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ABSTRACT

Aims. We investigate the validity of the mass segregation indicators commonly used in analysing young stellar clusters.
Methods. We simulate observations by constructing synthetic seeing-limited images of a 1000 massive clusters (104 M�) with a
standard IMF and a King-density distribution function.
Results. We find that commonly used indicators are highly sensitive to sample incompleteness in observational data and that radial
completeness determinations do not provide satisfactory corrections, rendering the studies of radial properties highly uncertain. On
the other hand, we find that, under certain conditions, the global completeness can be estimated accurately, allowing for the correction
of the global luminosity and mass functions of the cluster.
Conclusions. We argue that there is currently no observational evidence of mass segregation in young compact clusters since there
is no robust way to differentiate between true mass segregation and sample incompleteness effects. Caution should then be exercised
when interpreting results from observations as evidence of mass segregation.

Key words. open clusters and associations: general – methods: statistical

1. Introduction

The issue of mass segregation in globular and open clusters has
been discussed in the literature for over 20 years. Historically,
the first indicator of mass segregation was simply that the bright-
est, most massive cluster members lay closest to the cluster core,
whereas the faintest, lower-mass members fill the whole extent
of the cluster area (McNamara & Sekiguchi 1986, and references
therein). The mass segregation issue has since been comple-
mented with specific properties that overall quantify the differ-
ences in the spatial distribution of high- and low-mass stars. The
most commonly used for this effect are: (1) the radial depen-
dence of the mass function (e.g., Moitinho et al. 1997; Stolte
et al. 2006; Schweizer 2004; Gouliermis et al. 2004) or luminos-
ity function (e.g., Jones & Stauffer 1991; de Grijs et al. 2002);
(2) the radial differences in the ratio of high- to low-mass stars
(e.g., Hillenbrand 1997); (3) the mean mass within some charac-
teristic radius (e.g., Sagar et al. 1988; Hillenbrand & Hartmann
1998); and (4) the mean radius of the two distributions (e.g.,
Sagar et al. 1988; de Grijs et al. 2002) or the direct comparison
of the cumulative radial density distribution for the two subsam-
ples (e.g., McNamara & Sekiguchi 1986; Tadross 2005).

Even though almost all young clusters present one or more of
these properties, several authors have shown that the timescale
for dynamical relaxation is typically longer than the clusters’
age (e.g., Bonnell & Davies 1998), implying that the observed
mass segregation should not be dynamical in origin. Faster phe-
nomena, such as violent relaxation (Hillenbrand & Hartmann
1998; Binney & Tremaine 1987) and the fact that the massive
stars have shorter relaxation times (Hillenbrand & Hartmann
1998, and references therein) still do not seem to be sufficient for

explaining the profusion of young clusters presenting these prop-
erties or the implicit degree of mass segregation. The alternative
is a primordial origin, in which the distribution of massive stars
in young clusters must reflect the initial conditions and the pro-
cesses involved in cluster formation (e.g., Bonnell 2000).

Conversely, some authors have indirectly shown that the way
some indicators are presented is not statistically accurate. For
example, Maíz Apellániz & Úbeda (2005) prove that a signifi-
cant bias is introduced when building the mass function in equal
Δ log(M/M�) bins, as is done in the literature. A statistical bias
is also potentially introduced when studying the radial proper-
ties of a cluster by dividing the cluster area in fixed-width or
constant-area annuli rather than equal-number annuli, as each
annulus will contain different numbers of stars changing the sta-
tistical significance from one annulus to the next.

In this paper we propose to investigate the validity of a few
traditional mass segregation indicators using synthetic, 104 M�-
class clusters. We describe the biases that result directly from
the binning of the data and then explore the incompleteness in
observed samples and its consequences on the mass segregation
indicators.

