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NO DIVISION IMPLIES CHAOS

BY

TIEN-YIEN LI, MICHAL MISIUREWICZ, GIULIO PIANIGIANI AND

JAMES A.   YORKE

Abstract. Let / be a closed interval in /?' and/: / -» / be continuous. Let x0 G /

and

ft    \    r     • -^ n*/+!=/(*/)    forOO.

We say there is no division iox (xx, x2,. ■ ■ ,x„) \i there is no a G / such that Xj < a

for ally even and Xj < a for ally odd. The main result of this paper proves the simple

statement: no division implies chaos.

Also given here are some converse theorems, detailed estimates of the existing

periods, and examples which show that, under our conditions, one cannot do any

better.

1. Introduction. Let 7 be a closed interval in Rl and /: 7 -» 7 be a continuous

function. A point x E I is said to be a point of period « if f(x) — x andfk(x) ¥" x

for 1 *£ k < n. For brevity, we will say property P(k) holds if/has a periodic orbit

with period k. The theorem by A. N. Sharkovski [5] answered the general question of

when the existence of a point of period « implies the existence of points of peroid /,

that is, when F(«) => P(l). The proof of this theorem was considerably shortened in

[2].
It is not always immediately apparent whether a periodic orbit of period « exists.

In [4], this uncertainty was overcome by use of a more robust hypothesis. We say

(x0,xx,...,xn) is a trajectory if

(!•!) xi+] — f(xi)

for i — 0,1,...,«— 1. It was proved there [4] that if there is a trajectory (x0,... ,xn)

satisfying either

(1.2) xn<x0<xx    or   xn^x0>xx

with « odd, then P(k) holds for some k where n/k is an integer. In [4] we show that

P(k) for odd k > 1 implies "chaos" and we discuss the meaning of chaos.

The main purpose of this paper is to study situations for which « is even in (1.2)

and yet there still must be an orbit of odd period. For this, we introduce the notion

of 'no division'. For the «-tuple (x0, xx,... ,xn) C T we say that there is no division
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192 TIEN-YIEN LI ET AL.

if there is no a G 7 such that either x, < a for all j even and x¡ > a for all j odd or

Xj > a for ally even and x, < a for ally odd. In §2, we prove that if (xQ,... ,xn) is a

trajectory which has no division and satisfies (1.2), then P(k) holds for some odd k.

In §3, we obtain better estimates of the existing periods under the above conditions

when « is even. In §4, we give examples to show that under the assumptions of our

theorems we cannot obtain stronger results.

2. For future reference, we quote the Sharkovski's theorem in the following:

Theorem 2.1. Let f be continuous. Then P(3) =» P(5) =» P(l) -»•••=» P(2 • 3) =»

P(2 • 5) =* • •• =* T>(22 • 3) => T>(22 • 5) =* • • • => F(23) =* T>(22) =* P(2) => P(l).

For what follows, we let xk = fk(x0) for all k > 0.

Proposition 2.2. Let xn < xQ < xx, or xn > x0 > xx, and let there be no division

for the trajectory (x0, xx,...,xn). Then there exists a periodic point of period

(1) « if n is odd,

(2) « — 1 if n is even.

Proof. For simplicity, we only consider xn < x0 < xx. The other case follows by

reversing signs in the argument. Let X — [x0,...,xn_x]. Since f(x0) > x0 and

/(max A) < max A, the set S — [x E X: x > x0, f(x) < x) is nonempty. Let x, =

min S and Xj = max{x G X: x < x,}. Then, for J = [x¡, x,] we have int J D X = 0

and /(/) D J. Since x„ = f~j(Xj) is in f"~J(J) and x, is in J Cf-J(J), and

x„ < xQ =s x,, we have x0 Ef"~j(J). Therefore, all elements of A, except perhaps

*,_, (or x„_, if y = 0) are in U^2 f(J). Since f(J) 3 /, f"-2(J)Df-[(J) D
■■■ Df(J)DJ, hence U,"^/"^) = f~2(J). We may replace xj with jc, in the

above argument, and conclude that every point of A except perhaps x,_x is in

fn~2(J). Since i ¥*j, we have/""2(.7) D JT.

