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Abstract
The length of the growing season has a large influence on the carbon, water and energy 

fluxes of global terrestrial ecosystems. While there has been mounting evidence of an 

advanced start of the growing season mostly due to elevated spring air temperatures, the 

mechanisms that control the end of the growing season (EOS) in most ecosystems remain 

relatively less well understood. Recently, a strong lagged control of EOS by growing season 

photosynthesis has been proposed, suggesting that more productive growing seasons lead to 

an earlier EOS. However, this relationship has not been extensively tested with in-situ 

observations across a variety of ecosystems. Here, we use observations from 40 eddy-

covariance flux tower sites in temperate and boreal ecosystems in the northern hemisphere 

with more than 10 years of observations (594 site-years), ground observations of phenology, 

satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 

three leaf senescence models to test the extent of a relationship between growing season 

photosynthesis and end of season senescence. The results suggest that there is no 

significant negative relationship between growing season photosynthesis and observed leaf 

senescence, flux-inferred EOS estimates, or remotely sensed phenological metrics, in most 

ecosystems. On the contrary, while we found negative effects of summer air temperatures 

and autumn vapor pressure deficit on EOS, more productive growing seasons were typically 

related to a later, not earlier, EOS. Our results challenge recent reports of carry-over effects 

of photosynthesis on EOS timing, and suggest those results may not hold over a large range 

of ecosystems.

1. Introduction
Global terrestrial ecosystems take up around one third of human emission of CO2 

(Friedlingstein et al., 2020). With recent climate change, the seasonality of terrestrial 

ecosystems, a sensitive indicator of biosphere-climate interactions, has been reported to be 

changing (Piao et al., 2007; Seddon et al., 2016). Longer growing seasons have been 

associated with increased carbon uptake by many ecosystems (Keenan et al., 2014), but the 

dominant controls of the growing season length remain relatively poorly understood.



The start of growing season (SOS) has been found to have advanced in most ecosystems 

and is known to be largely controlled by air temperature in temperate and boreal ecosystems 

(Chmielewski & Rötzer, 2002; Song et al., 2010; Yu et al., 2013). However, modelling of the 

timing of the end of growing season (EOS) has been challenging, as the mechanisms that 

control the EOS have not been thoroughly investigated or well understood (Lang et al., 2019; 

Zhang et al., 2020), and many studies found a much smaller scale of EOS changes compared 

with the SOS changes (Jeong et al., 2011; Park et al., 2016). There are many factors that 

may contribute to the changes of EOS, such as the limiting factors of plant productivity of air 

temperature, radiation, soil moisture and VPD (Archetti et al., 2013; Körner & Basler, 2010). 

At the same time, other factors such as nutrient supply, sink limitation and photoperiod, as 

well as a potential influence of soil moisture limitation on EOS globally (Buermann et al., 

2018; Liu et al., 2016; Lian et al., 2021) may also play a role in EOS changes. 

Recently, it has been suggested that growing season photosynthesis may have a significant 

negative impact on EOS in some plants. That is to say, if the plants had a very productive 

growing season, they are more likely to senesce their leaves early (Zani et al., 2020). Zani et 

al., (2020) used observations from the European Phenology Network and controlled 

experiments to test the effects of growing season photosynthesis on the timing of leaf 

senescence and found that more productive growing seasons led to earlier leaf senescence 

in central European forests. They hypothesized a strong role of sink limitation in these 

species. However, they modelled the gross primary productivity (GPP) following the Lund-

Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) model, which may introduce 

some uncertainties due to the model parameterization, and the study was limited to specific 

species in central Europe. Also, their results contradict the findings of most free-air CO2 

enrichment (FACE) experiments, in which the leaf senescence dates are typically either 

delayed or remained unchanged (Norby, 2021). An earlier senescence under higher GPP 

would have large implications for expected EOS changes under climate change, but further 

testing with more diverse and distributed phenology and photosynthesis observations is 

needed.