The nomenclature used throughout the text is summarised as
follows:

True clusters: synthetic clusters (Sect. 2.1).
Observed* clusters: synthetic observations (Sect. 2.2).
Completeness tests: completeness assessment obtained by
adding artificial stars of increasing magnitude to the cluster im-
age in a grid. Derived completeness is defined as the number of
detected grid stars with measured magnitudes mout that satisfy
the condition |mout − min| < 0.1, divided by the total number of
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Fig. 1. Left: Salpeter (1955) (M > 0.5 M�) and Kroupa (2001) (M ≤ 0.5 M�) mass function used to generate the synthetic clusters. Right:
normalized King (1962) surface density profile.

stars of magnitude min in the input grid (Sect. 4.1). This would
be the assessment an observer could do in real data.
True completeness: completeness assessment obtained by di-
rect comparison of the observed* and true clusters. Derived
completeness is defined as the number of stars in the observed*
cluster divided by the corresponding number of stars in the true
cluster (Sect. 4.2). This assessment is only possible because we
know the true composition of the cluster.

2. Simulations

2.1. Synthetic clusters

We created 1000 synthetic clusters, each containing 2×104 stars
(total mass of 1.5× 104 M�). Each cluster member was assigned
a mass from a Salpeter (1955) (M > 0.5 M�) and Kroupa (2001)
(0.01 M� ≤ M ≤ 0.5 M�) IMF (Fig. 1, left):

Γ =
d log N
d log M

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1.35 0.5 ≤ M/M�
−0.3 0.08 ≤ M/M� < 0.5
+0.7 0.01 ≤ M/M� < 0.08.

. (1)

The radial position (distance to the centre) of each artificial star
was drawn randomly and independently of mass from a King
(1962) radial surface density profile (Fig. 1, right):

Σ(r) =
Σ0

1 + (r/rc)2
(2)

with a core radius rc of 0.2 pc, using the Monte Carlo method of
the cumulative distribution function. For a cluster of 2×104 stars,
this yields a central projected density Σ0 around 104 pc−2. In this
way the synthetic clusters are blind to any correlation between
position and mass, i.e., they are not mass segregated. We have
not set any boundary conditions regarding the physics of star
formation or dynamical evolution, except for the underlying as-
sumption that the probability distribution function from which
the positions and masses are drawn are a King profile and a
Kroupa-Salpeter IMF. We have also not set any high mass cutoff.

2.2. Synthetic observations

To investigate the impact of incompleteness due to crowding –
a strong limitation in most studies of mass segregation in real
(massive) clusters – we have used IRAF mkobject to build “see-
ing limited” images of the synthetic clusters. The masses were

transformed into K-band luminosities using the mass-luminosity
relation from Ascenso et al. (2007) for a distance of 3 kpc and
no interstellar extinction. This configuration produced stars up
to magnitude 19. Since the Monte Carlo algorithm for the posi-
tions only generates the r polar coordinates, a value for θ was as-
signed to each r from a uniform random distribution between 0
and 360◦. Figure 2 shows three of the clusters obtained in this
way.

These images were treated as actually observed clusters, in
the sense that they were subjected to a source extraction algo-
rithm (IRAF daofind), PSF photometry (IRAF allstar), and cuts
in photometric errors to produce the final samples. These syn-
thetic observations were only sensitive to stars up to magni-
tude 16.5, with only∼29% of the original sources up to this mag-
nitude being detected. The 1000 catalogues produced in this way
are hence incomplete sub-samples of the original synthetic clus-
ters. Since they are meant to pose as real observations, we will
hereafter refer to the (incomplete) sub-samples as observed*,
always maintaining the asterisk to avoid confusion with actual
observations that are not presented here. The properties of the
(complete) clusters originally generated by the simulations will
be labeled as “true”, since they refer to all the stars.

3. Results

We tested the most commonly used mass segregation indicators
on synthetic, non-segregated clusters to investigate how the way
we approach observational data may influence our perception of
mass segregation in massive clusters.

For each indicator we investigate: (1) the results expected
for a non-segregated cluster; (2) the statistical effects of binning;
and (3) the effects of incompleteness of the sample due to crowd-
ing. The first item is measured directly from the synthetic clus-
ters and averaged over the whole set to produce the expected
properties of a “perfect cluster”. The second concerns the way
the quantities are represented and how it may affect the analy-
sis. The third is measured on the observed* clusters to explore
in which ways the incompleteness of the observed samples due
to crowding can mimic the effects of mass segregation.

We used the full width at half maximum of the stars in the
simulated observations (5 pixels) as the (arbitrary) unit of length.
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Fig. 2. Seeing limited images of three simulated clusters. The brightness of the sources corresponds to the K-band.