Since there is no division, there exists an interval K = [c, d] such that c, d E X

and (c, d) H X = 0 and c and J lie on the same side of J but f(c) and f(d) lie on

the opposite sides of J. Therefore /( K ) DJ and K and J have at most one point in

common. We thus have the following:

(l)f(J)DJ,

(2)f(K)DJ,

(3)f~2(J)DK.
To find periodic points we use the technique from [1] and [2],

From (2) and (3), there is a point xEJ, with f~\x) = x and f"~2(x) E K.

From (1), (2) and (3), there is a point y E J with f(y)=y and f(y) EJ and

f~\y) E K. Neither x nor y are fixed points of/, because they would then be

common endpoints of J and K. Such a common endpoint (if it exists) is an element

of X and lies to the right of (or is equal to) x0. Some iterate of it is equal to xn, and

therefore, it cannot be a fixed point.

If « is odd (resp. even) then>> (resp. x) is a peroidic point whose period is a factor

of « (resp. « — 1). Hence, by Theorem 2.1, there exists a periodic point of period «

(resp. « — 1).    D
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Remark. If « is odd and xn < x0 < xx or xn > x0 > xx then automatically there is

no division for (jc0, x,,.. -,xn).

As a corollary to Proposition 2.2, we have

Theorem 2.3. Let xn *£ x0 < xx or xn > x0 > xx and assume there is no division for

(x0, xx,...,xn). Then there exists a periodic point of odd (¥= I) period.

The above results show it is sometimes possible to conclude there is a periodic

orbit by knowing only the trajectory through one point. We can ask how much

improvement is possible in our results. Suppose we have a bounded trajectory

Y = (y0, yx,...). We assume for the remainder of this section that there is at least

one continuous F which has y as a trajectory. Is possible that Y implies the existence

of an odd period orbit and yet our results are insufficient for us to be able to

conclude this existence?

We say Y implies the existence of an odd period orbit if every continuous / that has

y as a trajectory also has an odd period orbit with period greater than one.

We now prove that the above results can be applied to every (infinite) trajectory Y

that implies the existence of an odd period orbit.

Theorem 2.4. Let (y0, yx,...) be a sequence which implies the existence of an odd

period orbit. Then there exist integers u, v such that if xQ — yu, xx — yu+x,...,xv =

yu+v, then there is no division for (x0,... ,xv) and (1.2) is satisfied for « = v.

Proof. Denote B = {y0, yx,...}, J = [inf B, sup B]. It is easy to see that we may

assume that/is monotone on components of J \ B and constant to the left and to the

right of J. By assumption, there is a periodic point of F with odd period « (¥= 1).

Denote the orbit of this point by A. We shall consider the following two cases:

Case 1 : X C B.

Choose x E X {min A, max A}. Without loss of generality we assume f(x) > x.

We have fk(x) — f"+k(x) — min X < x for some k > 1. One of the integers k of

k + « is odd. Call this integer v. Then, fv(x) < x <f(x). Since x E B, we can

choose x0 E B with f(x0) < x0 <f(x0). By the remark, there is no division for

(x0, f\x0), f2(x0),.. .,fv(x0)). This ends the proof in this case.

Case 2: X <t B.

Since/(Ti) C B, X is disjoint from B. Also f(I)EJ, so X CJ\B. For any

x E J \ B let Jx denote the component of J \ B containing x. For c E X, we say c is

an increasing point if/(c) > c. Otherwise, we call c a decreasing point. The orbit of

X forms a cycle of « points. Since « is odd, we cannot have alternating increasing

and decreasing points. Therefore, there exists c E X with either c < f(c) < f2(c) or

c > f(c) > f2(c). Without loss of generality, v/e may assume that c <f(c) <f2(c).

Since / is monotone on Jc, the image of one of the endpoints of Jc is to the left of

f(c). Denote this endpoint by a. Therefore/(a) < f(c). Similarly, we can find an

endpoint b of Jf,e) such that f(b) > f2(c). Clearly, b < sup.//(c) < sup7/2(() <f(b).

