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No Free Lunch Theorems for Optimization

David H. Wolpert and William G. Macready

Abstract—A framework is developed to explore the connection information theory and Bayesian analysis contribute to an
between effective optimization algorithms and the problems they understanding of these issues? Hawriori generalizable are
are solving. A number of *no free lunch” (NFL) theorems are o herformance results of a certain algorithm on a certain

presented which establish that for any algorithm, any elevated | f bl . f h | f
performance over one class of problems is offset by perfor- C/ass Of problems to its performance on other classes o

mance over another class. These theorems result in a geometricProblems? How should we even measure such generalization?
interpretation of what it means for an algorithm to be well How should we assess the performance of algorithms on

suited to an optimization problem. Applications of the NFL problems so that we may programmatically compare those
theorems to information-theoretic aspects of optimization and algorithms?

benchmark measures of performance are also presented. Other 9 ’ .
issues addressed include time-varying optimization problems and ~ Broadly speaking, we take two approaches to these ques-

a priori “head-to-head” minimax distinctions between optimiza- tions. First, we investigate what priori restrictions there are
tion algorithms, distinctions that result despite the NFL theorems’  on the performance of one or more algorithms as one runs

enforcing of a type of uniformity over all algorithms. over the set of all optimization problems. Our second approach
Index Terms—Evolutionary algorithms, information theory, is to instead focus on a particular problem and consider the
optimization. effects of running over all algorithms. In the current paper

we present results from both types of analyses but concentrate

I. INTRODUCTION largely on the first approach. The reader is referred to the

. ._._companion paper [5] for more types of analysis involving the
HE past few decades have seen an increased mterge P paper 5] yp 4 g

; | “black-box” optimizati laorith Stond approach.
that n gler_wteT_a -_;su(;pise | gc “0OX" Op |_m|z:t:1h|on at_go_rl tr_ns We begin in Section Il by introducing the necessary nota-
at exploit imited knowledge concerning the optmizaliof, , 554 discussed in this section is the model of computation

problem on which they are run. In large part these aIgorlthrT\}vse adopt, its limitations, and the reasons we chose it.

have drawn inspiration from optimization processes that occury o might expect that there are pairs of search algorithms

in nature. In particular, the two most popular black-box d.B such thatd performs better thai on average, even if

L . . . n
optimization strategies, evolutionary algorithms [1]-[3] an% sometimes outperforms. As an example, one might expect

simulated annealing [4], mimic processes in natural selectign™,~ .~ . " ! A
- gl ] pro fhat hill climbing usually outperforms hill descending if one’s
and statistical mechanics, respectively.

. L : S Iﬂcl;oal is to find a maximum of the cost function. One might also
In light of this interest in general-purpose optimizatio

algorithms, it has become important to understand the reFa{SpeCt it would ogtperform a raqdom search in such a context.
One of the main results of this paper is that such expecta-

tionship between how well an algorithm performs and the i _ £ Wi W0 “no free lunch” (NFL) th

optimization problemf on which it is run. In this paper lons are gcotr.recl.” tr? {):jove wot r:o t;\?e ur&c ( ) e-”

we present a formal analysis that contributes toward sut fFms in section at demonstrate this and more generally
minate the connection between algorithms and problems.

an understanding by addressing questions like the following" hl K h hat f h . .
given the abundance of black-box optimization algorithms a ughly speaking, we show that for both static and time-
of optimization problems, how can we best match algorithr‘r‘f?pendent optimization problems, the average performance

to problems (i.e., how best can we relax the black-box natu% apy pair'of algorit'hms gcross all -possible pro-blems is
of the algorithms and have them exploit some knowledé@em'cal' Th|§ means in particular that if some algorlth[fs
concerning the optimization problem)? In particular, whil@erformance is superior to that of another algorithgnover
serious optimization practitioners almost always perform suSRMe Set of optimization problems, then the reverse must be
matching, it is usually on a heuristic basis; can such matchiffif© Over the set of all other optimization problems. (The reader
be formally analyzed? More generally, what is the underlyir§ urged to read this sgct!on carefully .for a precise statgment
mathematical “skeleton” of optimization theory before th&f these theorems.) This is true even if one of the algorithms
“flesh” of the probability distributions of a particular contextS random; any algorithn,; performs worse than randomly

and set of optimization problems are imposed? What chsst as readily (over the set of all optimization problems) as

it performs better than randomly. Possible objections to these
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understanding of how the NFL results are consistent with tidepend explicitly on time. The extra notation required for such
well-accepted fact that many search algorithms that do not takme-dependent problems will be introduced as needed.

into account knowledge concerning the cost function work It is common in the optimization community to adopt
well in practice. an oracle-based view of computation. In this view, when

Section V-A demonstrates that the NFL theorems alloassessing the performance of algorithms, results are stated
one to answer a number of what would otherwise seem ito terms of the number of function evaluations required to
be intractable questions. The implications of these answdired a given solution. Practically though, many optimization
for measures of algorithm performance and of how best &bgorithms are wasteful of function evaluations. In particular,
compare optimization algorithms are explored in Section V-Bnany algorithms do not remember where they have already

In Section VI we discuss some of the ways in whichsearched and therefore often revisit the same points. Although
despite the NFL theorems, algorithms can hawepriori any algorithm that is wasteful in this fashion can be made
distinctions that hold even if nothing is specified concerningore efficient simply by remembering where it has been (cf.
the optimization problems. In particular, we show that thetabu search [7], [8]), many real-world algorithms elect not to
can be “head-to-head” minimax distinctions between a pair eimploy this stratagem. From the point of view of the oracle-
algorithms, i.e., that when considering one function at a timeased performance measures, these revisits are “artifacts”
a pair of algorithms may be distinguishable, even if they adéistorting the apparent relationship between many such real-
not when one looks over all functions. world algorithms.

