 1 1 -1 -1 1 -1 -1 
1 1 -1 -1 1 -1 1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 1 -1 
1 1 -1 1 -1 -1 1 -1 1 -1 
1 1 1 -1 -1 -1 -1 1 1 -1 
1 1 1 1 -1 1 -1 -1 -1 1 
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Table 80.  OA(20;211;2) #713 
A B C D E F G H I J K 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 
-1 -1 -1 -1 1 1 1 -1 -1 1 1 
-1 -1 -1 1 -1 1 1 1 1 -1 -1 
-1 -1 1 1 1 -1 -1 -1 1 -1 1 
-1 1 -1 1 1 -1 -1 1 -1 1 -1 
-1 1 1 -1 -1 1 1 -1 1 -1 1 
-1 1 1 -1 -1 1 1 1 -1 1 -1 
-1 1 1 1 1 -1 1 -1 -1 -1 -1 
-1 1 1 1 1 1 -1 1 1 1 1 
1 -1 -1 1 1 1 1 -1 -1 1 1 
1 -1 1 -1 1 -1 1 1 1 1 -1 
1 -1 1 -1 1 1 -1 1 -1 -1 -1 
1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 -1 1 1 -1 1 -1 -1 1 1 -1 
1 1 -1 -1 1 -1 1 1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 1 -1 -1 
1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 -1 1 -1 1 -1 1 -1 -1 1 
1 1 1 -1 -1 -1 -1 -1 -1 1 1 

 
Table 81.  OA(20;212;2) #426 

A B C D E F G H I J K L 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 
-1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 
-1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 
-1 -1 1 1 1 -1 1 1 -1 1 -1 1 
-1 1 -1 1 1 -1 1 1 1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 1 -1 -1 1 
-1 1 1 -1 -1 1 1 1 -1 1 1 -1 
-1 1 1 1 1 -1 -1 -1 1 1 1 1 
-1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
1 -1 -1 1 1 1 -1 1 1 -1 -1 1 
1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 
1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 
1 -1 1 1 -1 1 -1 -1 -1 1 1 1 
1 -1 1 1 -1 1 1 1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 1 -1 
1 1 -1 -1 1 1 1 1 -1 1 -1 1 
1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 
1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 
1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 
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APPENDIX B  

24-RUN NO-CONFOUNDING DESIGNS  



190 

The 24-run No-confounding Design Matrices 

Table 82.  6-Factor 24-run No-confounding Design (G-Aber_24 H.1.6.1) 
A B C D E F 
1 1 1 1 1 1 
1 1 1 1 -1 -1 
1 -1 -1 -1 -1 -1 

-1 1 1 -1 -1 -1 
-1 1 -1 -1 1 1 
-1 -1 -1 1 1 -1 
1 1 -1 -1 1 -1 

-1 -1 1 -1 -1 1 
-1 -1 1 1 1 -1 
1 -1 1 -1 1 1 

-1 1 -1 1 -1 1 
1 -1 -1 1 -1 1 

-1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 1 1 
-1 1 1 1 1 1 
1 -1 -1 1 1 1 
1 -1 1 1 -1 -1 
1 1 1 -1 -1 1 

-1 -1 1 1 -1 1 
1 1 -1 1 1 -1 
1 1 -1 -1 -1 1 

-1 1 -1 1 -1 -1 
1 -1 1 -1 1 -1 

-1 1 1 -1 1 -1 
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Table 83.  7-Factor 24-run No-confounding Design (G-Aber_24 H.1.7.1) 
A B C D E F G 
1 1 1 1 1 1 1 
1 -1 -1 -1 -1 -1 -1 

-1 1 1 1 -1 -1 -1 
1 1 1 -1 1 -1 -1 

-1 1 -1 -1 -1 1 1 
-1 -1 1 -1 1 1 -1 
-1 -1 -1 1 1 1 -1 
1 -1 -1 1 1 -1 1 
1 1 -1 1 -1 1 -1 
1 -1 1 -1 -1 1 1 

-1 -1 1 1 -1 -1 1 
-1 1 -1 -1 1 -1 1 
-1 -1 -1 -1 -1 -1 -1 
-1 1 1 1 1 1 1 
1 -1 -1 -1 1 1 1 