3.1. Slope vs. radius

The variation of the mass function (MF) with radius is already
a traditional diagnosis tool for mass segregation (Moitinho et al.
1997; de Grijs et al. 2002; Stolte et al. 2002; Gouliermis et al.
2004; Bonatto & Bica 2005; Stolte et al. 2005; Bica & Bonatto
2005). In a mass segregated cluster we expect to find an increase
in the number of massive stars with respect to the number of low-
mass stars toward the centre, which translates into a flattening
of the mass function or an increase of the high-mass end slope,
hereafter referred simply as slope or Γ. Conversely, in a non-
segregated cluster we expect the slope to be constant with radius.

3.1.1. Binning effects

This section discusses the MF slope analysis performed on the
original 2 × 104-star clusters.

When investigating the radial dependence of the mass func-
tion we must bin the data twice: first we divide the cluster area
into concentric annuli and then bin the masses of the objects in
each annulus to produce the mass function for that annulus. In
order to keep the statistical significance and avoid biases, these
bins should be defined such as to keep the number of stars per bin
constant. Historically, the radial bins are defined as fixed-width
or fixed-area annuli, whereas the mass bins are defined from the
histogram of log(M/M�), as constant Δ log(M/M�) bins, nei-
ther one keeping the number of stars per bin constant. Instead,
the radial bins should be defined as equal-number annuli, and
the mass function as a histogram with each bin containing the
same number of stars and divided by the resultant bin width
(Maíz Apellániz & Úbeda 2005).

Figure 3 shows the variation of Γ with radius for the
1000 synthetic 2 × 104-star clusters, calculated with several
combinations of radial and mass bins. The three panels to
the left have the masses appropriately binned, according to
Maíz Apellániz & Úbeda (2005), whereas the panels to the right
are produced using the more traditional mass functions from
fixed Δ log(M/M�) = 0.2 histograms of log(M/M�). In the two
top panels the radii are binned in annuli with equal number (100)
of stars, the middle panels have fixed-width (10 FWHM) radial
annuli, and in the bottom panels the slope of the MF is measured
(cumulatively) in circles.

The profile in panel a) is unbiased since we guarantee the
same statistical significance in both the radial and the mass bins
by keeping the number of stars in each bin constant. As such,
we find that Γ is constant with radius, as expected for non-
segregated clusters, and equal to the input value for the simu-
lations, −1.35. When we change the statistical significance of

the radial bins by considering fixed-width annuli (panel b)) or
circles (panel c)) while keeping the statistical significance of the
mass bins, we still find the behaviour expected of non-segregated
clusters.

Conversely, all panels to the right display odd trends not re-
flecting the conditions set for the simulations. Panel d) presents
a Γ that is constant with radius, hence not suggesting mass
segregation, but larger than the input value of −1.35, illustrat-
ing the intrinsic bias in characterising a MF built from fixed
Δ log(M/M�) bins (Maíz Apellániz & Úbeda 2005). In panels e)
and f) this bias conspires to produce contradictory behaviours:
panel e) shows a flattening of the MF outward, whereas panel f)
shows a flattening of the MF inward. The profile in panel f) is
what we would expect to find in a mass-segregated cluster, al-
though it only appears as a consequence of the mass binning.
Furthermore, as can be seen from the last bin, the overall mass
function of the cluster as measured in fixed Δ log(M/M�) bins
comes out shallower than Salpeter, revealing a fundamental un-
derlying bias in this representation of the mass function, as we
built the clusters to be Salpeter in the first place.

This shows that the mass function slope is robust against ra-
dial binning, only if the mass function itself is built in an un-
biased way, namely using the Maíz Apellániz & Úbeda (2005)
method to bin the masses.

3.1.2. Incompleteness effects

The effects of incompleteness on the radial distribution of the
mass function slope were tested on the observed* clusters. The
completeness assessment and tentative corrections will be ad-
dressed in Sect. 4. Figure 4 shows the radial dependence of Γ for
these clusters using the same binning combinations as described
above. The light lines correspond to the radial profiles for the
“true” clusters from Fig. 3.