If b-f(b), then Jf(c) = Jf2{c) and b = supJfU). It follows that f([f(c), b]) -

[f2(c), b] C [f(c), b], and limn_a,/"(c) = b. This contradicts the periodicity of c.
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Therefore,

(2.1) b<f(b).

Suppose that f(a) < a < b. Since a s* /(a) and £ <f(b), we have a ^ b. Hence,

/(a) *sa<6</(£>).

If /(a) < a, then since a E B, we can find x and x' E B with /(x) < * <

(a + b)/2 and (a + b)/2 < x' <f(x'). We have * = ¿>fe, x' — ym for some k, m.

Therefore yk+, <_y¿ < vm <.ym+1. Since the first pair of subscripts contain one odd

and one even and the same is true of the final pair, there is no division. The

conclusion of the theorem is proved.

We now consider the sole remaining situation: /(a) = a.

If a is an isolated point of B, then a E B and consequently a = yq for all q

sufficiently large. Hence, y < ym < ym+, for some m< q with q — m being odd. The

conclusion of the theorem thus follows. If a is not an isolated point of 7?, then there

exists yq with arbitrarily large q, arbitrarily close to a. We may require q > m and y ,

f(yq) < b. But then one of the integers q — m and q + 1 — m is odd and again we

have the conclusion of the theorem.

The remaining situation is either

(2.2) f(a) > a   or   a > b.

Suppose that Jc = Jf(i.y Since c <f(c) and f(c) <f2(c), f is increasing in Jc.

Therefore,/(a) < a = inf Jc < supJc = b <f(b) which contradicts (2.2). Hence./. ¥=

Jf(cy and a,f(a) *£ inf Jf( . < b. In view of (2.1) and (2.2), we have

(2.3) a<f(a)^b<f(b).

Since a, b E B, we can choose x, x' E B such that x <f(x) < x' < f(x'). We have

x = yk, x' — ym for some k, m. If we can choose x, x' in such a way that k > m, then

we are done since yk < yk+, < ym< ym+\ and one of the integers k — m,k + 1 — m

is odd. There are only two cases in which we cannot choose such x and x': either x

and x' cannot be chosen independently, i.e.,/(a) = b, or there is no v, with large / in

some neighborhood of a.

Suppose a $ B. Then the second possibility cannot occur, and consequently we

are left with/(a) = b. We may take three elements of B arbitrarily close to a: ym_x,

yk,yp such that m - 1 < k <p. Then we haveyp <ym <ym+x andyk <yk+x <yk+2,

and forym = x0,... ,y — xv there is no division.

If a G Ti, then we take x= yk — a. If f2(a) *zf(a), then a < b. We may find

x' = ym andyk+2<yk+x <ym<ym+x, which has no division.

If f2(a)>f(a), then we have a = yk <yk+x <yk + 2. Let K = [inf;S,A + , y,,

stqW-Hy\- Sincejv+, = f(a) <f(c) <f2(c) <f(x') = ym+x, and m + 1 > k + 1,

we have X n K is nonempty. Hence c E f(K) for some/?. Since/is monotone on

components of J \B, there exists z E B C\ K such that/7'(z) «S inf Jc *Z a. We have

z = ys for some s. If s > A: + 1, then f(z) = vJ+/1 and s + p > k + 1. It follows that

Ji+n ^J'* ^Ä+i <>'a + 2 which has no division because of the last three terms. If

s < k + 1 then y, < ys < yr for some t, r> k + I > s. The result of the theorem is

proved no matter whereys+, is, unless either t = k + I andys<ys+x, or r = k + 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NO DIVISION IMPLIES CHAOS 195

and ys+, <ys. In the first case, we get yk <yk+x <ys<ys+x and s < k, and in the

second case ys+x <ys<yk <yk+x and s < k, which are cases where there is no

division.    D

3. Let /: 7 -» 7 be continuous and x, = f'(x0) for all i > 1. In this section, we

obtain better estimates of the periods for the case where xn < x0 < xx or xn > x0 > xx

with even « and there is no division for (x0, xx,... ,xn). We first prove the following

lemma:

Lemma 3.1. Let xn+x < xn < x0 < xx or xB+] > x„ > x0 > x, /or some « > 1.