-1 -1 -1 1 -1 1 1 
1 -1 1 1 1 -1 -1 
1 1 -1 1 -1 -1 1 
1 1 1 -1 -1 -1 1 

-1 1 1 -1 -1 1 -1 
-1 -1 1 -1 1 -1 1 
-1 1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 
1 -1 1 1 -1 1 -1 
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Table 84.  8-Factor 24-run No-confounding Design (G-Aber_24 H.1.8.1) 
A B C D E F G H 
1 1 1 1 1 1 1 1 
1 1 1 1 1 -1 -1 -1 
1 1 1 -1 -1 -1 -1 -1 
1 -1 -1 1 -1 1 -1 -1 
1 1 -1 1 -1 -1 1 1 
1 1 -1 -1 1 1 1 -1 
1 -1 1 1 -1 1 1 -1 
1 1 -1 -1 -1 1 -1 1 
1 -1 -1 -1 1 -1 1 -1 
1 -1 1 -1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 
1 -1 1 -1 1 1 -1 1 

-1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 1 
-1 -1 -1 1 1 1 1 1 
-1 1 1 -1 1 -1 1 1 
-1 -1 1 -1 1 1 -1 -1 
-1 -1 1 1 -1 -1 -1 1 
-1 1 -1 -1 1 -1 -1 1 
-1 -1 1 1 1 -1 1 -1 
-1 1 1 1 -1 1 -1 1 
-1 1 -1 1 1 1 -1 -1 
-1 1 1 -1 -1 1 1 -1 
-1 1 -1 1 -1 -1 1 -1 
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Table 85.  9-Factor 24-run No-confounding Design (G-Aber_24 H.1.9.1) 
A B C D E F G H I 
1 1 1 1 1 1 1 1 1 
1 1 1 1 1 -1 -1 -1 -1 
1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 1 1 -1 -1 
1 1 -1 1 -1 1 -1 1 1 
1 1 -1 -1 -1 -1 1 1 -1 
1 -1 1 1 -1 -1 -1 1 -1 
1 1 -1 -1 1 -1 -1 -1 1 
1 -1 -1 -1 1 1 -1 1 -1 
1 -1 1 -1 1 -1 1 1 1 
1 -1 -1 1 -1 -1 1 -1 1 
1 -1 1 -1 -1 1 -1 -1 1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 1 1 
-1 -1 -1 1 1 -1 -1 1 1 
-1 1 1 -1 -1 -1 -1 1 1 
-1 -1 1 -1 1 -1 1 -1 -1 
-1 -1 1 1 1 1 -1 -1 1 
-1 1 -1 -1 1 1 1 -1 1 
-1 -1 1 1 -1 1 1 1 -1 
-1 1 1 1 -1 -1 1 -1 1 
-1 1 -1 1 -1 1 -1 -1 -1 
-1 1 1 -1 1 1 -1 1 -1 
-1 1 -1 1 1 -1 1 1 -1 
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Table 86.  10-Factor 24-run No-confounding Design (G-Aber_24 H.1.10.1) 
A B C D E F G H I J 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 -1 -1 -1 -1 -1 
1 1 -1 -1 -1 1 1 -1 -1 -1 

-1 -1 1 1 -1 1 -1 1 -1 -1 
1 -1 1 -1 -1 1 -1 -1 1 1 
1 -1 -1 -1 1 -1 -1 1 1 -1 

-1 1 1 -1 -1 -1 1 1 1 -1 
1 -1 -1 1 -1 -1 1 1 -1 1 

-1 -1 -1 1 1 1 1 -1 1 -1 
-1 1 -1 1 -1 -1 -1 -1 1 1 
-1 -1 1 -1 1 -1 1 -1 -1 1 
-1 1 -1 -1 1 1 -1 1 -1 1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 1 1 1 
-1 -1 1 1 1 -1 -1 1 1 1 
1 1 -1 -1 1 -1 1 -1 1 1 

