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No Downlink Pilots are Needed in TDD Massive

MIMO
Hien Quoc Ngo, Member, IEEE, and Erik G. Larsson, Fellow, IEEE

Abstract—We consider the Massive Multiple-Input Multiple-
Output downlink with maximum-ratio and zero-forcing process-
ing and time-division duplex operation. To decode, the users must
know their instantaneous effective channel gain. Conventionally,
it is assumed that by virtue of channel hardening, this instanta-
neous gain is close to its average and hence that users can rely
on knowledge of that average (also known as statistical channel
information). However, in some propagation environments, such
as keyhole channels, channel hardening does not hold.

We propose a blind algorithm to estimate the effective channel
gain at each user, that does not require any downlink pilots. We
derive a capacity lower bound of each user for our proposed
scheme, applicable to any propagation channel. Compared to the
case of no downlink pilots (relying on channel hardening), and
compared to training-based estimation using downlink pilots, our
blind algorithm performs significantly better. The difference is
especially pronounced in environments that do not offer channel
hardening.

Index Terms—Blind channel estimation, downlink, keyhole
channels, Massive MIMO, maximum-ratio processing, time-
division duplexing, zero-forcing processing.

I. INTRODUCTION

I
N Massive Multiple-Input Multiple-Output (MIMO), the

base station (BS) is equipped with a large antenna array

(with hundreds of antennas) that simultaneously serves many

(tens or more of) users. It is a key, scalable technology for next

generations of wireless networks, due to its promised huge

energy efficiency and spectral efficiency [2]–[7]. In Massive

MIMO, time-division duplex (TDD) operation is preferable,

because the amount of pilot resources required does not

depend on the number of BS antennas. With TDD, the BS

obtains the channel state information (CSI) through uplink

training. This CSI is used to detect the signals transmitted from

users in the uplink. On downlink, owing to the reciprocity of

propagation, CSI acquired at the BS is used for precoding.

Each user receives an effective (scalar) channel gain multi-

plied by the desired symbol, plus interference and noise. To

coherently detect the desired symbol, each user should know

its effective channel gain.
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Conventionally, each user is assumed to approximate its

instantaneous channel gain by its mean [8]–[10]. This is

known to work well in Rayleigh fading. Since Rayleigh fading

channels harden when the number of BS antennas is large

(the effective channel gains become nearly deterministic), the

effective channel gain is close to its mean. Thus, using the

mean of this gain for signal detection works very well. This

way, downlink pilots are avoided and users only need to know

the channel statistics. However, for small or moderate numbers

of antennas, the gain may still deviate significantly from its

mean. Also, in propagation environments where the channel

does not harden, using the mean of the effective gain as

substitute for its true value may result in poor performance

even with large numbers of antennas.

The users may estimate their effective channel gain by

using downlink pilots, see [2] for single-cell systems and

[11] for multi-cell systems. Effectively, these downlink pilots

are orthogonal between the users and beamformed along

with the downlink data. The users may use, for example,

linear minimum mean-square error (MMSE) techniques for

the estimation of this gain. The downlink rates of multi-

cell systems for maximum-ratio (MR) and zero-forcing (ZF)

precoders with and without downlink pilots were analyzed

in [12]. The effect of using outdated gain estimates at the

users was investigated in [13]. Compared with the case when

the users rely on statistical channel knowledge, the downlink-

pilot based schemes improve the system performance in low-

mobility environments (where the coherence interval is long).

However, in high-mobility environments, they do not work

well, owing to the large requirement of downlink training

resources; this required overhead is proportional to the number

of multiplexed users. A better way of estimating the effective

channel gain, which requires less resources than the transmis-

sion of downlink pilots does, would be desirable.

Inspired by the above discussion, in this paper, we consider

the Massive MIMO downlink with TDD operation. The BS

acquires channel state information through the reception of up-

link pilot signals transmitted by the users – in the conventional

manner, and when transmitting data to the users, it applies MR

or ZF processing with slow time-scale power control. For this

system, we propose a simple blind method for the estimation

of the effective gain, that each user should independently

perform, and which does not require any downlink pilots.

Our proposed method exploits the asymptotic properties of

the received data in each coherence interval. Our specific

contributions are:

• We give a formal definition of channel hardening, and

an associated criterion that can be used to test if chan-
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nel hardening holds. Then we examine two important

propagation scenarios: independent Rayleigh fading, and

keyhole channels. We show that Rayleigh fading channels

harden, but keyhole channels do not.

• We propose a blind channel estimation scheme, that each

user applies in the downlink. This scheme exploits the

asymptotic properties of the sample average power of the

received signal per coherence interval. We presented a

preliminary version of this algorithm in [1].

• We derive a rigorous capacity lower bound for Massive

MIMO with estimated downlink channel gains. This

bound can be applied to any types of channels and can be

used to analyze the performance of any downlink channel

estimation method.

• Via numerical results we show that, in hardening propaga-

tion environments, the performance of our proposed blind

scheme is comparable to the use of only statistical chan-

nel information (approximating the gain by its mean). In

contrast, in non-hardening propagation environments, our

proposed scheme performs much better than the use of

statistical channel information only. The results also show

that our blind method uniformly outperforms schemes

based on downlink pilots [2], [11].

Notation: We use boldface upper- and lower-case letters

to denote matrices and column vectors, respectively. Specific

notation and symbols used in this paper are listed as follows:
()∗, ()T , and ()H Conjugate, transpose, and transpose

conjugate

det (·) and Tr (·) Determinant and trace of a matrix

CN (0,Σ) Circularly symmetric complex

Gaussian vector with zero mean

and covariance matrix Σ

| · |, ‖ · ‖ Absolute value, Euclidean norm

E {·}, Var {·} Expectation, variance operators
P→ Convergence in probability

In n× n identity matrix

[A]k, ak The kth column of A.

II. SYSTEM MODEL

We consider a single-cell Massive MIMO system with an

M -antenna BS and K single-antenna users, where M > K .

The channel between the BS and the kth user is an M × 1
channel vector, denoted by gk, and is modelled as:

gk =
√

βkhk, (1)

where βk represents large-scale fading which is constant

over many coherence intervals, and hk is an M × 1 small-

scale fading channel vector. We assume that the elements

of hk are uncorrelated, zero-mean and unit-variance random

variables (RVs) which are not necessarily Gaussian distributed.

Furthermore, hk and hk′ are assumed to be independent, for

k 6= k′. The mth elements of gk and hk are denoted by gmk
and hm

k , respectively.

Here, we focus on the downlink data transmission with TDD

operation. The BS uses the channel estimates obtained in the

uplink training phase, and applies MR or ZF processing to

transmit data to all users in the same time-frequency resource.

A. Uplink Training

Let τc be the length of the coherence interval (in symbols).

For each coherence interval, let τu,p be the length of uplink

training duration (in symbols). All users simultaneously send

pilot sequences of length τu,p symbols each to the BS. We

assume that these pilot sequences are pairwisely orthogonal.