F«e« / has periodic points of all periods.

Proof. Notice that x0¥^xx since otherwise, xn = x0. As usual we shall only

consider the case xn+x «s xn < x0 < xx. Without loss of generality, we may assume

that « is the smallest positive integer for which xn+, < xn < x0. Let

w = min(r >0, xr+x <x„}.

Clearly, m<n. If xm < x0, then xm+x < x„ < xm < x0, which contradicts the

definition of «. If xm = x0 then xm+x = xx, but xm+x «£ xn < x„ a contradiction.

Consequently, xm > x0. Let k = min{r 3* 0: xr+x > xm). Then k < m, xk< xm and

xfc+1 > xm. Since k < m, we have xk > xn. Let K = [x„, xj and AT — [xk, xm].

Then, f(K) D [xn+x, xk+x] D K U AT and /(AT) D [xm+1, xÉ+a] DKUM. Since

Tv H AT = {x^.} and x^. is not a fixed point of/,/has periodic points of all periods.

D

Corollary 3.2. If f does not have periodic points of all periods, then there exists a

fixed point z of f such that if x, < z then x,+ x > x¡, and if x, > z then x,+ x < x,.

Proof. Suppose that / does not have periodic points of all periods. Then from

Lemma 3.1, it follows that if xm+, « xm and xk+x > xk then xm < xk. Let a =

sup{x,: x,+ x > x¡}, b = inf{x,: x,+ x < x,}. Then a < b. If f(a) = a, we may take

z = a; if f(b) = b, we may take z = b. If not, then/(a) > b and f(b) < a and there

is a fixed point z between a and b. Clearly, such z has the required properties.    D

Lemma 3.3. Let X — (x0, x,,... ,x„_,, x„) have no division and assume n is even

and xn — x0. Then, f has a periodic orbit of period n/2 ifn/2 is odd, period (n/2) + 1

if n/2 is even.

Proof. Suppose the conclusion of the lemma is false. Then, by Corollary 3.2,

there is a fixed point z of /, such that for any x G A, if x < z then f(x) > x and if

x > z then/(x) < x. We consider the two cases separately. Since x„ — x0, we have

xi+n — x, for all i.

Case 1: «/2 is odd. Suppose that for some k, xk and xk where kit=k + n/2 are

on the same side of z. If xk is closer to z, then we have xk <xk <xk+x or

xk > xk > xk+, and we get a periodic point of period n/2, a contradiction. If xk is

closer to z, then we can use the same type of argument because xk = xn+k and also

get a contradiction. Hence, for all k, xk and xk are on opposite sides of z. We may

assume, without loss of generality, that there are no elements of X in (x0,z]. Since
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there is no division for A, there exists d odd, 0 < d < «, such that xd < z. Hence,

x < x0 < z < xn/2. We know that z < xdj where djt = d + n/2. If xd < x„/2 then

either c/ < «/2 and then xd < x0 < x, gives a contradiction, or d > n/2 and then

(writing t = d — n/2) xl+, < x, < xn/2 gives a contradiction. It follows that xd < x0

< z < xn/2 < xd . Since x0 < z, we have x, > x0 and consequently x, > z. Hence,

xn/2+\ "^ z> and^„/2+i < *o- Since xd < x0 < x,, we must have d > n/2. If x, < x,,

then x2 < x, < x, we get a periodic point of odd period d — n/2 — 1 < n/2, a

contradiction (/ ^ 1 since x, < xt). Therefore x, < x, (there is no equality since

d — n/2 is even). Hence, x,+n/2 < x0 < xn/2 < x, < x,. Since «/2 is odd and / is

even, there is no division for {x0, x„...,xB/2+l}. By Proposition 2.1, there exists a

periodic point of period «/2.