-1 1 -1 1 1 -1 1 1 -1 -1 
-1 1 1 1 -1 1 1 -1 -1 1 
1 -1 -1 1 1 1 -1 -1 -1 1 

-1 1 1 -1 1 1 -1 -1 1 -1 
1 1 1 -1 -1 -1 -1 1 -1 1 
1 -1 1 -1 1 1 1 1 -1 -1 
1 1 -1 1 -1 1 -1 1 1 -1 
1 -1 1 1 -1 -1 1 -1 1 -1 
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Table 87.  11-Factor 24-run No-confounding Design (G-Aber_24 H.1.11.1) 
A B C D E F G H I J K 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 -1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 1 1 1 -1 -1 -1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 
1 1 -1 -1 -1 1 -1 -1 -1 1 1 
1 1 -1 -1 1 -1 1 -1 1 1 -1 
1 -1 1 -1 -1 -1 -1 1 1 1 -1 
1 1 -1 1 -1 -1 -1 1 1 -1 1 
1 -1 -1 1 1 1 -1 1 -1 1 -1 
1 -1 1 1 -1 -1 1 -1 -1 1 1 
1 -1 -1 -1 1 -1 1 1 -1 -1 1 
1 -1 1 -1 1 1 -1 -1 1 -1 1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 1 1 1 1 
-1 -1 -1 1 1 -1 -1 -1 1 1 1 
-1 1 1 -1 1 -1 -1 1 -1 1 1 
-1 -1 1 1 1 -1 1 1 1 -1 -1 
-1 -1 1 1 -1 1 -1 1 -1 -1 1 
-1 1 -1 1 1 1 1 -1 -1 -1 1 
-1 -1 1 -1 1 1 1 -1 -1 1 -1 
-1 1 1 -1 -1 -1 1 -1 1 -1 1 
-1 1 -1 -1 1 1 -1 1 1 -1 -1 
-1 1 1 1 -1 1 -1 -1 1 1 -1 
-1 1 -1 1 -1 -1 1 1 -1 1 -1 
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Table 88.  12-Factor 24-run No-confounding Design (G-Aber_24 H.1.12.1) 
A B C D E F G H I J K L 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 
1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 
1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 
1 1 -1 -1 -1 1 -1 1 -1 1 1 -1 
1 -1 1 1 -1 -1 -1 -1 1 1 1 -1 
1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 
1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 
1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 
1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 1 1 1 1 1 1 
-1 -1 -1 1 1 1 -1 -1 -1 1 1 1 
-1 1 1 -1 -1 1 -1 -1 1 -1 1 1 
-1 -1 1 -1 1 1 -1 1 1 1 -1 -1 
-1 -1 1 1 1 -1 1 -1 1 -1 -1 1 
-1 1 -1 -1 1 1 1 1 -1 -1 -1 1 
-1 -1 1 1 -1 1 1 1 -1 -1 1 -1 
-1 1 1 1 -1 -1 -1 1 -1 1 -1 1 
-1 1 -1 1 -1 1 1 -1 1 1 -1 -1 
-1 1 1 -1 1 -1 1 -1 -1 1 1 -1 
-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 
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Table 89.  Alternate 6-Factor 24-run No-confounding Design (CEA_24 6.2009) 
A B C D E F 
-1 -1 -1 1 1 -1 
-1 -1 -1 -1 1 1 
-1 -1 -1 1 -1 -1 
-1 -1 1 1 1 1 
-1 -1 1 -1 1 -1 
-1 -1 1 -1 -1 -1 
-1 1 -1 1 -1 1 
-1 1 -1 -1 -1 -1 
-1 1 -1 1 1 1 
-1 1 1 -1 -1 1 
-1 1 1 -1 1 1 
-1 1 1 1 -1 -1 
1 -1 -1 -1 -1 -1 
1 -1 -1 -1 1 -1 
1 -1 -1 1 1 1 
1 -1 1 1 -1 -1 
1 -1 1 -1 -1 1 
1 -1 1 -1 1 1 
1 1 -1 -1 -1 1 
1 1 -1 1 -1 -1 
1 1 -1 1 1 -1 
1 1 1 1 1 1 
1 1 1 1 -1 1 
1 1 1 -1 1 -1 
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Table 90.  Alternate 7-Factor 24-run No-confounding Design (MinMax_24 7.1) 
A B C D E F G 
-1 -1 -1 1 -1 -1 -1 
-1 -1 -1 1 1 1 1 
-1 -1 -1 -1 -1 -1 1 
-1 -1 1 -1 -1 1 -1 
-1 -1 1 1 1 1 -1 
-1 -1 1 -1 1 -1 1 
-1 1 -1 -1 1 -1 -1 