So it is required that τu,p ≥ K . The linear MMSE estimate

of gk is given by [14]

ĝk =
τu,pρuβk

τu,pρuβk + 1
gk +

√
τu,pρuβk

τu,pρuβk + 1
wp,k, (2)

where wp,k ∼ CN (0, IM ) independent of gk, and ρu is the

transmit signal-to-noise ratio (SNR) of each pilot symbol.

The variance of the mth element of ĝk is given by

Var {ĝmk } = E
{
|ĝmk |2

}
=

τu,pρuβ
2
k

τu,pρuβk + 1
, γk. (3)

Let g̃k = gk − ĝk be the channel estimation error, and g̃mk
be the mth element of g̃k. Then from the properties of linear

MMSE estimation, g̃mk and ĝmk are uncorrelated, and

Var {g̃mk } = E
{
|g̃mk |2

}
= βk − γk. (4)

In the special case where gk is Gaussian distributed (corre-

sponding to Rayleigh fading channels), the linear MMSE es-

timator becomes the MMSE estimator and g̃mk is independent

of ĝmk .

B. Downlink Data Transmission

Let sk(n) be the nth symbol intended for the kth user.

We assume that E
{
s(n)s(n)H

}
= IK , where s(n) ,

[s1(n), . . . , sK(n)]T . With linear processing, the M × 1 pre-

coded signal vector is

x(n) =
√
ρd

K∑

k=1

√
ηkaksk(n), (5)

where {ak}, k = 1, . . . ,K , are the precoding vectors which

are functions of the channel estimate Ĝ , [ĝ1, . . . , ĝK ], ρd is

the (normalized) average transmit power, {ηk} are the power

coefficients, and Dη is a diagonal matrix with {ηk} on its

diagonal. For a given {ak}, the power control coefficients {ηk}
are chosen to satisfy an average power constraint at the BS:

E
{
‖x(n)‖2

}
≤ ρd. (6)

The signal received at the kth user is1

yk(n) = gH
k x(n) + wk(n)

=
√
ρdηkαkksk(n) +

K∑

k′ 6=k

√
ρdηk′αkk′sk′(n) + wk(n), (7)

where wk(n) ∼ CN (0, 1) is additive Gaussian noise, and

αkk′ , gH
k ak′ .

Then, the desired signal sk is decoded.

We consider two linear precoders: MR and ZF processing.

1Here we restrict our consideration to one coherence interval so that the
channels remain constant.
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• MR processing: here the precoding vectors {ak} are

ak =
ĝk

‖ĝk‖
, k = 1, . . . ,K. (8)

• ZF processing: here the precoding vectors are

ak =
1

∥
∥
∥
∥

[

Ĝ
(

ĜHĜ
)−1

]

k

∥
∥
∥
∥

[

Ĝ
(

ĜHĜ
)−1

]

k

, (9)

for k = 1, . . . ,K .

With the precoding vectors given in (8) and (9), the power

constraint (6) becomes

K∑

k=1

ηk ≤ 1. (10)

III. PRELIMINARIES OF CHANNEL HARDENING

One motivation of this work is that Massive MIMO chan-

nels may not always harden. In this section we discuss the

channel hardening phenomena. We specifically study channel

hardening for independent Rayleigh fading and for keyhole

channels.

Channel hardening is a phenomenon where the norms of

the channel vectors {gk}, k = 1, . . . ,K , fluctuate only little.

We say that the propagation offers channel hardening if

‖gk‖2
E {‖gk‖2}

P→ 1, as M → ∞, k = 1, . . . ,K. (11)

A. Advantages of Channel Hardening

If the BS and the users know the channel G perfectly, the

channel is deterministic and its sum-capacity is given by [15]

C = max
ηk≥0,

∑

K
k=1 ηk≤1

log2 det
(
IM + ρdGDηG

H
)
, (12)

where Dη is the diagonal matrix whose kth diagonal element

is the power control coefficient ηk.

In Massive MIMO, for most propagation environments, we

have asymptotically favorable propagation [16], i.e.
gH
k gk′

M
→

0, as M → ∞, for k 6= k′. In addition, if the channel hardens,

i.e.,
‖gk‖

2

M
→ E

{

‖gk‖2
}

= βk, as M → ∞,2 then we have,

for fixed K ,

C − max
ηk≥0,

∑

K
k=1 ηk≤1

K∑

k=1

log2 (1 + ρdηkβkM)

= C − max
ηk≥0,

∑

K
k=1 ηk≤1

log2 det




IK+ρdDηM






β1 · · · 0
...

. . .
...

0 · · · βK











= max
ηk≥0,

∑

K
k=1 ηk≤1

log2 det













1+ρdη1‖g1‖
2

1+ρdη1β1M
· · · ρdη1g

H
1 gK

1+ρdηKβKM

...
. . .

...
ρdηKgH

Kg1

1+ρdη1β1M
· · · 1+ρdηK‖gK‖2

1+ρdηKβKM













→ 0, as M → ∞. (13)

2Note that favorable propagation and channel hardening are two different
properties of the channels. Favorable propagation, 1

M
g
H

k
gk′ → 0 as M →

∞, does not imply hardening, 1

M
‖gk‖

2 → βk. One example of the contrary
is the keyhole channel in Section III-C2.

In (13) we have used the facts that

1 + ρdηk‖gk‖2
1 + ρdηkβkM

=
1
M

+ ρdηk
‖gk‖

2

M
1
M

+ ρdηkβk

→ 1, as M → ∞,

and for k 6= k′,

ρdηkg
H
k gk′

1 + ρdηk′βk′M
=

ρdηkg
H
k gk′/M

1/M + ρdηk′βk′

→ 0, as M → ∞.

The limit in (13) implies that if the channel hardens, the sum-

capacity (12) can be approximated for M ≫ K as:

C ≈ max
ηk≥0,

∑

K
k=1 ηk≤1

K∑

k=1

log2 (1 + ρdηkβkM) , (14)

which does not depend on the small-scale fading. As a

consequence, the system scheduling, power allocation, and

interference management can be done over the large-scale

fading time scale instead of the small-scale fading time scale.

Therefore, the overhead for these system designs is signifi-

cantly reduced.

Another important advantage is: if the channel hardens, then

we do not need instantaneous CSI at the receiver to detect the

transmitted signals. What the receiver needs is only the statisti-

cal knowledge of the channel gains. This reduces the resources

(power and training duration) required for channel estimation.

More precisely, consider the signal received at the kth user

given in (7). The kth user wants to detect sk from yk. For this

purpose, it needs to know the effective channel gain αkk . If

the channel hardens, then αkk ≈ E {αkk}. Therefore, we can

use the statistical properties of the channel, i.e., E {αkk} is

a good estimate of αkk when detecting sk. This assumption

is widely made in the Massive MIMO literature [8]–[10] and

circumvents the need for downlink channel estimation.