Typically, phenological metrics of different species are recorded by visual observations, or 

digital cameras at specific sites (Richardson et al., 2018a). The most successful efforts 

include the European phenology network and the USA National Phenology Network that 

provide more than 60 years of observations (van Vliet et al., 2003). In recent years, the 

seasonal cycles of remotely sensed observations such as vegetation indices (VIs), sun-

induced fluorescence and vegetation optical depth, and flux tower observations have also 

been widely used to estimate key phenological metrics at landscape and larger scales 

(D’Odorico et al., 2015; Gonsamo et al., 2012; Joiner et al., 2014; Wu et al., 2017; Yang & 

Noormets, 2021; Zhang et al., 2019). These metrics provide insight into the changes of 

seasonal cycles of greenness and/or carbon fluxes in a diverse array of ecosystems, with 



significant potentials for understanding phenology-climate interactions (Tang et al., 2016). 

These global and regional observations also provide a unique opportunity to test phenological 

hypotheses in different ecosystems, particularly when co-located eddy-covariance (Novick et 

al., 2018; Pastorello et al., 2020), ground and remote sensing observations can be combined.

In this study, we used flux observations from 40 eddy-covariance sites that have 

measurement records of more than 10 years to test the relationship between growing season 

photosynthesis and EOS across a variety of ecosystems. These sites represent a large 

subsection of main biomes in North America and Europe (8 biome types according to the 

International Geosphere-Biosphere Program (IGBP)) from 1992 to 2017 and have a total of 

589 site-years of observations. In addition, we used long-term ground phenological records 

co-located with eddy-covariance measurements at a site in the northeastern US (Harvard 

Forest), along with phenological metrics from the MODIS global land cover dynamics product 

at all sites studied, and three leaf senescence models. Doing so, we aim to address the 

following questions:

1) Are there significant carry-over effects of growing-season photosynthesis on EOS in most 

sites and ecosystems?

2) What are the most important factors that contribute to EOS changes?

3) Does the introduction of growing-season photosynthesis improve model predictions of 

EOS?

2. Methods and materials

2.1 Flux tower measurements
We used 40 sites from the FLUXNET 2015 dataset (http://fluxnet.fluxdata.org/, (Baldocchi, 

2008; Pastorello et al., 2020)) and AmeriFlux (https://ameriflux.lbl.gov/, (Novick et al., 2018; 

Keenan et al., 2019)) in this study (Table S1). We focused on ecosystems that had a strong 

seasonal cycle of photosynthesis (e.g., no tropical sites were selected). Also, we removed 

sites that had a double growing season (i.e., double peaks in the growing season GPP most 

likely due to site management and/or water stress), as indicated by the GPP time series (Fig. 

S1). For sites in both the FLUXNET 2015 and AmeriFlux databases, we chose the source 

with a longer record of observations.

For 12 out of 15 sites within AmeriFlux that do not provide gap-filled and partitioned data, we 

used the R package REddyProc to gap-fill and partition net ecosystem change (NEE) into 

GPP and ecosystem respiration (REco) using the nighttime partitioning model (Reichstein et al., 

2005, Wutzler et al., 2018). Similar results were found when using the daytime partitioning 

method (Fig. S2, Lasslop et al., 2010).

To determine growing season photosynthesis, we summed up the hourly or half-hourly GPP 



within the period. We determined the start of the growing season as outlined in section 2.4 

and used the first day that has daylength of fewer than 11.2 hours as the end date for the 

calculation of end of growing season photosynthesis (in order to avoid introducing spurious 

correlations between EOS and growing season photosynthesis, following Zani et al., 2021). 

Also, following the method used in Fu et al., 2017, we calculated the environmental conditions 

(air temperature (Tair), vapor pressure deficit (VPD) and global radiation (Rg)) in different 

seasons in the Northern Hemisphere (Summer: June, July and August; Fall: September, 

October and November).