-1 1 -1 1 1 1 -1 
-1 1 -1 -1 -1 1 1 
-1 1 1 1 -1 1 1 
-1 1 1 1 1 -1 1 
-1 1 1 -1 -1 -1 -1 
1 -1 -1 -1 1 1 1 
1 -1 -1 1 1 -1 -1 
1 -1 -1 1 -1 1 -1 
1 -1 1 -1 1 -1 -1 
1 -1 1 1 -1 -1 1 
1 -1 1 -1 -1 1 1 
1 1 -1 -1 -1 1 -1 
1 1 -1 1 -1 -1 1 
1 1 -1 -1 1 -1 1 
1 1 1 -1 1 1 -1 
1 1 1 1 -1 -1 -1 
1 1 1 1 1 1 1 
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Table 91.  Alternate 8-Factor 24-run No-confounding Design (CEA_24 8.3002) 
A B C D E F G H 
-1 -1 -1 1 1 1 -1 1 
-1 -1 -1 1 1 -1 1 1 
-1 -1 -1 -1 -1 1 -1 -1 
-1 -1 1 -1 -1 1 1 1 
-1 -1 1 -1 1 -1 -1 1 
-1 -1 1 1 -1 -1 1 -1 
-1 1 -1 -1 -1 -1 -1 -1 
-1 1 -1 -1 -1 1 1 1 
-1 1 -1 1 1 -1 -1 -1 
-1 1 1 1 1 -1 1 1 
-1 1 1 1 -1 1 -1 -1 
-1 1 1 -1 1 1 1 -1 
1 -1 -1 -1 1 1 1 1 
1 -1 -1 -1 -1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 
1 -1 1 -1 1 -1 -1 -1 
1 -1 1 1 1 1 1 -1 
1 -1 1 1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 -1 1 -1 
1 1 -1 1 -1 -1 1 1 
1 1 1 -1 -1 -1 1 1 
1 1 1 1 -1 -1 -1 -1 
1 1 1 1 1 1 -1 1 
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Table 92.  Alternate 9-Factor 24-run No-confounding Design (MinMax_24 9.1) 
A B C D E F G H I 
-1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 1 -1 -1 1 1 1 
-1 -1 -1 -1 1 1 -1 1 1 
-1 -1 1 1 -1 1 -1 1 -1 
-1 -1 1 -1 1 1 1 -1 -1 
-1 -1 1 1 1 -1 1 -1 1 
-1 1 -1 -1 -1 1 1 -1 -1 
-1 1 -1 1 1 -1 1 1 -1 
-1 1 -1 1 1 1 -1 -1 1 
-1 1 1 1 -1 -1 -1 -1 1 
-1 1 1 -1 -1 1 1 1 1 
-1 1 1 -1 1 -1 -1 1 -1 
1 -1 -1 -1 -1 1 1 -1 1 
1 -1 -1 1 1 1 1 1 -1 
1 -1 -1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 -1 1 1 -1 
1 -1 1 1 -1 1 -1 -1 1 
1 -1 1 -1 1 -1 -1 1 1 
1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 -1 -1 -1 1 1 
1 1 -1 -1 1 -1 1 -1 1 
1 1 1 1 -1 -1 1 -1 -1 
1 1 1 -1 1 1 -1 -1 -1 
1 1 1 1 1 1 1 1 1 
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Table 93.  Alternate 10-Factor 24-run No-confounding Design (CEA_24 10.108) 
A B C D E F G H I J 
-1 -1 -1 1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 1 1 -1 1 1 1 -1 
-1 -1 -1 -1 -1 1 1 1 -1 1 
-1 -1 1 1 1 1 1 -1 -1 1 
-1 -1 1 -1 -1 -1 -1 -1 1 1 
-1 -1 1 -1 1 1 -1 1 1 -1 
-1 1 -1 1 1 1 -1 -1 1 1 
-1 1 -1 -1 -1 1 1 -1 1 -1 
-1 1 -1 -1 1 -1 -1 1 -1 1 
-1 1 1 1 -1 1 -1 1 -1 -1 
-1 1 1 1 -1 -1 1 1 1 1 
-1 1 1 -1 1 -1 1 -1 -1 -1 
1 -1 -1 1 -1 1 -1 1 1 1 
1 -1 -1 -1 1 -1 1 -1 1 1 
1 -1 -1 -1 1 1 -1 -1 -1 -1 
1 -1 1 1 -1 1 1 -1 1 -1 
1 -1 1 1 1 -1 -1 1 -1 1 
1 -1 1 -1 -1 -1 1 1 -1 -1 
1 1 -1 -1 -1 -1 1 -1 -1 1 
1 1 -1 -1 1 1 1 1 -1 -1 
1 1 -1 1 -1 -1 -1 1 1 -1 
1 1 1 -1 1 -1 -1 -1 1 -1 
1 1 1 1 -1 1 -1 -1 -1 1 
1 1 1 1 1 1 1 1 1 1 
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Table 94.  Alternate 11-Factor 24-run No-confounding Design (CEA_24 11.1016) 
A B C D E F G H I J K 
-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 1 1 -1 -1 1 1 1 1 
-1 -1 -1 1 1 1 1 1 -1 -1 -1 
-1 -1 1 -1 -1 1 -1 -1 1 -1 1 