B. Measure of Channel Hardening

We next state a simple criterion, based on the Chebyshev

inequality, to check whether the channel hardens or not. A

similar method was discussed in [17]. From Chebyshev’s

inequality, we have

Pr







∣
∣
∣
∣
∣
∣

‖gk‖2

E

{

‖gk‖2
} − 1

∣
∣
∣
∣
∣
∣

2

≤ ǫ







= 1− Pr







∣
∣
∣
∣
∣
∣

‖gk‖2

E

{

‖gk‖2
} − 1

∣
∣
∣
∣
∣
∣

2

≥ ǫ







≥ 1− 1

ǫ
·

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 , for any ǫ ≥ 0. (15)

Clearly, if

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 → 0, as M → ∞, (16)
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Fig. 1. Examples of keyhole channels: (1)—keyhole effects occur when the
distance between transmitter and receiver is large. The transmitter and the
receiver have their own local scatters which yield locally uncorrelated fading.
However, the scatter rings are much smaller than the distance between them,
the channel becomes low rank, and hence keyhole effects occur [20]; (2)—
the receiver is located inside a building, the only way for the radio wave
to propagation from the transmitter to the receiver is to go through several
narrow holes which can be considered as keyholes; and (3)—the transmitter
and the receiver are separated by a tunnel.

we have channel hardening. In contrast, (11) implies

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 → 0, as M → ∞,

so if (16) does not hold, then the channel does not harden.

Therefore, we can use
Var{‖gk‖

2}
(E{‖gk‖

2})2 to determine if channel

hardening holds for a particular propagation environment.

C. Independent Rayleigh Fading and Keyhole Channels

In this section, we study the channel hardening property of

two particular channel models: Rayleigh fading and keyhole

channels.

1) Independent Rayleigh Fading Channels: Consider the

channel model (1) where {hm
k } (the elements of hk) are i.i.d.

CN (0, 1) RVs. Independent Rayleigh fading channels occur

in a dense, isotropic scattering environment [18]. By using the

identity E
{
‖gk‖4

}
= β2

k(M + 1)M [19], we obtain

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 =

1

β2
kM

2
E
{
‖gk‖4

}
− 1

=
1

M
→ 0, M → ∞. (17)

Therefore, we have channel hardening.

2) Keyhole Channels: A keyhole channel (or double scat-

tering channel) appears in scenarios with rich scattering around

the transmitter and receiver, and where there is a low-rank con-

nection between the two scattering environments. The keyhole

effect can occur when the radio wave goes through tunnels,

corridors, or when the distance between the transmitter and

receiver is large. Figure 1 shows some examples where the

keyhole effect occurs in practice. This channel model has been

validated both in theory and by practical experiments [21]–

[24]. Under keyhole effects, the channel vector gk in (1) is

modelled as [22]:

gk =
√

βk

nk∑

j=1

c
(k)
j a

(k)
j b

(k)
j , (18)

where nk is the number of effective keyholes, a
(k)
j is the

random channel gain from the kth user to the jth keyhole,

b
(k)
j ∈ CM×1 is the random channel vector between the jth

keyhole associated with the kth user and the BS, and c
(k)
j

represents the deterministic complex gain of the jth keyhole

associated with the kth user. The elements of b
(k)
j and a

(k)
j

are i.i.d. CN (0, 1) RVs. Furthermore, the gains {c(k)j } are

normalized such that E
{
|gmk |2

}
= βk. Therefore,

nk∑

i=1

∣
∣
∣c

(k)
i

∣
∣
∣

2

= 1. (19)

When nk = 1, we have a degenerate keyhole (single-keyhole)

channel. Conversely, when nk → ∞, under the additional

assumptions that c
(k)
i 6= 0 for finite nk and c

(k)
i → 0 as

nk → ∞, we obtain an i.i.d. Rayleigh fading channel.

We assume that different users have different sets of key-

holes. This assumption is reasonable if the users are located at

random in a large area, as illustrated in Figure 1. Then from

the derivations in Appendix A, we obtain

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 =

(

1 +
1

M

) nk∑

i=1

∣
∣
∣c

(k)
i

∣
∣
∣

4

+
1

M

→
nk∑

i=1

∣
∣
∣c

(k)
i

∣
∣
∣

4

6= 0, M → ∞. (20)

Consequently, the keyhole channels do not harden. In addi-

tion, since

∣
∣
∣c

(k)
i

∣
∣
∣

2

≤ 1, we have

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 ≤

(

1 +
1

M

) nk∑

i=1

∣
∣
∣c

(k)
i

∣
∣
∣

2

+
1

M
. (21)

Using (19), (21) becomes

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 ≤ 1 +

2

M
, (22)

where the right hand side corresponds to the case of single-

keyhole channels (nk = 1). This implies that a single-keyhole

channel represents the worst case in the sense that then the

channel gain fluctuates the most.

IV. PROPOSED DOWNLINK BLIND CHANNEL ESTIMATION

TECHNIQUE

The kth user should know the effective channel gain αkk

to coherently detect the transmitted signal sk from yk in (7).

Most previous works on Massive MIMO assume that E {αkk}
is used in lieu of the true αkk when detecting sk. The reason

behind this is that if the channel is subject to independent

Rayleigh fading (the scenario considered in most previous
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Massive MIMO works), it hardens when the number of BS

antennas is large, and hence αkk ≈ E {αkk}; E {αkk} is then

a good estimate of αkk. However, as seen in Section III, under

other propagation models the channel may not always harden

when M → ∞ and then, using E {αkk} as the true effective

channel αkk to detect sk may result in poor performance.

For the reasons explained, it is desirable that the users

estimate their effective channels. One way to do this is to have

the BS transmit beamformed downlink pilots [2]. Then at least

K downlink pilot symbols are required. This can significantly

reduce the spectral efficiency. For example, suppose M = 200
antennas serve K = 50 users, in a coherence interval of length

200 symbols. If half of the coherence interval is used for the

downlink, then with the downlink beamforming training of [2],

we need to spend at least 50 symbols for sending pilots. As

a result, less than 50 of the 100 downlink symbols are used

for payload in each coherence interval, and the insertion of

the downlink pilots reduces the overall (uplink + downlink)

spectral efficiency by a factor of 1/4.

In what follows, we propose a blind channel estimation

method which does not require any downlink pilots.