2.2 Phenological records from Harvard Forest
We used observations from the Phenology of Woody Species at Harvard Forest dataset from 

1991 to 2017, obtained from the Harvard Forest Data Archive (hf003-08, O’Keefe, 2019; 

Richardson et al., 2006). Phenological observations (spring and fall) have been recorded for 

more than 33 woody species around the Harvard Forest starting from 1991 (for spring 

phenology) and 1992 (for autumn phenology). Leaf phenology dates were recorded by 

looking at the percentage of the leaves that have emerged (spring) and dropped (fall). We 

used the dates within the dataset when 50% of leaves have emerged or dropped each year. 

The mean fall dates at species-level provided with the data set were used and we focused on 

the two dominant species within the eddy-covariance tower footprint, i.e., Red Oak and Red 

Maple, in the forest (Finzi et al., 2020).

2.3 MODIS global land dynamics product
We used the MODIS land cover dynamics product (MCD12Q2, (Zhang et al., 2003)) 

downloaded from Oak Ridge National Laboratory's Distributed Active Archive Center (with a 

spatial resolution of 500 m, combined from Terra and Aqua, collection 6). This dataset 

provides a global estimate of several phenological metrics since 2001. Technically, it 

identifies phenological metrics derived from the seasonal time series of MODIS-observed 

enhanced vegetation index (EVI). The original EVI time series was gap-filled and smoothed, 

and then fit to a logistic model. Detailed information of the process can be found in Zhang et 

al., (2003), Zhang et al., (2006) and Ganguly et al., (2010). We used the date when EVI last 

crossed 15% (the MCD12Q2 Dormancy date) of the segment EVI amplitude, EOS, as the leaf 

senescence metric. We only used the pixel on which the flux tower centered from the 

MCD12Q2 data set.

2.4 Determination of phenological metrics from flux measurements
To determine the phenological metrics (i.e., SOS and EOS) from flux-estimated GPP, we 

applied a widely used double-logistic curve fitting method (Gonsamo et al., 2012). The 

method has proven to work well in most sites and ecosystems (D’Odorico et al., 2015; Lu et 

al., 2018). To retrieve the key phenological dates, we used the half-hourly GPP estimates 

from the FLUXNET or AmeriFlux data sets. First, we summed up the gap-filled half-hourly 

GPP at the daily scale; then, we filtered out years when the data coverage was not sufficient 



(fewer than 100 days of GPP estimates); finally, we fit the daily GPP time series to the 

following double-logistic model:

                               (1)

The seven free parameters (a1, a2, a3, b1, b2, d1 and d2) were determined using non-

linear curve fitting. a2 – a1 and a3 – a1 represent the difference between the winter 

background value and the amplitude of the summer peak growing season values. d1 and 

d2 are the transition curvature parameters, while b1 and b2 are the midpoints in DOYs of 

these transitions for green-up and senescence/abscission, respectively. 

This method identifies the SOS as the start of the slope of the ascending curve and EOS is 

identified as the end of the descending curve (the inflection point). We followed the method 

used in Gonsamo et al., (2012) to identify the thresholds from the logistic model (1), which 

estimates the SOS and EOS as:

                                                       (2)

                                                       (3)

We compared the EOS estimates from both flux tower estimated GPP and remotely sensed 

EVI (Fig. S3). The EOS estimated by the two methods were comparable, but mismatches can 

be evident in some ecosystems. Overall, we found that the flux-inferred and remotely sensed 

EOS metrics were significantly correlated (p < 0.01), and especially for deciduous broadleaf 

forest (DBF) and mixed forest (MF) sites, though GPP EOS had a higher dynamic range in all 

ecosystems. For ecosystems where the seasonality of canopy greenness is more difficult to 

detect (e.g., grassland, GRA), the two EOS estimates varied substantially.

In order to compare the relationship between growing season photosynthesis, leaf 

senescence metrics and environmental conditions, we linearly detrended all time series in 

order to reduce the likelihood of extraneous correlations.     