Case 2: n/2 is even. By Theorem 2.1, if there is no periodic point of period

n/2 + 1 then there is no periodic point of period n/2 — 1. By an argument similar

to the one used in Case 1, we establish that every k, xk and xk _, are on the

opposite sides of z. Also, xk and xk +, are on the opposite sides of z. Hence, for

every m, xm and xm+2 are on the same side of z. Consequently, either all elements of

x are on the same side of z, or there is a division for X. In both cases we obtain a

contradiction.    D

Proposition 3.4. Let xn *£ x0 < x, or xn 3s x0 > x, with « even, and assume there

is no division for (x0, x,,... ,x„). Then there exists a periodic point of period n/2 if

n/2 is odd, and n/2 + 1 if n/2 is even.

Proof. Suppose the conclusion of the proposition is false. Write X = {x0,... ,x„}.

By Corollary 3.2, there is a fixed point z of / such that for x G X, if x < z then

f(x) > x and if x > z then/(x) < x. It is obvious that z is not an element of X. We

will first find a periodic orbit of period « with no division and then apply Lemma

3.3. For simplicity, we only examine the case x„ =s x0 < x,.

Let Jk denote the interval: [xk, z] if xk < z and [z, xk] if xk > z, k — 0,1,,..,n.

Since x, > x0, we have x0 < z. Hence, Jn D J0. It follows that f(Jk) D /ft+] for

k = Q,l,...,n — 2 and /(/„_,) D T0. Since there is no division for X, there exists

g < « — 1 such that x , x +, are on the same side of z. Look subsequently at the

points x?+2, x +3,...,xn_,, x0, x„...,x?_j. Some of them have to lie on the

opposite side of z from x . Let x be the first such point. Then xp_2, xp_, lie on one

side of z and x is on the opposite side (the indices are interpreted mod « ). Suppose

x 2 = x ,. If p — 2 = n — 2 and xp_x = xp_2, then x , and xp are on the same

side of z. If p — 2 = « — 1 and x__2 = xp_x (note: xp_, = x0), then xn — x,. If

p — 2 < « — 2 then x ^ x ,. In all cases, we get a contradiction. Consequently,

xp-2 ^ -X/--!- Let F denote the interval [xp^2, x/,_,] if xp_2 < xp_x and [xp_,, xp_2]

ifx?_,  >X;7_2-

We have P C yp_2 and therefore f(Jp-3) DP. \fp-2<n-2 then /(F) D

[x ,, x ] (or [x , x ,]), and since xp_, and xp are on the opposite sides of z,

f(P) DJp^x.Up-2 = n-2 then f(P) D [xn, x„_,] D [z, x„_,] = Jp_x. Up-2

- « — 1 then/(F) D [x„, x,] D /0 = Jp_,. In all cases, we thus have/(F) D jL,^,; It

foUowsthat...,/<7;)_4)3jrj_3,/(J/,_3) D P,f(P) D Jp_x,f(Jp_x) 3 Jp,... and the
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cycle closes. The length of this cycle is «. There is a periodic point y E P such that

f(y)EJp_x,f2(y)Ejp,...,f-2(y)EJp^,f"-\y)EJp_3, andf"(y)=y. Since
the intervals P, ./__„ Jp have pairwise disjoint interiors and Jp_x lies between P and

Jp, we have either >> <f(y) <f2(y) or y >f(y) > f2(y). Hence, for the orbit of y

there is no division. This orbit has a period k > 3 and k divides n. If A: is odd then

we have k < n/2 and we use Theorem 2.1. If A: is even, then we use Lemma 3.3 and

then (if necessary) Theorem 2.1.    D

We now investigate what happens if the lack of division occurs "too late" (i.e.,

after n with x„ < x0 < x,).

Proposition 3.5. Let either xn < x0 < x, andxd < x orx„ 3= x0 > x, andxd > xp,

for some d, p, n where d < n and d is odd and p is even. Then there exists a periodic

orbit of some odd (^ 1) period k < max{n, p — d}.