A. Downlink Blind Channel Estimation Algorithm

We next describe our downlink blind channel estimation

algorithm, a refined version of the scheme in [1]. Consider

the sample average power of the received signal at the kth

user per coherence interval:

ξk ,
|yk(1)|2 + |yk(2)|2 + . . .+ |yk(τd)|2

τd
, (23)

where yk(n) is the nth sample received at the kth user and

τd is the number of symbols per coherence interval spent on

downlink transmission. From (7), and by using the law of large

numbers, we have, as τd → ∞,

ξk −



ρdηk |αkk|2 +
K∑

k′ 6=k

ρdηk′ |αkk′ |2 + 1




P→ 0. (24)

Since
∑K

k′ 6=k ρdηk′ |αkk′ |2 is a sum of many terms, it can

be approximated by its mean (this follows from the law of

large numbers). As a consequence, when K , and τd are large,

ξk in (23) can be approximated as follows:

ξk ≈ ρdηk|αkk|2 + ρdE







K∑

k′ 6=k

ηk′ |αkk′ |2





+ 1. (25)

Furthermore, the approximation (25) is still good even if K
is small. The reason is that when K is small, with high

probability the term
∑K

k′ 6=k ηk′ |αkk′ |2 is much smaller than

ηk|αkk|2, since with high probability |αkk′ |2 ≪ |αkk|2. As

a result,
∑K

k′ 6=k ηk′ |αkk′ |2 can be approximated by its mean

even for small K . (In fact, in the special case of K = 1, this

sum is zero.)

Equation (25) enables us to estimate the amplitude of the

effective channel gain αkk using the received samples via ξk
as follows:

|̂αkk| =

√
√
√
√ξk − 1− ρdE

{
∑K

k′ 6=k ηk′ |αkk′ |2
}

ρdηk
. (26)

In case the argument of the square root is non-positive, we set

the estimate |αkk| equal to E {|αkk|}.

For completeness, the kth user also needs to estimate the

phase of αkk . When M is large, with high probability, the real

part of αkk is much larger than the imaginary part of αkk.

Thus, the phase of αkk is very small and can be set to zero.

Based on that observation, we propose to treat the estimate of

|αkk| as the estimate of the true αkk: α̂kk = |̂αkk|
The algorithm for estimating the downlink effective channel

gain αkk is summarized as follows:

Algorithm 1: (Blind downlink channel estimation method)

1. For each coherence interval, using a data block of τd
samples yk(n), compute ξk according to (23).

2. The kth user acquires ηk and E

{
∑K

k′ 6=k ηk′ |αkk′ |2
}

.

See Remark 1 for a detailed discussion on how to

acquire these values.

3. The estimate of the effective channel gain αkk is as

α̂kk=







√

ξk−1−ρdE

{

∑

K
k′ 6=k

ηk′ |αkk′ |2
}

ρdηk
,

if ξk > 1 + ρdE
{
∑K

k′ 6=k ηk′ |αkk′ |2
}

E {|αkk|} , otherwise.

(27)

Remark 1: To implement Algorithm 1, the kth user has to

know ηk and E

{
∑K

k′ 6=k ηk′ |αkk′ |2
}

. We assume that the kth

user knows these values. This assumption is reasonable since

these values depend only on the large-scale fading coefficients,

which stay constant over many coherence intervals. The BS

can compute these values and inform the kth user about them.

In addition E

{
∑K

k′ 6=k ηk′ |αkk′ |2
}

can be expressed in closed

form (except for in the case of ZF processing with keyhole

channels) as follows:

E







K∑

k′ 6=k

ηk′ |αkk′ |2





=







K∑

k′ 6=k

ηk′βk, for MR,

(Rayleigh/keyhole channels)
K∑

k′ 6=k

ηk′ (βk − γk), for ZF.

(Rayleigh channels)

(28)

Detailed derivations of (28) are presented in Appendix B.

B. Asymptotic Performance Analysis

In this section, we analyze the accuracy of our proposed

downlink blind channel estimation scheme when τc and M
go to infinity for two specific propagation channels: Rayleigh

fading and keyhole channels. We use the model (18) for
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keyhole channels. When τc → ∞, ξk in (23) is equal to its

asymptotic value:

ξk −



ρdηk |αkk|2 +
K∑

k′ 6=k

ρdηk′ |αkk′ |2 + 1



→ 0, (29)

and hence, the channel estimate α̂kk in (27) becomes

α̂kk =







√

|αkk|2 +
K∑

k′ 6=k

ηk′

ηk
(|αkk′ |2 − E {|αkk′ |2}),

if ξk > 1 + ρdE

{
K∑

k′ 6=k

ηk′ |αkk′ |2
}

,

E {|αkk|} , otherwise.

(30)

Since τc → ∞, it is reasonable to assume that the BS can

perfectly estimate the channels in the uplink training phase,

i.e., we have Ĝ = G. (This can be achieved by using very

long uplink training duration.) With this assumption, αkk is a

positive real value. Thus, (30) can be rewritten as

α̂kk

αkk

=







√

1 +
K∑

k′ 6=k

ηk′

ηk

|αkk′ |2−E{|αkk′ |2}
α2

kk

,

if ξk > 1 + ρdE

{
K∑

k′ 6=k

ηk′ |αkk′ |2
}

,

E{αkk}
αkk

, otherwise.

(31)

1) Maximum-Ratio Processing: With MR processing, from

(28) and (31), we have

α̂kk

αkk

=







√
√
√
√

1 +
K∑

k′ 6=k

ηk′

ηk

∣

∣

∣

∣

g
H
k

g
k′

‖g
k′‖

∣

∣

∣

∣

2

−βk

‖gk‖
2 ,

if ξk > 1 + ρd
K∑

k′ 6=k

ηk′βk,

E{‖gk‖}
‖gk‖

, otherwise.

(32)

- Rayleigh fading channels: Under Rayleigh fading chan-

nels, αkk = ‖gk‖, and hence,

Pr






ξk > 1 + ρd

K∑

k′ 6=k

ηk′βk







= Pr






1 +

K∑

k′=1

ρdηk′ |αkk′ |2 > 1 + ρd

K∑

k′ 6=k

ηk′βk







≥ Pr






ρdηk |αkk|2 > ρd

K∑

k′ 6=k

ηk′βk







= Pr







1

M
‖gk‖2 >

1

M

K∑

k′ 6=k

ηk′

ηk
βk







→ 1, as M → ∞, (33)

where the convergence follows the fact that 1
M

‖gk‖2 →
βk and 1

M

∑K

k′ 6=k
ηk′

ηk
βk → 0, as M → ∞.

In addition, by the law of large numbers,
∣
∣
∣
gH
k gk′

‖gk′‖

∣
∣
∣

2

− βk

‖gk‖2
=

(∣
∣
∣
∣

gH
k gk′

M

∣
∣
∣
∣

2
M

‖gk′‖2
− βk

M

)

M

‖gk‖2

→ 0, as M → ∞. (34)

From (32), (33), and (34), we obtain

α̂kk

αkk

→ 1, as M → ∞. (35)

Our proposed scheme is expected to work very well at

large τc and M .

- Keyhole channels: Following a similar methodology

used in the case of Rayleigh fading, and using the identity

gH
k gk′

‖gk′‖ =
√

βk

nk∑

j=1

c
(k)
j a

(k)
j ν

(k)
j , (36)

where ν
(k)
j ,

(

b
(k′)
j

)H

gk′

‖gk′‖
is CN (0, 1) distributed, we

can arrive at the same result as (35). The random variable

ν
(k)
j is Gaussian due to the fact that conditioned on gk′ ,

ν
(k)
j is a Gaussian RV with zero mean and unit variance

which is independent of gk′ .