2.5 Modelling of leaf senescence dates
First, to analyze the relationship between environmental factors and the timing of 

senescence, we developed structural equation models using the Structural Equation 

Models Optimization in Python (semopy) package (Igolkina & Meshcheryakov, 2020). This 

package provides a concise way to test the structural relationships between different 

variables and to build structural equation models. We used structural equation models to 

compare three different ways of empirically predicting the EOS using environmental 

conditions. In model a, we used all environmental variables (summer and autumn Tair, 

summer and autumn Rg, summer and autumn VPD) to predict the EOS directly; in model b, 

we used summer environmental variables (summer Tair, summer Rg and summer VPD) to 

predict the growing season photosynthesis and used predicted growing season 

photosynthesis with autumn environmental variables (autumn Tair, autumn Rg and autumn 



VPD) to predict the EOS; in model c, we used growing season photosynthesis from flux 

observations and the autumn environmental variables (autumn Tair, autumn Rg and 

autumn VPD) to predict the EOS.

     

In addition, we compared three different process-oriented leaf senescence models by 

examining their performance for predicting autumn senescence dates at the Harvard forest 

site. The first model we assessed is the cold-degree day model that combines the use of both 

air temperature and photoperiod (Delpierre et al., 2009). When thresholds of air temperature 

(Tb) and photoperiod (Pstart) are reached, the control of air temperature and photoperiod over 

autumn leaf senescence is modelled via the cumulative cold-degree days as follows:

                                              (4)

Where the CDD(d) is the cold-degree day at day(d) with the air temperature of T(d) and 

photoperiod P(d). Then the CDD(d) of each day is accumulated. The modeled leaf 

senescence date (Ymod) was set as the first day that the accumulated CDD (aCDD) reached 

a critical threshold as follows:

                                             (5)

Here, Ycrit is a threshold to be determined. In this manuscript, we refer to this model as the 

CDD model. 

It has also been reported that spring phenology is associated with autumn phenology, and 

a revised version of the CDD model has been proposed to accommodate these effects 

(Keenan and Richardson, 2015). In this spring phenology influenced autumn phenology 

model (SIAM), the threshold of Ycrit is set as:

                                                (6)

Here, Sa is the spring phenology anomaly of the associated years. Also, as Zani et al., 

(2020) suggests, growing season photosynthesis might have an impact on the end of the 

growing season. We therefore also modified the model as follows to represent this 

hypothesis:

                                             (7)

Here, the GPP represents the growing season canopy photosynthesis. In this manuscript, 

we referred to this model as the photosynthesis-influenced autumn phenology (PIA) model. 

To estimate the free parameters in the three different models, we used the Pymcmcstat 

Markov-chain Monte Carlo python package (Miles, 2019). We estimated the parameters 

used in the three models 100 times, and sampled parameters resulting in the 95th 

percentile of model performance.



To examine differences in projections of future autumn phenology change from the 3 

different autumn phenology models, we estimated the delays of autumn senescence date 

across 5 °C of projected future temperature changes. For the SIAM model, we predicted 

the sensitivities of spring phenology dates to air temperature to be 3 d-1 °C-1 according to 

the model ensemble assessed in (Migliavacca et al., 2012). For the PIA model, we 

predicted a 6 gC yr-1 m-2 °C-1 increase of growing season photosynthesis with the increase in 

air temperature as this is the overall slope at Harvard Forest according to our results.

3. Results

3.1 No evidence for the carry-over effects of growing season photosynthesis on EOS
At the site level, we focused on the observations from Harvard Forest, which provide a long-

term record of eddy-covariance measurements and phenological metrics of Red Oak (the 

most dominant species in the forest, Fig. S4). We found positive but non-significant 

relationships between growing season photosynthesis and EOS dates either when using 

ground phenological records or MODIS estimates (p > 0.05).

We then examined the relationship between growing season photosynthesis and flux-

estimated EOS across different ecosystems in the eddy-covariance flux network (Fig. 1). We 

found a significant and positive relationship between growing season photosynthesis and 

EOS in evergreen needleleaf forest sites (ENF) (slope = 0.24, p = 0.02). In other ecosystems, 

however, we did not find significant relationships between them. In DBF, GRA, and MF sites, 

we found a positive yet non-significant growing season GPP – EOS relationship. When all 

sites were pooled together, we found a significant and positive, though weak, relationship 

between growing season photosynthesis and flux-estimated EOS (slope = 0.1, p = 0.01).