Proof. As usual we only prove the case for x„ < x0 < x, and xd < x . If n is odd

we get, by Proposition 2.2 and Remark after it, a periodic point of period n. So, we

only consider the case where n is even.

Case 1: xd< x0. Then, xd *s x0 < x, and we get a periodic point of period d =s n

with odd d.

Case 2: xd > x0. If xd+x — xd, then x„ = xd > x0, a contradiction. If xd+x > xd

then xn< xd< xd+, and there is a periodic point of period n — d < d with n — d

odd. If xd+l < xd then xd+x < xd< xp. Up > n, we get a point of period p — d. If

p < n, there is no division for (x0,...,x„). By Proposition 2.2, there is a periodic

point of period « — 1.    D

Dropping the hypothesis that d < «, we lose the existence of an odd period.

Proposition 3.6. Let either xn < x0 < x, a«<7xd =s xp or x„ > x0 > x, andxd > xp

for some d, p, « with d odd and p even. Then, there exists a periodic point of period 6.

Proof. If there exists a periodic point of an odd (¥= 1) period then we can use

Theorem 2.1. Suppose that there is no periodic point of any odd period bigger than 1

(and, in particular, « must be even). We only consider the case where xn < x0 < x,

and xd =£ xp. We shall use the induction argument on n.

Case 1: n = 2. Since there are no periodic points of odd period, there exists, by

Corollary 3.2, a fixed point z of/such that if x, < z then xi+, > x, and if x, > z then

x,+, < Xf. Hence, x2 < x0 < z < x,. Since xd < x , we have either x¿ =£ z or x^, s* z.

Hence z does not split the even indices from the odd indices. That is, there exists k

such that either xk *s xk+, < z or xk> xk+x > z. Take the smallest such k. Now we

shall use induction on k.

Case 1A: k = 2. In this case we have x2 < x0 < z < x, and x3 «fi z. Consequently,

/([x2, x0]) D [z, x,] and /([x0, z]) D [z, x,] and /([z, x,]) D [x2, x0] U [x0, z].

Therefore, /2([x2, x0]) D [x2, x0] U [x0, z] and /2([x0, z]) D [x2, x0] U [x0, z].

This gives us the existence of periodic points of all periods for f2 and hence the

existence of periodic points of all even periods for/.

Case IB: k > 3. We claim we only need to consider

(3.1) x2«x,<x,    for ally = 0,1,...,k + 1.
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Suppose   (3.1)   is   not   true.   Then,   there   is j E [3, k + 1]   such   that   Xj =

min{x0,... ,xk+x) or xy = max{x0,.. .,xk+x). For the first case, we have xy <¡ x¿_2

< *<_,, and, for the second, xy > x_2 > Xy_,. We then use the induction hypothesis

for.y0 = xy_2, v, = xj_],...,yk_J + 2 = xk, withk -j + 2 < k.

Let xr = max{x,: 0 < i «S k, x, < x0}, xs = min{x,: Ö *» i < k, x, > x0}. Let / = r

if xr+x > xs+1 and / = s if xJ+, > xr+x. Suppose first that t — k. If t = s and

xs < z, then xí+, < z < xr+, and t ~ r, a contradiction. If / = s and xs > z then

x0< z < xr+x< xs+x< xs. This contradicts the definition of s. If t = r, then

xr+x < z < xs+x and t = s. This is again a contradiction. Hence / < k. If x,+ 1 < z

then xr > z and consequently t = s. But then, by the definition of r and s, x,+, < xr

and therefore xr+, > xt+x, a contradiction. Hence, x,+ 1 > z. Suppose t = k — 1.

Then x(+2 s* z, and/([xr, x0]) D [x,+ 1, x,l /([x0, z]) D [x,+ 1, x,] and f([xt+x, x,])

D [xr, x0] U [x0, z]. Hence, /2([xr, x0]) D [xr, x0] U [x0, z] and /2([x0, z]) D

[xr, x0] U [x0, z]. This gives the existence of period points of all periods for/2 and

hence, periodic points of all even periods for /. Suppose t < k — I. Then, by

definition of r and s, x/+2 Í (xr, xs). If x;+2 < xr, then x,+2 < x, < xf+1 and we

may use the induction hypothesis for y0 = x,,.. .,xk_, = xk with k — t < k. If

xi+2>x, then/([xr, x0]) D [x,+ „x,] and/([x0, xj) D [x,+ 1,x,] and f([xl+x, x,])

D [xr, x0] U [x0, xs]. This gives the existence of periodic points of all even periods.