2) Zero-forcing Processing: With ZF processing, when

τc → ∞,

α̂kk

αkk

→ 1, as M → ∞. (37)

This follows from (29) and the fact that αkk′ → 0, for k 6= k′.

V. CAPACITY LOWER BOUND

Next, we give a new capacity lower bound for Massive

MIMO with downlink channel gain estimation. It can be

applied, in particular, to our proposed blind channel esti-

mation scheme.3 Denote by yk , [yk(1) . . . yk(τd)]
T ,

sk , [sk(1) . . . sk(τd)]
T , and wk , [wk(1) . . . wk(τd)]

T .

Then from (7), we have

yk =
√
ρdηkαkksk +

K∑

k′ 6=k

√
ρdηk′αkk′sk′ +wk. (38)

The capacity of (38) is lower bounded by the mutual

information between the unknown transmitted signal sk and

the observed/known values yk, α̂kk . More precisely, for any

distribution of sk, we obtain the following capacity bound for

the kth user:

Ck ≥ 1

τd
I(yk, α̂kk; sk)

=
1

τd

[
h(sk)− h(sk|yk, α̂kk)

]

(a)
=

1

τd
h(sk)−

1

τd

[

h

(
sk(1)|yk, α̂kk

)
+h

(
sk(2)|sk(1),yk, α̂kk

)

+ . . .+ h

(
sk(τd)|sk(1), . . . , sk(τd − 1),yk, α̂kk

)]

(b)

≥ 1

τd
h(sk)−

1

τd

[
h (sk(1)|yk, α̂kk) + h (sk(2)|yk, α̂kk)

+ . . .+ h (sk(τd)|yk, α̂kk)
]
, (39)

where in (a) we have used the chain rule [25], and in (b) we

have used the fact that conditioning reduces entropy.

3In Massive MIMO, the bounding technique in [8], [10] is commonly used
due to its simplicity. This bound is, however, tight only when the effective
channel gain αkk hardens. As we show in Section III, channel hardening does
not always hold (for example, not in keyhole channels). A detailed comparison
between our new bound and the bound in [8], [10] is given in Section VII-C.
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It is difficult to compute h (sk(n)|yk, α̂kk) in (39) since

α̂kk and sk(n) are correlated. To render the problem more

tractable, we introduce new variables { ˆ̂αkk(n)}, n = 1, ..., τd,

which can be considered as the channel estimates of αkk using

Algorithm 1, but ξk is now computed as

|yk(1)|2 + . . .+ |yk(n− 1)|2 + |yk(n+ 1)|2 . . .+ |yk(τd)|2
τd − 1

.

Clearly, ˆ̂αkk(n) is very close to α̂kk . More importantly,
ˆ̂αkk(n) is independent of sk′(n), k′ = 1, ...,K . This fact will

be used for subsequent derivation of the capacity lower bound.

Since ˆ̂αkk(n) is a deterministic function of yk,

h (sk(n)|yk, α̂kk) = h

(

sk(n)|yk, α̂kk, ˆ̂αkk(n)
)

, and hence,

(39) becomes

Ck ≥ 1

τd
h(sk)−

1

τd

[

h

(

sk(1)|yk, α̂kk, ˆ̂αkk(1)
)

+ . . .+ h

(

sk(τd)|yk, α̂kk, ˆ̂αkk(τd)
) ]

≥ 1

τd
h(sk)−

1

τd

[

h

(

sk(1)|yk(1), ˆ̂αkk(1)
)

+ . . .+ h

(

sk(τd)|yk(τd), ˆ̂αkk(τd)
) ]

, (40)

where in the last inequality, we have used again the fact that

conditioning reduces entropy. The bound (40) holds irrespec-

tive of the distribution of sk. By taking sk(1), . . . , sk(τd) to

be i.i.d. CN (0, 1), we obtain

Ck ≥ log2(πe)− h

(

sk(1)|yk(1), ˆ̂αkk(1)
)

. (41)

The right hand side of (41) is the mutual information

between yk(1) and sk(1) given the side information ˆ̂αkk(1).
Since ˆ̂αkk(1) and sk′ (1), k′ = 1, ...,K , are independent, we

have

E

{

w̄k(1)| ˆ̂αkk(1)
}

= 0,

E

{

s∗k(1)w̄k(1)| ˆ̂αkk(1)
}

= 0,

E

{

α∗
kks

∗
k(1)w̄k(1)| ˆ̂αkk(1)

}

= 0, (42)

where w̄k(1) ,
∑K

k′ 6=k

√
ρdηk′αkk′sk′ (1)+wk(1). Hence we

can apply the result in [26] to further bound the capacity for

the kth user as (43), shown at the top of the next page.4

Inserting (7) into (43), we obtain a capacity lower bound

(achievable rate) for the kth user given by (44) at the top of

the next page.

Remark 2: The computation of the capacity lower

bound (44) involves the expectations E

{

|αkk′ |2
∣
∣
∣ ˆ̂αkk(1)

}

and E

{

αkk| ˆ̂αkk(1)
}

which cannot be directly com-

puted. However, we can compute E

{

|αkk′ |2
∣
∣
∣ ˆ̂αkk(1)

}

and

4The core argument behind the bound (43) is the maximum-entropy
property of Gaussian noise [26]. Prompted by a comment from the reviewers,
we stress that to obtain (43), it is not sufficient that the effective noise and
the desired signal are uncorrelated. It is also required that the effective noise
and the desired signal are uncorrelated, conditioned on the side information.

E

{

αkk| ˆ̂αkk(1)
}

numerically by first using Bayes’s rule and

then discretizing it using the Riemann sum:

E {X |y} =

∫

x

xpX|Y (x|y)dx =

∫

x

x
pX,Y (x, y)

pY (y)
dx

≈
∑

i

xi

pX,Y (xi, y)

pY (y)
△xi

, (45)

where △xi
, xi − xi−1. Precise steps to compute (44) are:

1. Generate N random realizations of the channel G. Then

the corresponding N ×1 random vectors of αkk , |αkk′ |2,

and ˆ̂αkk(1) are obtained.

2. From sample vectors obtained in step 1, numeri-

cally build the density function {p ˆ̂αkk(1)
(xi)} and

the joint density functions {p
αkk, ˆ̂αkk(1)

(yj, xi)} and

p|αkk′ |2, ˆ̂αkk(1)
(zn, xi). These density functions can be

numerically computed using built-in functions in MAT-

LAB such as “kde” and “kde2d”.