We also tested the relationships between growing season photosynthesis and MODIS EOS in 

different sites and ecosystems. Except for MF sites, where we found a negative yet non-

significant relationship between growing season photosynthesis and remotely sensed EOS 

(slope close to 0, p = 0.97), the growing season photosynthesis-EOS relationship tends to be 

positive yet non-significant. Overall, we found no significant relationship between growing 

season photosynthesis and remotely sensed EOS (slope = 0.03, p = 0.27).

Fig. 1. The relationship between growing season gross primary productivity (GPP) and 

phenological end of season (EOS) metrics from eddy-covariance (EC) observations or 

MODIS observations at deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), 

mixed forest (MF), grassland (GRA) and all sites (ALL). All the time series have been 

detrended and the differences introduced by different sites were set as random effects.

3.2 Control of environmental factors over EOS in different ecosystems
We examined the multi-variable relationships between environmental factors and EOS 



metrics in different ecosystems. First, we performed a partial correlation analysis between 

different environmental variables and EOS estimates at Harvard Forest (Fig. 2). For ground 

observations of Red Oak, we found a positive partial correlation between growing season 

photosynthesis and leaf senescence metrics, while we found weaker positive relationships 

with MODIS remotely sensed metrics. We also found contrasting effects of global radiation 

(Rg), air temperature and VPD in the spring and in the autumn. Both data sets indicated that 

higher summer Rg, lower summer temperature and lower summer VPD were associated with 

a later EOS; while more autumn Rg, higher autumn air temperature and higher autumn VPD 

led to an earlier EOS.

Fig. 2. Partial correlations between environmental variables and end of growing season 

(EOS) in Harvard forest using ground phenological records (a) and the MCD12Q2 product (b). 

The environmental variables included here were growing season photosynthesis 

(Photosynthesis), summer global radiation (Rg), autumn Rg, summer air temperature (Tair), 

autumn Tair, summer vapor pressure deficit (VPD), and autumn VPD. All the time series have 

been detrended. Here, summer is defined as June, July and August while fall is defined as 

September, October and November.

At the cross-site scale, we found more complicated relationships between flux-estimated EOS 

and different environmental variables (Fig. 3). First, we did not find growing season 

photosynthesis to be the most important factor when it came to predicting EOS in any of the 

ecosystems. In all ecosystems, we found a positive contribution (partial correlation) between 

growing season photosynthesis and EOS (r = 0.12, 0.11, 0.03 and 0.32 for DBF, ENF, MF 

and GRA sites respectively). Overall, we found a positive partial correlation between growing 

season photosynthesis and EOS (r = 0.12). The controls of environmental factors were 

different in different ecosystems; and the same environmental factors exhibited different 

impacts in different seasons. For global radiation, for example, the autumn Rg contributed 

most positively to the variation of EOS expect for GRA; while the summer Rg effects were 

mixed in different ecosystems (marginal effects found in ENF, while positive effects were 

found in DBF sites and negative effects in GRA and MF sites). For air temperature, 

interestingly, we found that summer Tair contributed mostly negatively to EOS (although 

sometimes marginally) except for GRA sites; while the autumn Tair contributions were mixed in 

different ecosystems we tested. Finally, for VPD, we also found that summer VPD effects 

were mostly positive except for GRA sites, while the autumn VPD effects were all negative. 

Overall, when all sites were used, we found a marginal contribution of summer Rg; positive 

contributions of autumn Rg, autumn Tair and summer VPD; negative contributions of summer 

Tair and autumn VPD.

Fig. 3. Partial correlations between detrended environmental variables and flux-derived EOS 

in different ecosystems. The environmental variables tested include growing season 



photosynthesis, summer global radiation (Rg), autumn Rg, summer air temperature (Tair), 

autumn Tair, summer vapor pressure deficit (VPD), and autumn VPD. All the time series have 

been detrended. The overall linear regression model performance (correlation) using all 

predictors were labeled.