In all panels, regardless of the binning in radius or mass, we
find a flattening of the MF toward the centre of the cluster, a
signature typically attributed to mass segregation. These profiles
are in all similar to those described in the literature as indica-
tive of mass segregation (e.g., Brandl et al. 1996; Stolte et al.
2002, 2006; Schweizer 2004; Gouliermis et al. 2004; Bonatto
& Bica 2005). In our case, since we know the “true” clusters
are not segregated, the finding of this signature in the observed*
clusters cannot be regarded as evidence of mass segregation in
the underlying cluster, but rather as a consequence of crowding.
In the presence of incompleteness, the statistical biases arising
from binning are largely overcome by the fact that the low-mass
stars go undetected in the cluster core. The mass-binning effects
are only observed as a flatter mass function in general.
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Fig. 3. Mass function slope (Γ) as a function of radius for the synthetic clusters. Panel a): Γ is measured in equal-number (100 stars) radial annuli
(the radii mark the centre of the annuli) and defining the mass functions such that all the mass bins have the same number of stars. Panel b):
Γ is measured in fixed-width (10 FWHM) radial annuli (the radii mark the centre of the annuli) and defining the mass function as in panel a).
Panel c): Γ is measured in concentric circles (the radii mark the limits of the circles) and defining the mass function as in panel a). Panel d): Γ is
measured in equal-number (100 stars) radial annuli and defining the mass functions as fixed Δ log(M/M�) histograms. Panel e): Γ is measured in
fixed-width (10 FWHM) radial annuli and defining the mass function as in panel d). Panel f): Γ is measured in concentric circles and defining the
mass function as in panel d).

3.2. Ratio of high- to low-mass stars

In any given region of a non-segregated cluster, apart from
fluctuations, there should be the same proportion of high and
low-mass objects as imposed by the underlying mass function.
In particular, the ratio of high- to low-mass stars should not
be dependent on radius. This is indeed what we find for the
synthetic clusters, regardless of how we divide the cluster ra-
dially. The light symbols in Fig. 5 show this profile for a high-
mass/low-mass threshold of 10 M�, and radial binning consist-
ing of equal-number annuli (left-hand panel), fixed-width annuli
(middle panel), and concentric circles (right-hand panel). All the

profiles are flat, again validating the absence of mass segregation
in the synthetic clusters, and present no signature of statistical
biases arising from radial binning effects.

The dark symbols in the panels show the variation of the ra-
tio of high- to low-mass stars in the observed* clusters. For all
geometries the ratio increases toward the cluster core, suggest-
ing an apparent depletion of low-mass stars in the core. This is a
direct consequence of crowding that does not allow for the effec-
tive detection of faint sources, rather than an actual absence of
low-mass stars in the underlying cluster that could be imputed to
mass segregation. Again, this profile is similar to those cited in

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=3
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Fig. 4. Mass function slope (Γ) as a function of radius for the observed* clusters (dark symbols) when compared to the “true” clusters (light
symbols). Panel a): Γ is measured in equal-number (100 stars) radial annuli (the radii mark the centre of the annuli) and defining the mass
functions such that all the mass bins have the same number of stars. Panel b): Γ is measured in fixed-width (10 FWHM) radial annuli (the radii
mark the centre of the annuli) and defining the mass function as in panel a). Panel c): Γ is measured in concentric circles (the radii mark the limits
of the circles) and defining the mass function as in panel a). Panel d): Γ is measured in equal-number (100 stars) radial annuli and defining the
mass functions as fixed Δ log(M/M�) = 0.2 histograms. Panel e): Γ is measured in fixed-width (10 FWHM) radial annuli and defining the mass
function as in panel d). Panel f): Γ is measured in concentric circles and defining the mass function as in panel d). The profiles for the incomplete,
observed* clusters mimic the effects of mass segregation.

the literature as evidence of mass segregation (Hillenbrand 1997;
Stolte et al. 2006).

3.3. Mean mass

Following the same reasoning as before, the mean mass of a non-
segregated cluster should be independent of the region where we
choose to measure it. This is what we find when we plot the mean
mass in concentric annuli for the synthetic clusters (Fig. 6, light
symbols), regardless of using fixed-number (left-hand panel) or
fixed-width (right-hand panel) rings.