3. Using (45), we compute the achievable rate (44) as (46),

shown at the top of the next page, where

E {αkk|xi} =
∑

j

yj△yj

p
αkk, ˆ̂αkk(1)

(yj , xi)

p ˆ̂αkk(1)
(xi)

, (47)

E

{

|αkk′ |2
∣
∣
∣xi

}

=
∑

n

zn△zn

p|αkk′ |2, ˆ̂αkk(1)
(zn, xi)

p ˆ̂αkk(1)
(xi)

.

(48)

Remark 3: The bound (44) relies on a worst-case Gaussian

noise argument [26]. Since the effective noise is the sum of

many random terms, its distribution is, by the central limit

theorem, close to Gaussian. Hence, our bounds are expected

to be rather tight and they are likely to closely represent

what state-of-the-art coding would deliver in reality. (This is

generally true for the capacity lower bounds used in much of

the Massive MIMO literature; see for example, quantitative

examples in [27, Myth 4].)

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide numerical results to evaluate our

proposed channel estimation scheme. We consider the per-user

normalized MSE and net throughput as performance metrics.

We define

SNRd = ρd × median[cell-edge large-scale fading],

and

SNRu = ρu × median[cell-edge large-scale fading],

where the cell-edge large-scale fading is the large-scale fading

between the BS and a user located at the cell-edge. This gives

SNRd and SNRu the interpretation of the median downlink and

the uplink cell-edge SNRs. For keyhole channels, we assume

nk = nKH and c
(k)
j = 1/

√
nKH, for all k = 1, . . . ,K and

j = 1, . . . , nKH.

In all examples, we compare the performances of three

cases: i) “use E {αkk}”, representing the case when the kth

user relies on the statistical properties of the channels, i.e.,

it uses E {αkk} as estimate of αkk; ii) “DL pilots [2]”,
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Ck ≥ Rblind
k , E







log2




1 +

∣
∣
∣E

{

y∗k(1)sk(1)| ˆ̂αkk(1)
}∣
∣
∣

2

E

{

|yk(1)|2
∣
∣
∣ ˆ̂αkk(1)

}

−
∣
∣
∣E

{

y∗k(1)sk(1)| ˆ̂αkk(1)
}∣
∣
∣

2












, (43)

Rblind
k = E







log2




1 +

ρdηk

∣
∣
∣E

{

αkk| ˆ̂αkk(1)
}∣
∣
∣

2

1 + ρd
∑K

k′=1 ηk′E

{

|αkk′ |2
∣
∣
∣ ˆ̂αkk(1)

}

− ρdηk

∣
∣
∣E

{

αkk| ˆ̂αkk(1)
}∣
∣
∣

2












, (44)

Rblind
k =

∑

i

p ˆ̂αkk(1)
(xi)△xi

log2







1+

ρdηk |E {αkk|xi}|2

1 + ρd
K∑

k′=1

ηk′E

{

|αkk′ |2
∣
∣
∣xi

}

− ρdηk |E {αkk|xi}|2








, (46)

representing the use of beamforming training [2] with lin-

ear MMSE channel estimation; and iii) “proposed scheme”,

representing our proposed downlink blind channel estimation

scheme (using Algorithm 1). In our proposed scheme, the

curves with τd = ∞ correspond to the case that the kth user

perfectly knows the asymptotic value of ξk. Furthermore, we

choose τu,p = K . For the beamforming training scheme, the

duration of the downlink training is chosen as τd,p = K .

A. Normalized Mean-Square Error

We consider the normalized MSE at user k, defined as:

MSEk ,
E

{

|α̂kk − αkk|2
}

|E {αkk}|2
. (49)

In this part, we choose βk = 1, and equal power allocation

to all users, i.e, ηk = 1/K , ∀k. Figures 2 and 3 show the

normalized MSE versus SNRd for MR and ZF processing, re-

spectively, under Rayleigh fading and single-keyhole channels.

Here, we choose M = 100, K = 10, and SNRu = 0 dB.

We can see that, in Rayleigh fading channels, for both

MR and ZF processing, the MSEs of the three schemes (use

E {αkk}, DL pilots, and proposed scheme) are comparable.

Using E {αkk} in lieu of the true αkk for signal detection

works rather well. However, in keyhole channels, since the

channels do not harden, the MSE when using E {αkk} as the

estimate of αkk is very large. In both propagation environ-

ments, our proposed scheme works very well and improves

when τd increases (since the approximation in (25) becomes

tighter). Our scheme outperforms the beamforming training

scheme for a wide range of SNRs, even for short coherence

intervals. The training-based method uses the received pilot

signals only during a short time, to estimate the effective

channel gain. In contrast, our proposed scheme uses the

received data during a whole coherence block. This is the

basic reason for why our proposed scheme can perform better

than the training-based scheme. (Note also that the training-

based method is based on linear MMSE estimation, which is

suboptimal, but that is a second-order effect.)

Next we study the affects of the number of BS antennas and

the number of keyholes on the performance of our proposed
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(b) Single-keyhole channels

Fig. 2. Normalized MSE versus SNRd for different channel estimation
schemes, for MR processing. Here, M = 100, K = 10, and SNRu = 0 dB.
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Fig. 3. Same as Figure 2, but for ZF processing.

scheme. We choose K = 10, τd = 100, SNRu = 0 dB,

and SNRd = 5 dB. Figure 4 shows the normalized MSE

versus M for different numbers of keyholes nKH with MR and

ZF processing. When nKH = ∞, we have Rayleigh fading.

As expected, the MSE reduces when M increases. More

importantly, our proposed scheme works well even when M
is not large. Furthermore, we can see that the MSE does

not change much when the number of keyholes varies. This

implies the robustness of our proposed scheme against the

different propagation environments.

Note that, with the beamforming training scheme in [2],

we additionally have to spend at least K symbols on training

pilots (this is not accounted for here, since we only evaluate

MSE). By contrast, our proposed scheme does not require any

resources for downlink training. To account for the loss due to

training, we will examine the net throughput in the next part.
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nKH, using Algorithm 1. Here, SNRu = 0 dB, SNRd = 5 dB, and K = 10.

B. Downlink Net Throughput

The downlink net throughputs of three cases—use E {αkk},

DL pilots, and proposed schemes—are defined as:

SnoCSI
k = B

τd
τc
RnoCSI

k , (50)

Spilot

k = B
τd − τd,p

τc
Rpilot

k , (51)

Sblind
k = B

τd
τc
Rblind

k , (52)

where B is the spectral bandwidth, τc is again the coherence

interval in symbols, and τd is the number of symbols per

coherence interval allocated for downlink transmission. Note

that RnoCSI
k , Rpilot

k , and Rblind
k are the corresponding achievable

rates of these cases. Rblind
k is given by (44), while Rpilot

k

and RnoCSI
k can be computed by using (44), but ˆ̂αkk(1) is

replaced with the channel estimate of αkk using scheme

in [2] respectively E {αkk}. The term
τd
τc

in (50) and (52)

comes from the fact that, for each coherence interval of τc
samples, with our proposed scheme and the case of no channel

estimation, we spend τd samples for downlink payload data

transmission. The term
τd − τd,p

τc
in (51) comes from the fact

that we spend τd,p symbols on downlink pilots to estimate

the effect channel gains [2]. In all examples, we choose

B = 20 MHz and τd = τc/2 (half of the coherence interval

is used for downlink transmission).