3.3 The introduction of growing season photosynthesis did not improve EOS 
predictions
Using a structural equation model analysis, we found that the introduction of growing season 

photosynthesis did not improve the overall model performance when using all DBF sites (Fig. 

4). We tested three different structural equation models. In the first model, we used a simple 

multiple linear regression model to predict EOS using only meteorological variables (R = 

0.43). In the second model, we used summer environmental factors to predict growing season 

photosynthesis, and then used the growing season photosynthesis and autumn 

environmental factors to predict EOS (R = 0.34). Finally, we used flux-estimated 

photosynthesis along with autumn environmental factors to predict EOS (R = 0.39). We found 

positive coefficients of photosynthesis in the latter two models (β = 0.06 for model b and β = 

0.06 for model c).

Fig. 4. Analysis of the flux-inferred end of growing season in deciduous broadleaf forest 

(DBF) sites with three different structural equation models (see the method section). The β 

coefficients determined for each predictor in the structural equation models are denoted, with 

significant coefficients (p < 0.05) denoted with a *. The end of growing season (EOS) and 

predictors at each site have been detrended. (a) predicts EOS using the direct influence of 

environmental variables; (b) predicts EOS using the direct influence of environmental 

variables along with the indirect influence through predicted photosynthesis, and (c) predicts 

EOS using the direct influence of both environmental variables and eddy-covariance inferred 

estimates of growing season photosynthesis.

At Harvard Forest, we also tested the performance of three different end of growing season 

models to predict the leaf senescence dates (Table 1). In the resulting comparison it is 

important to note that the number of free parameters is different in different models: the CDD 

model requires three free parameters while the SIAM and PIA models require four free 

parameters. The results showed that the performance of the three models was generally 

comparable. Overall, however, we found that the PIM model, which introduced the growing 

season photosynthesis predictor, underperformed the CDD and the SIAM model. For Red 

Oak, the most dominant species in the forest, all three models did a relatively worse job when 

predicting the leaf senescence date, though within a comparable range to previous studies for 

other species at the forest (Keenan and Richardson, 2015).

Table 1. The model performance in predicting leaf senescence date at Harvard Forest. Here, 

the CDD, SIAM and PIA model represent the cold degree days model, spring phenology 



impacted autumn phenology model and the photosynthesis impacted phenology model, 

respectively; and the RMSE denotes the root mean square error of each model.

Model Red Oak Red Maple
Correlation RMSE Correlation RMSE

CDD 0.48 4.87 0.65 2.63
SIAM 0.48 4.87 0.70 2.48
PIA 0.44 4.93 0.63 2.67

While the three models (CDD, SIAM and PIA) showed similar performance for estimating 

the autumn senescence date, their predictions of future autumn senescence delays 

diverged (Fig. 5). Using the parameterized models, we found a similar response of 

autumn senescence delays in both the CDD and PIA models. This was mainly due to the 

fact that the coefficient relating growing season photosynthesis and the threshold of 

autumn senescence was estimated to be small in the PIA model. In both species, we 

also found that the SIAM model tended to predict a smaller delay in autumn senescence 

dates, especially for Red Maple where the SIAM model performed the best. The 

divergent predictions by different models despite similar performance for long-term 

observations of natural variability points to the need for future studies, especially 

controlled experiments, to fully tease apart the controls of autumn senescence to rising 

temperature.

Fig. 5. Projections of future delays in autumn senescence dates with increasing air 

temperature, as estimated by three different models. The error bars indicate the standard 

deviations of the predictions within the 95th percentile of model performance from the 

MCMC process.

4. Discussion

4.1 The carry-over effects of “growing season photosynthesis” on EOS
In the present study, our primary objective was to use flux tower observations from 40 sites 

across the temperate and boreal ecosystems in the Northern Hemisphere to test the carry-

over effect hypothesis, which proposed significant negative effects of growing season 

photosynthesis on the date of leaf senescence and the end of the growing season (Zani et al., 

2020).