Conversely, the observed* clusters (dark symbols) display a
significant increase of the mean mass toward the cluster centre,
as the faint stars in the centre are not as effectively detected as
the massive stars, shifting the mean mass to higher values, a sig-
nature also often attributed to mass segregation.

3.4. Mean radius of the massive stars

In the present context we define the mean radius of any sample
of stars as the mean distance of those stars to the centre of the
cluster. For each cluster, we measured the mean radius of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=4
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Fig. 5. Ratio of high- to low-mass stars with radius for a mass threshold of 10 M� for the “true” clusters (light symbols) and observed* clusters
(dark symbols) measured in annuli of fixed number of stars (left), fixed-width annuli (middle) and concentric circles (right). The profiles for the
incomplete, observed* clusters mimic the effects of mass segregation.
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Fig. 6. Mean mass of the stars within annuli of
equal number of stars (left) and fixed-width an-
nuli (right) for the “true” (light symbols) and
observed* (dark symbols) clusters.
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Fig. 7. Mean radius of the stars with masses
higher than the designated mass threshold for
the average of the 1000 “true” clusters (left) and
for the observed* clusters (right). The dotted
line represents the mean radius of the clusters.

massive stars and compared it to that of the cluster as a whole.
The massive star subsample was defined using mass thresholds
of 1, 5, 10, 15, and 20 M�.

We find that both the mean radius of the “true” clusters and
that of their massive stars have the same value for all mass
thresholds (Fig. 7, left), although the cluster-to-cluster fluctua-
tions increase with increasing threshold. This changes for the
observed* clusters (right-hand panel), as the number of low-
mass stars in the centre is significantly smaller than before due
to crowding, causing the total mean radius of the cluster to be-
come larger (56 FWHM), whereas the mean radius of the set
of massive stars remains roughly the same for almost all mass
thresholds, as these are not affected.

These profiles match those found in the literature (e.g., Sagar
et al. 1988; Bonnell & Davies 1998; Schweizer 2004), where the
authors consistently find the massive stars to have smaller mean
radii when compared to the mean cluster radii.

4. On completeness corrections

In the previous sections we have shown that incompleteness due
to crowding will mimic the effects of mass segregation in the
commonly used indicators. This is so because they have the same
effect: a depletion of low mass stars in the cluster core. The fun-
damental difference is that, whereas mass segregation in young
clusters implies a physical process over which the stars of differ-
ent masses are formed or somehow appear spatially segregated,
crowding simply causes the observer to miss the low-mass stars
due to the resolution limitation of the instrumental set-up. Many
authors are aware of these limitations and apply more or less so-
phisticated completeness corrections to their samples, but how
good are these corrections? Since we know in advance the ex-
act composition of our synthetic clusters, we used one of them
to perform a thorough investigation on the completeness assess-
ment and correction process.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=5
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4.1. Completeness tests

The direct comparison of the true and observed* properties of a
synthetic cluster is the most immediate way to gain insight into
what is actually lost to observational limitations. Figure 8 shows
the difference between the true and observed* brightness of clus-
ter stars as a function of distance to the centre, while the colour-
code maps the observed* brightness of the stars. It becomes clear
that the two relevant consequences of crowding toward the clus-
ter core are: (1) hampering source detection due to confusion
caused by the close proximity of the sources; and (2) inflate the
stars’ brightness by blending their flux with that of unresolved
neighbours. As a result, as we move into the centre of the clus-
ter, we are less and less sensitive to the faint stars, and will tend
to overestimate, sometimes by several magnitudes, the bright-
ness of those we do detect. The bright stars, on the other hand,
are equally detected everywhere throughout the cluster and their
measured brightness is hardly affected by the crowding.