We consider a more realistic scenario which incorporates

the large-scale fading and max-min power control:

• To generate the large-scale fading, we consider an

annulus-shaped cell with a radius of Rmax meters, and

the BS is located at the cell center. K + 1 users are

placed uniformly at random in the cell with a minimum

distance of Rmin meters from the BS. The user with

the smallest large-scale fading βk is dropped, such that

K users remain. The large-scale fading is modeled by
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Fig. 5. The cumulative distribution of the per-user downlink net throughput
for MR processing. Here, M = 100, K = 10, τc = 200 (τd = 100),
SNRd = 10SNRu, and B = 20 MHz.

path loss, shadowing (with log-normal distribution), and

random user locations:

βk = PL0

(
dk
Rmin

)υ

× 10
σsh·N(0,1)

10 , (53)

where υ is the path loss exponent and σsh is the standard

deviation of the shadow fading. The factor PL0 in (53) is

a reference path loss constant which is chosen to satisfy a

given downlink cell-edge SNR, SNRd. In the simulation,

we choose Rmin = 100, Rmax = 1000, υ = 3.8, and

σsh = 8 dB. We generate 1000 random realizations of

user locations and shadowing fading profiles.

• The power control control coefficients {ηk} are chosen
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Fig. 6. Same as Figure 5, but for ZF processing.

from the max-min power control algorithm [28]:

ηk =







1+ρdβk

ρdγk

(

1
ρd

K
∑

k′=1

1
γ
k′

+
K
∑

k′=1

β
k′

γ
k′

) , for MR,

1+ρd(βk−γk)

ρdγk

(

1
ρd

K
∑

k′=1

1
γ
k′

+
K
∑

k′=1

β
k′−γ

k′
γ
k′

) , for ZF.
(54)

This max-min power control offers uniformly good ser-

vice for all users for the case where the kth user uses

E {αkk} as estimate of αkk .

Figures 5 and 6 show the cumulative distributions of the

per-user downlink net throughput for MR respectively ZF

processing, under Rayleigh fading and single-keyhole chan-

nels. Here we choose M = 100, K = 10, τc = 200,

and SNRd = 10SNRu. As a baseline for comparisons, we

additionally add the curves labelled “perfect CSI”. These

curves represent the presence of a genie receiver at the

kth user, which knows the channel gain perfectly. For both

propagation environments, our proposed scheme is the best

and performs very close to the genie receiver. For Rayleigh
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Fig. 7. The average per-user downlink net throughput for MR processing.
Here, M = 100, SNRd = 10SNRu = 5 dB, and B = 20 MHz.

fading channels, due to the hardening property of the channels,

our proposed scheme and the scheme using statistical property

of the channels are comparable. These schemes perform better

than the beamforming training scheme in [2]. The reason is

that, with beamforming training scheme, we have to spend

τd,p pilot samples for the downlink training. For single-

keyhole channels, the channels do not harden, and hence, it is

necessary to estimate the effective channel gains. Our proposed

scheme improves the system performance significantly. At

SNRd = 5 dB, with MR processing, our proposed scheme

can improve the 95%-likely net throughput by about 20%

and 60%, compared with the downlink beamforming training

scheme respectively the case of without channel estimation.

With ZF processing, our proposed scheme can improve the

95%-likely net throughput by 15% and 66%, respectively.

The MSE of “use E {αkk}” does not depend on SNRd (see

Figures 2 and 3), but it depends on SNRu. In Figures 5 and

6, when SNRd increases, SNRu also increases, and hence, the
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Fig. 8. Same as Figure 5, but with long-term average power constraint (55).

per-user throughput gaps between the “use E {αkk}” curves

and the “perfect CSI” curves vary as SNRd increases.

Finally, we investigate the effect of the coherence interval

τc and the number of users K on the performance of our

proposed scheme. Figure 7 shows the average downlink net

throughput versus τc with MR processing for different K
in both Rayleigh fading and keyhole channels. The average

is taken over the large-scale fading. Our proposed scheme

overcomes the disadvantage of beamforming training scheme

in high mobility environments (short coherence interval), and

the disadvantage of statistical property-based scheme in non-

hardening propagation environments, and hence, performs

very well in many cases, even when τc and K are small.

VII. COMMENTS

A. Short-Term V.s. Long-Term Average Power Constraint

The precoding vectors ak in (8) and (9) are chosen to satisfy

a short-term average power constraint where the expectation
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of (6) is taken over only s(n). This short-term average power

constraint is not the only possibility. Alternatively, one could

consider a long-term average power constraint where the

expectation in (6) is taken over s(n) and over the small-scale

fading. With MR combining, the long-term-average-power-

based precoding vectors {ak} are

ak =
ĝk

√

E {‖ĝk‖2}
=

ĝk√
Mγk

, k = 1, . . . ,K. (55)

However, with ZF, the long-term-average-power-based pre-

coder is not always valid. For example, for single-keyhole

channels, perfect uplink estimation, and K = 1, we have

E

{∥
∥
∥

[

G
(
GHG

)−1
]

k

∥
∥
∥

2
}

, (56)

which is infinite.

We emphasize here that compared to the short-term average

power case, the long-term average power case does not make a

difference in the sense that the resulting effective channel gain

does not always harden, and hence, it needs to be estimated.

(The harding property of the channels is discussed in detail

in Section III.) To see this more quantitatively, we compare

the performance of three cases: “use E {αkk}”, “DL pilots

[2]”, and “proposed scheme” for MR with long-term average

power constraint (55). As seen in Figure 8, under keyhole

channels, our proposed scheme improves the net throughput

significantly, compared to the “use E {αkk}” case.

B. Flaw of the Bound in [2], [11]

In the above numerical results, the curves with downlink

pilots are obtained by first replacing ˆ̂αkk(1) in (44) with

the channel estimate obtained using the algorithm in [2], and

then using the numerical technique discussed in Remark 2 to

compute the capacity bound.

Closed-form expressions for achievable rates with downlink

training were given in [2, Eq. (12)] and [11]. However, those

formulas were not rigorously correct, since {akk′} are non-

Gaussian in general (even in Rayleigh fading) and hence the

linear MMSE estimate is not equal to the MMSE estimate;

the expressions for the capacity bounds in [2], [11] are

valid only when the MMSE estimate is inserted. However,

the expressions [2], [11] are likely to be extremely accurate

approximations. A similar approximation was stated in [12].