We did not find significant carry-over effects in the ground and remote sensing observations 

for Harvard Forest, nor in most of the eddy-covariance ecosystems examined. For instance, 

we found positive but insignificant relationships in all three ground-observed phenological 

records at Harvard Forest. On the contrary, we found that in most sites, a more productive 

growing season either led to a delayed EOS or contributed little to the changes of EOS. 



In addition, we also tested the possible improvement of model performance by introducing the 

use of growing season photosynthesis. We found that the growing season photosynthesis 

influenced models did not outperform the previous empirical models (structural equation 

model) or process-based models (CDD and SIAM models). And with future warming, our 

results show that model choice can lead to considerable differences in the future phenological 

shifts. This is true even in the absence of considering a CO2 effect on photosynthesis, which 

would likely lead to more divergent predictions between the CDD and PIA models. That said, 

our results indicate small, and in most cases positive, coefficients between growing season 

GPP and Ycrit, which suggests that incorporating a CO2 effect on photosynthesis is unlikely to 

greatly influence PIA model projections for our studied sites.

Our findings contrast with recent results from Zani et al., 2020, which report a strong influence 

of growing season photosynthesis on autumn senescence. The differences may result from 

several factors, including differences in the methods used, ecosystems focused on, and 

geographical and environmental patterns. First, the methods used in the two studies have 

notable differences. In Zani et al., 2020, the results were based on a model of growing season 

photosynthesis; in the present study, however, we used flux tower estimated GPP based on 

direct eddy covariance observations. Also, Zani et al., 2020 used phenology records from 

central Europe, while we use phenology estimates across a broad geographical range of 

boreal and temperate North America and Europe, made from multiple approaches (the flux-

estimated, remotely sensed and ground observations at Harvard Forest).

     

In addition, the ecosystems of interest are different. In the present study, we focused on 8 

different types of biomes across North America and Europe, while the Zani et al., 2020 study 

mostly focused on central Europe deciduous forests. The carry-over effects, especially the 

effects as predicted from the sink limitation hypothesis proposed as an explanation of their 

observations by Zani et al. (2020), are most likely to happen in ecosystems in which nutrients, 

water and/or sink capacity are more likely to be limiting factors (Fatichi et al., 2014). We did 

find, however, that growing season photosynthesis contributed marginally negatively to 

remotely sensed EOS in evergreen needleleaf forests when using the nighttime partitioning 

method (most of the ENF sites are in the boreal ecosystems where there might be sink 

limitations, see Fig. S2).

     

Finally, the geographical and environmental patterns for the sites tested in the two studies are 

also different. For instance, the soil nutrient availability of the Central Europe forests may be 

very different that of the other sites we tested (Ackerman et al., 2019). 

4.2 The environmental controls over EOS in different ecosystems
We examined how the environmental variables in the autumn and in the previous seasons 

contributed to the changes of EOS in different ecosystems. Air temperature in summer and in 



autumn were one of the most important factors that determined the EOS in different 

ecosystems (Fig. 3). This indicated that air temperature was contributing largely to the EOS in 

different ecosystems, similar to results found in Zhang et al., 2020. Also, we found that 

autumn VPD contributed negatively to the EOS timing, while the effects of summer VPD were 

mostly positive in different ecosystems. These results indicated that the water limitation 

possibly contributed to an earlier EOS.

At the same time, we found that the environmental controls over EOS could be different in 

different sites. For instance, in most ecosystems, the results indicated that the summer air 

temperature was negatively correlated with EOS in most ecosystems while we found a 

positive correlation in GRA sites. One possible explanation can be that the two GRA sites 

used in the present study (CA-Let, annual mean air temperature at 5.4 °C and IT-Mbo, annual 

mean air temperature at 5.1 °C) are both in cold regions and the warmer air temperature was 

usually associate with productive and lengthier growing season. To sum up, the 

environmental controls of EOS can be complex and different at different sites and in different 

ecosystems. Overall, we failed to find a negative carry-over effect of growing season 

photosynthesis on EOS.