However insightful as this comparison may be, in real clus-
ters we must rely on completeness tests to determine the extent
to which we may trust the observations, as we lack the privileged
information about the cluster’s true composition. To address po-
tential accuracy and reliability issues of completeness tests, we
computed them for a synthetic cluster as if it were an actually ob-
served image. For every 0.5 mag bin, we added artificial stars to
the image in a grid such that each star is separated from its clos-
est neighbour by two times the radius of the PSF +1 pixel. By
forcing the artificial stars to be in such a grid we sampled the full
extent of the cluster area without adding to the crowding. The
images for each magnitude were then subject to source detection
and photometry, and the output lists of sources were compared
with the input grids. The completeness for magnitude min is then
defined as the number of detected grid stars with measured mag-
nitudes mout that satisfy the condition |min − mout| < 0.1, di-
vided by the total number of stars of magnitude min in the input
grid. The latter condition implies that an artificial star blended
with a cluster star such that it affects its magnitude beyond the
reasonable photometric uncertainty is rejected for completeness
purposes, which happens very frequently in the crowded core,
mainly for the faint stars. The outcome of these tests is therefore

a high-fidelity completeness assessment that contains informa-
tion, not only about the detection success rate, but also about
how blending affects the incompleteness. We use the definition
of completeness described above in the following sections.

4.2. Global completeness
The red solid line in Fig. 9 shows the global completeness –
the fraction of artificial stars recovered with respect to the in-
put stars in the grid – as a function of magnitude. These tests
return a 90% global completeness for magnitude 12 (6.2 M� in
our example). The dotted line is the true completeness defined
here as the fraction of observed* cluster stars relative to the true
number of stars for each magnitude in the synthetic cluster1.
The local disparities between the two profiles are due to unre-
solved (blended) sources: whereas blending is excluded for the
purpose of completeness tests (see Sect. 4.1), it does occur in
observations – blended stars will appear in the list of observed*
sources as single stars with good photometry. As a consequence,
blended stars “leak” to different magnitude bins and cause the
true completeness to be contaminated in an unpredictable way.
For this reason, and again because the completeness tests include
only single stars, the profiles fail to match for some magnitudes.
Nevertheless, the overall agreement indicates that the accuracy
of the global completeness tests is quite reasonable.

4.2.1. Correcting luminosity functions
An important and surprising corollary of the validation of global
completeness tests above is that the global properties of the clus-
ter, such as its mass function, can effectively be corrected for in-
completeness due to crowding. Figure 10 shows the observed*
(solid line), true (dotted line), and completeness corrected (red
diamonds) luminosity functions for this cluster. The latter was
derived by dividing the first by the completeness profile (red line
in Fig. 9), and it is indeed very faithful to the true luminosity
function for all but the last corrected bin, where the correction
drops from 23% to 8%. The last reliable bin is four magnitudes
fainter than the estimated 90% completeness limit (6.2 M�), cor-
responding now to a mass of 0.3 M� in our example. This implies
that one would, in principle, be able to see the first break of the
mass function in this cluster even though the completeness limit
is a great deal more massive.

This example shows the potential of the global complete-
ness tests, but we emphasise that it is only valid for clusters with
the same characteristics as the presented synthetic clusters, when
crowding is the only source of incompleteness (e.g., no extinc-
tion), and for this particular method of evaluating completeness.
Most completeness studies in the literature, although similar, are
not as thorough as the one described here and must therefore be
validated before extending this result to other degrees of crowd-
ing and/or observational configurations.

4.3. Radial completeness limitations

The global completeness discussed in the previous section de-
scribes the average behaviour in the whole cluster area, but is
not representative of the cluster core where the crowding is most
severe. The completeness tests described in Sect. 4.1 can then
be analysed in concentric rings about the centre of the cluster
to estimate the radial dependence of completeness. Figure 11
shows the completeness as a function of radius for the different
magnitudes.

1 Please refer to the last paragraph of Sect. 1 for a summary of the
nomenclature and definitions used here.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=8
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Fig. 9. Global completeness as a function of magnitude from the com-
pleteness tests (red solid line), and from direct comparison of the ob-
served* and true brightnesses (dotted line).

Extrapolating from Fig. 9, one would trust these radial pro-
files to be a fair representation of the true radial completeness.
However, when comparing both for any given magnitude we in-
stead find a blunt disagreement (see Fig. 12 for magnitude 14).
These differences are entirely attributable to the blending of un-
resolved sources: when selecting stars of magnitude m from the
observed* list of sources to assess the true completeness, we in-
clude (blended) stars that are in reality fainter, while at the same
time excluding true mth magnitude (blended) stars with inflated
(combined) brightnesses. The consequence is that we appear to
be more complete than what the grid completeness tests suggest
simply because we cannot differentiate between blended and sin-
gle sources.