C. Using the Capacity Bounding Technique of [8], [10]

It may be tempting to use the bounding technique in [8],

[10] to derive a simpler capacity bound as follows (the index

n is omitted for simplicity of notation):

i) Divide the received signal (7) by the channel estimate
ˆ̂αkk ,

y′k =
yk√

ρdηk ˆ̂αkk

=
αkk

ˆ̂αkk

sk +

K∑

k′ 6=k

√
ηk′

ηk

αkk′

ˆ̂αkk

sk′ +
wk√

ρdηk ˆ̂αkk

. (57)
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Fig. 9. The cumulative distribution of the per-user downlink net throughput
for MR and ZF processing. Here, M = 100, K = 10, τc = 200 (τd = 100),
SNRd = 10SNRu = 5 dB, and B = 20 MHz.

ii) Rewrite (57) as the sum of the desired signal multiplied

with a deterministic gain, E

{
αkk

ˆ̂αkk

}

sk, and remaining

terms which constitute uncorrelated effective noise,

y′k = E

{
αkk

ˆ̂αkk

}

sk +

(
αkk

ˆ̂αkk

− E

{
αkk

ˆ̂αkk

})

sk

+
K∑

k′ 6=k

√
ηk′

ηk

αkk′

ˆ̂αkk

sk′ +
wk√

ρdηk ˆ̂αkk

. (58)

The worst-case Gaussian noise property [26] then yields the

capacity bound (59), shown at the top of the next page. This

bound does not require the complicated numerical computation

given in Section V. However, this bound is tight only when

the effective channel gain αkk hardens, which is generally not

the case under the models that we consider herein.

More quantitatively, Figure 9 shows a comparison between

our new bound (44) and the bound (59). The figure shows

the cumulative distributions of the per-user downlink net
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RUnF
k = log2







1 +

∣
∣
∣E

{
αkk

ˆ̂αkk

}∣
∣
∣

2

Var

{
αkk

ˆ̂αkk

}

+
K∑

k′ 6=k

ηk′

ηk
E

{∣
∣
∣
αkk′

ˆ̂αkk

∣
∣
∣

2
}

+ 1
ρdηk

E

{

1

| ˆ̂αkk|2
}








. (59)

throughput for MR and ZF processing, for the same setup

as in Section VI-B. In Rayleigh fading, the throughputs for

the three cases “use E {αkk}”, “bound (59)”, and “proposed

bound (44)”, are very close, and hence, relying on statistical

channel knowledge (E {αkk}) for signal detection is good

enough – obviating the need for the bound in (59). In in

keyhole channels, the bound (59) is significantly inferior to

our proposed bound. Therefore, the bound (59) is of no use

neither in Rayleigh fading nor in keyhole channels.

VIII. CONCLUSION

In the Massive MIMO downlink, in propagation environ-

ments where the channel hardens, using the mean of the

effective channel gain for signal detection is good enough.

However, the channels may not always harden. Then, to reli-

ably decode the transmitted signals, each user should estimate

its effective channel gain rather than approximate it by its

mean. We proposed a new blind channel estimation scheme at

the users which does not require any downlink pilots. With this

scheme, the users can blindly estimate their effective channel

gains directly from the data received during a coherence

interval. Our proposed channel estimation scheme is computa-

tionally easy, and performs very well. Numerical results show

that in non-hardening propagation environments and for large

numbers of BS antennas, our proposed scheme significantly

outperforms both the downlink beamforming training scheme

in [2] and the conventional approach that approximates the

effective channel gains by their means.

APPENDIX

A. Derivation of (20)

We have,

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 =

1

β2
kM

2
E

{

‖gk‖4
}

− 1

β2
kM

2

(

E

{

‖gk‖2
})2

=
1

β2
kM

2
E

{

‖gk‖4
}

− 1

=
1

M2
E







∣
∣
∣
∣
∣

nk∑

i=1

nk∑

n=1

(

c
(k)
i a

(k)
i b

(k)
i

)H

c(k)n a(k)n b(k)
n

∣
∣
∣
∣
∣

2





− 1

=
1

M2
E







∣
∣
∣
∣
∣
∣

nk∑

i=1

∥
∥
∥b̃

(k)
i

∥
∥
∥

2

+

nk∑

i=1

nk∑

n6=i

(

b̃
(k)
i

)H

b̃(k)
n

∣
∣
∣
∣
∣
∣

2






−1, (60)

where b̃
(k)
i , c

(k)
i a

(k)
i b

(k)
i . We can see that, the terms in the

double sum have zero mean. We now consider the covariance

between two arbitrary terms:

E

{(

b̃
(k)
i

)H

b̃(k)
n

((

b̃
(k)
i′

)H

b̃
(k)
n′

)∗}

,

where i 6= n, i′ 6= n′, and (i, n) 6= (i′, n′). Clearly, if (i, n) 6=
(n′, i′), then

E

{(

b̃
(k)
i

)H

b̃(k)
n

((

b̃
(k)
i′

)H

b̃
(k)
n′

)∗}

= 0.

If (i, n) = (n′, i′), the we have

E

{(

b̃
(k)
i

)H

b̃(k)
n

((

b̃
(k)
i′

)H

b̃
(k)
n′

)∗}

= E
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(k)
i

)H

b̃(k)
n

(

b̃(k)
n

)T (

b̃
(k)
i

)∗
}

= 0, (61)

where we used the fact that if z is a circularly symmetric com-

plex Gaussian random variable with zero mean, then E
{
z2
}
=

0. The above result implies that the terms
(

b̃
(k)
i

)H

b̃
(k)
n [inside

the double sum of (60)] are zero-mean mutual uncorrelated

random variables. Furthermore, they are uncorrelated with
∑nk

i=1

∥
∥
∥b̃

(k)
i

∥
∥
∥

2

, so (60) can be rewritten as:
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−1. (62)

We have,

Term1 =
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where we have used the identity that if z ∼ CN (0, In), then

E

{

‖z‖4
}

= n(n+ 1).
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Furthermore, we have
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Substituting (63) and (64) into (62), we obtain

Var

{

‖gk‖2
}

(

E

{

‖gk‖2
})2 =

(

1 +
1

M

) nk∑

i=1

∣
∣
∣c

(k)
i

∣
∣
∣

4

+
1

M
. (65)

B. Derivation of (28)

Here, we provide the proof of (28).

• With MR, for both Rayleigh and keyhole channels, gk

and ak′ are independent, for k 6= k′. Thus, we have

E
{
|αkk′ |2

}
= E

{
aHk′gkg

H
k ak′

}

= βkE

{

‖ak′‖2
}

= βk. (66)

• With ZF, for Rayleigh channels, the channel estimate ĝk

is independent of the channel estimation error g̃k. So g̃k

and ak′ are independent. In addition, from (9), we have

ĝH
k ak′ = 0, k 6= k′,

and therefore,

E
{
|αkk′ |2

}
= E

{
|gH

k ak′ |2
}

= E
{
|g̃H

k ak′ |2
}

= E
{
aHk′ g̃kg̃

H
k ak′

}

= (βk − γk)E
{

‖ak′‖2
}

= βk − γk. (67)
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