-1 -1 1 -1 -1 1 1 1 1 1 -1 
-1 -1 1 -1 1 -1 1 -1 -1 1 1 
-1 1 -1 -1 -1 1 -1 1 -1 1 1 
-1 1 -1 -1 -1 -1 1 -1 1 1 -1 
-1 1 -1 1 1 1 1 -1 1 -1 1 
-1 1 1 -1 1 -1 -1 1 1 -1 -1 
-1 1 1 1 1 1 -1 -1 -1 1 -1 
-1 1 1 1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 1 1 -1 -1 1 1 -1 
1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 -1 -1 1 1 1 -1 1 
1 -1 1 -1 -1 -1 -1 1 -1 1 -1 
1 -1 1 1 1 1 -1 1 -1 -1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 -1 
1 1 -1 -1 -1 1 -1 1 1 -1 -1 
1 1 -1 -1 1 -1 -1 -1 -1 -1 1 
1 1 -1 1 1 -1 1 1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 1 1 1 
1 1 1 1 -1 1 1 -1 -1 -1 -1 
1 1 1 -1 1 1 1 1 1 1 1 
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Table 95.  Alternate 12-Factor 24-run No-confounding Design (CEA_24 12.1033) 
A B C D E F G H I J K L 
-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 
-1 -1 1 -1 1 1 -1 -1 -1 1 1 1 
-1 -1 1 1 1 -1 1 1 1 -1 -1 1 
-1 -1 1 1 -1 1 1 -1 1 1 -1 -1 
-1 1 -1 -1 -1 1 1 1 -1 1 -1 1 
-1 1 -1 -1 1 -1 1 -1 1 1 1 -1 
-1 1 -1 1 1 1 -1 -1 1 -1 -1 1 
-1 1 1 1 1 -1 -1 1 -1 1 -1 -1 
-1 1 1 1 -1 -1 1 -1 -1 -1 1 1 
-1 1 1 -1 -1 1 -1 1 1 -1 1 -1 
1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 
1 -1 -1 -1 1 1 -1 1 1 1 -1 -1 
1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 
1 -1 1 1 -1 1 -1 1 -1 -1 -1 1 
1 -1 1 1 1 -1 -1 -1 1 -1 1 -1 
1 1 -1 1 1 -1 -1 1 -1 -1 1 1 
1 1 -1 1 -1 1 -1 -1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 
1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 
1 1 1 1 1 1 1 1 1 1 1 1 

 

Calculation of the Number of Possible Structured Column Combinations 

Divide the 24 rows of a column   into two sub-columns of 12 rows and call them    and   .  The values in each of these sub-columns are independent of each other as long 

as both sub-columns contain 6 +1’s, so without loss of generality, consider c1.     can be 

divided into two sub-columns of six,     and    .  These sub-columns can be of three 

types: Type I has three +1’s;  Type II has 2 +1’s; Type III has 4 +1’s.  There are (  )  
   possible Type I columns.  There are (  )     possible Type II columns and (  )     possible Type III columns.  
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If      is Type I, then     is Type I and there are         possible    columns 

using Type I sub-columns.  If      is not Type I, then it can be Type II or Type III, so 

there are 15+15 = 30 possibilities for    .  There are only 15 possibilities for    , since it 

must be type II if     is type III or vice versa so that there are a total of 6 +1’s in   .  

Therefore there are           possible    columns using Type II and Type III sub-

columns.  There are therefore             possible combinations for   .  Since    

is independent of   , there are               possible columns for  .   
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