In terms of completeness corrections, these “magnitude
leaks” due to blending take much larger proportions than they
did in the global completeness analysis (Sect. 4.2). On the
global scale the effect of the magnitude leaks from the core is
largely diluted, allowing for reasonable completeness correc-
tions. Conversely, the radial completeness tests systematically
imply very large (over-)corrections in the cluster core, which im-
mediately produce a greatly inflated amount of stars, resulting in
our case in an (over-)corrected cluster with typically 3.5 times
more stars (up to magnitude 14) than the original synthetic clus-
ter.

In terms of completeness assessment, both radial complete-
ness estimates in Fig. 12 agree that: (1) the global complete-
ness overestimates the completeness in the crowded central re-
gions; and (2) that completeness is strongly radially dependent
being more severe in the cluster core, which ultimately con-
firms the hypothesis that it is responsible for the apparent mass
segregation.

To summarise, this analysis shows that there is a radial de-
pendence of the completeness affecting primarily the low-mass
stars that we cannot correct for, so no radial property (such as
mass segregation) can be legitimately measured in the presence
of severe crowding.

5. Conclusions
We used synthetic non-segregated, compact, and massive clus-
ters to investigate the impact of the current approach to
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Fig. 10. Comparison of the observed* luminosity function (solid line)
with the true (dotted line) and completeness corrected (red diamonds)
luminosity functions.

observational data on mass segregation studies. Our con-
clusion is that incompleteness due to crowding will pro-
duce the observed properties of mass segregated clusters,
even when they are not segregated at all. Crowding causes
the massive stars to be detected more effectively than
the low-mass stars, resulting in an apparent depletion of
low-mass stars in the cluster core, which then produces
the characteristics typically attributed to mass segregation.
More revealing, radial completeness tests provide erroneous
estimates of the incompleteness and, as a consequence, lead
to severe over-corrections. This is even more unsettling if we
consider that it is not possible to evaluate the accuracy of the
completeness determinations with the information from the ob-
servations alone. This is particularly critical for distant, rich
clusters or clusters observed with poor spatial resolution or
sensitivity.

We have also found that the way to present the data may fur-
thermore influence the analysis, although to a much lesser ex-
tent. In what concerns the radial study of the mass function, it is
imperative that the slope in each radial annulus be measured in
mass bins with equal number of stars, as described in detail by
Maíz Apellániz & Úbeda (2005). If this is so, then the radial bin-
ning will not influence the analysis. The other indicators (ratio
of high- to low-mass stars and mean mass of the stars in annuli)
are not affected by radial binning effects.

This exercise showed that the study of mass segregation can-
not be dissociated from an exhaustive and rigorous study of com-
pleteness – which is not often found in the literature – and even
then extreme caution must be exercised when interpreting radial
properties as evidence of mass segregation.

The presence of interstellar extinction, not included in this
analysis, will affect the mass segregation indicators in a more
unpredictable way. On the one hand, the spatial distribution of
dust can have all possible geometries, although it is expected
that the massive stars in massive clusters will clear the dust from
the cluster’s core much more rapidly than they will the periph-
eries. On the other hand, the extinction will affect primordially
the fainter, low-mass stars, again adding to the incompleteness
effect and probably contribute, at least in their earlier stages, to
aggravate the incompleteness problem on the cluster scale.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200809886&pdf_id=10
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Fig. 11. Completeness tests as a function of radius for the different mag-
nitudes. The line in bold indicates the 90% completeness limit deter-
mined in Sect. 4.2.

An interesting outcome of the completeness analysis is that
in some cases, such as in the one presented here of a massive
cluster with no interstellar extinction, it may be reasonable to
correct the global luminosity function – and, by extension, the
mass function – for incompleteness, thus gaining information
about fainter (low-mass) regimes that would otherwise be inac-
cessible, at least using the completeness tests we experimented
with. Other tests may give different corrections and must be vali-
dated beforehand. This opens a safe, if not new, door to the study
of the break of the IMF in massive galactic and extra-galactic
clusters.
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