Due to the complex controls on EOS in different ecosystems, future studies based on 

controlled experiments would be exceptionally beneficial. For instance, Zani et al., 2020 

tested the hypothesis of sink limitation with three groups with different treatments and found 

that growing season photosynthesis had a negative relationship with the leaf senescence 

date. However, Norby et al., (2021) pointed out that in most FACE experiments, some of 

which also have a warming component, the leaf senescence dates in most experiments were 

either delayed or unchanged. Networks of phenological measurements such as PhenoCam 

(Richardson et al., 2018a) combined with flux measurement and or other experiments could 

also be of significance, especially for testing the sink limitation hypothesis (Richardson et al., 

2018b).

4.3 Matches and mismatches between flux estimated and remotely sensed 
phenological metrics
Remote sensing of terrestrial ecosystem phenology is challenging, especially in ecosystems 

with low seasonality (e.g., ENF) or with significant snow presence (e.g., arctic tundra 

ecosystems). For instance, White et al., 2009 found that even when using the same input 

data sets, the derived remotely sensed phenological metrics are largely method dependent in 

Northern America. Also, Wu et al., 2017 found that the NDVI-estimated phenological metrics 

matched poorly with flux-tower estimated photosynthesis phenology metrics. Recently, Lu et 

al., 2018 found that satellite-observed SIF outperformed conventional VIs when estimating 

phenological metrics even with much coarser spatial resolutions at relatively homogeneous 

sites (~50 km). In the present study, we used the MODIS land dynamics product (MCD12Q2) 



as it is one of the few publicly available datasets that have phenological metrics from satellite 

observations globally, and previous studies have shown that it effectively captures 

phenological dynamics (D’Odorico et al., 2015).

It is also worth noting that methods such as the double logistic curve fitting method to 

determine EOS used in this study assume that there is an inflection point within the time 

series of GPP. In the autumn, however, the senescence of photosynthesis can be more 

subtle, and the inflection points can be more difficult to detect. For instance, we found that the 

MODIS phenological metrics performed better in DBF sites where the inflection points were 

more significant. Overall, when comparing all sites, we found a significant relationship 

between flux-estimated and remotely sensed phenological metrics (Fig. S3).

We also compared the predictability of the two EOS metrics by using a linear regression 

model that used all predictors (Table 2). The results indicated that overall, in DBF, MF and 

GRA sites, the flux tower inferred EOS are more predictable than the MODIS phenology 

products; while in ENF, the remotely sensed metrics from MODIS are easier to predict. This 

may result from the subtle and slow changes of GPP in the fall in ENF sites. In summary, we 

argue that flux estimated and remotely sensed phenological metrics both contain meaningful 

information despite the mismatches in some cases.

Table 2. Comparison of predictability (R) of flux tower inferred and remotely sensed end of 

growing season EOS in deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), 

mixed forest (MF), grassland (GRA) and ALL sites. Here, we used the International 

Geosphere-Biosphere Program (IGBP) scheme to identify the biome types of different sites, 

and the values in the table indicate the correlation between a multiple linear model prediction 

and observations in both models.

IGBP DBF ENF MF GRA ALL

Tower EOS 0.47 0.27 0.49 0.82 0.21

MCD12Q2 0.49 0.33 0.25 0.81 0.18

5. Conclusion
We tested the relationships between growing season photosynthesis and estimates of leaf 

senescence and EOS in different ecosystems. We did not find negative carry-over effects of 

growing season photosynthesis on leaf senescence and EOS in most sites and most 

ecosystems, in contrast to recent reports. We also found that the controls of EOS in different 

ecosystems were different and, in most cases, a more productive growing season was related 

to a later, not earlier, leaf senescence. Our results challenge the notion that EOS is negatively 

affected by growing season photosynthesis, and highlight the need for controlled experiments 

to distinguish competing controls on the timing of fall senescence.
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