Case 2: n > 2. We may assume that x2 > x0. If x3 < x2 then there is no division

for (x0, x,,... ,xn) and we get a periodic point of an odd (¥= 1) period. Hence we

may assume x2 < x3. If d < 2 then we can use Proposition 3.5. If p < 2 then p = 0

and we have xd < x0 < x, and there is a periodic point of period d. For p,d^2we

have x„ < x2 < x3. The induction hypothesis can be applied for y0 = x2,...,yn_2 =

xn using n — 2 instead of n.    D

4. Examples. In this section, we shall give some examples to show that under the

assumptions of our theorems we cannot obtain stronger results. In every example we

shall specify only one trajectory. To be more precise, we only specify the ordering of

points of this trajectory. We assume that the interval on which / acts is the smallest

interval containing that trajectory, and that/is monotone on the components of the

complement of the trajectory.

The proofs of nonexistence of certain periodic points will not be given here. The

reader may check these by himself by using the method of [2], that is, by making a

related graph and investigating its loops. The methods of [2] also allow us to

compute the topological entropy of these examples.

Example   1.   x„_, < x„_3 < • ■ ■ < x4 < x2 < x0 = x„ < x, < x3 • • • < x„_4 <

XH—2"

This is a classical example given by Sharkovski [5], Here x0 is a periodic point of

period n, with « 2* 5 and odd, and there is no periodic point of period « — 2. The

topological entropy of this example is well known (see [2]).

Example 2. Writing n, = n/2, x„_, <n<_, < x„_3 < x„t _3 < ••• <x,^+2<x2

< X"t < X0 ~ Xn < X\ < -*■«»+ 1 < X3 "^ Xnt+3 <   ' ' ' < Xnt-4 < Xn~4 < Xnt-2 < Xn-2-

Here x0 is a periodic point of period «, with « even and n/2 odd and « S3 10.

There is no division for (x0, x,,..'.,x_). For this example, there is no periodic point
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of period n/2 — 2. The topological entropy is the same as in Example 1 for n^

instead of n.

Example 3. Writing n* for n/2, x    < xn_, < x   __2 < *„-3 < • ' • < x4 < x„ +3

•*n < *1  "^ •**„, +2 < X3 < • ■ • < XB_4 < X„t_3 < X„_2 < Xn,- 1-

Here x0 is a periodic point of period n, with n s» 8 and even, and n/2 is even.

There is no division for (x0, x,,... ,xn). For this example, there is no periodic point

of period n/2 — 1. The topological entropy is log Xn where X„ is the largest root of

the polynomial x" - 2x"~2 - 2x"/2_1 - 1.

Example 4. x2 < x0 < x3 = x4 < x,.

This is an example of x„ < x0 < x, and xd < xp with d odd and p even and there

is no periodic point of any odd (¥= 1) period. The topological entropy is \ log2.

The topological entropies in Examples 1, 2 and 4 are the smallest possible for such

examples. It is not known whether it is so with Example 3.

Notice that no special example is needed for Proposition 3.5. An example can be

derived from Example 1 by choosing appropriate n,d,p.

In [4], we prove that if x„ < x0 < x, or x„ > x0 > x, for n odd (^ 1), then there

exists a periodic point of odd period (¥= I). One can ask if it is possible to prove that

this result covers all sequences (that imply there is an odd period) in the sense that

Theorem 2.4 shows Theorem 2.3 covers all sequences. The following examples shows

that the answer is negative and shows there are sequences covered by Theorem 2.3

that are not covered by the results in [4].

Example 5. x6 < x0 < x4 < x3 = x7 < x5 < x2 < x,.
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