In Section VII we present an introduction to the alternative This difficulty is exacerbated by the fact that the amount
approach to the formal analysis of optimization in whiclf revisiting that occurs is a complicated function of both
problems are held fixed and one looks at properties acraRe algorithm and the optimization problem and therefore
the space of algorithms. Since these results hold in genetnnot be simply “filtered out” of a mathematical analysis.
they hold for any and all optimization problems and thusccordingly, we have elected to circumvent the problem
are independent of the types of problems one is more @rtirely by comparing algorithms based on the number of
less likely to encounter in the real world. In particulardistinct function evaluations they have performed. Note that
these results show that there is aopriori justification for this does not mean that we cannot compare algorithms that
using a search algorithm’s observed behavior to date orage wasteful of evaluations—it simply means that we compare
particular cost function to predict its future behavior on thafigorithms by counting only their number of distinct calls to
function. In fact when choosing between algorithms based ¢fe oracle.
their observed performance it does not suffice to make anwe call a time-ordered set of: distinct visited points
assumption about the cost function; some (currently poorly “sample” of sizem. Samples are denoted by,, =
understood) assumptions are also being made about how = (1), d¥, (1)), -, (d%,(m),d¥,(m))}. The points in a
algorithms in question are related to each other and to ts@mple are ordered according to the time at which they
cost function. In addition to presenting results not found Wwere generated. ThudZ, (i) indicates theX’ value of the
[5], this section serves as an introduction to the perspectiit successive element in a sample of sizeand d¥,(4) is
adopted in [5]. its associated cost @Y value.d¥, = {d?,(1),---,d%,(m)}

We conclude in Section VIII with a brief discussion, awill be used to indicate the ordered set of cost values. The
summary of results, and a short list of open problems. space of all samples of sizev is D,,, = (X x V)™ (so

We have confined all proofs to appendixes to facilitate thg, ¢ D,,) and the set of all possible samples of arbitrary
flow of the paper. A more detailed, and substantially longesize isD = U,,,»0D,n,.
version of this paper, a version that also analyzes some issueas an important clarification of this definition, consider a
not addressed in this paper, can be found in [6]. hill-descending algorithm. This is the algorithm that examines

a set of neighboring points i&” and moves to the one having
the lowest cost. The process is then iterated from the newly
Il PRELIMINARIES chosen point. (Often, implementations of hill descending stop

We restrict attention to combinatorial optimization in whictwhen they reach a local minimum, but they can easily be
the search spacé’, though perhaps quite large, is finiteextended to run longer by randomly jumping to a new unvis-
We further assume that the space of possible “cost” valuésd point once the neighborhood of a local minimum has been
Y is also finite. These restrictions are automatically mexhausted.) The point to note is that because a sample contains
for optimization algorithms run on digital computers wherall the previous points at which the oracle was consulted, it
typically ) is some 32 or 64 bhit representation of the reahcludes the(X’, V) values ofall the neighbors of the current
numbers. point, and not only the lowest cost one that the algorithm

The size of the space® and) are indicated byX'| and|)|, moves to. This must be taken into account when counting the
respectively. An optimization problenf (sometimes called value of m.

a “cost function” or an “objective function” or an “energy An optimization algorithma is represented as a mapping
function”) is represented as a mappiffg: X — Y and from previously visited sets of points to a single new (i.e.,
F = Y% indicates the space of all possible problenfs. previously unvisited) point int’. Formally,a : d € D

is of size|Y|l*l—a large but finite number. In addition to{z|z ¢ d*}. Given our decision to only measure distinct
static f, we are also interested in optimization problems th&inction evaluations even if an algorithm revisits previously
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searched points, our definition of an algorithm includes atlasses of problems corresponding to different choices of
common black-box optimization techniques like simulated amhat algorithms we will use, and giving rise to different
nealing and evolutionary algorithms. (Techniques like branclistributions P(f).
and bound [9] are not included since they rely explicitly on Given our choice to use probability theory, the perfor-
the cost structure of partial solutions.) mance of an algorithna iterateds: times on a cost function
As defined above, a search algorithm is deterministic; evefyis measured withP(d¥,|f,m,a). This is the conditional
sample maps to a unique new point. Of course, essentially, @lbbability of obtaining a particular samplé,, under the
algorithms implemented on computers are deterministiod stated conditions. Fron®(dy, | f, m, a) performance measures
in this our definition is not restrictive. Nonetheless, it is wort®(d¥,) can be found easily.
noting that all of our results are extensible to nondeterministicIn the next section we analyzB(d¥ |f,m,a) and in par-
algorithms, where the new point is chosen stochastically fromeular how it varies with the algorithm. Before proceeding
the set of unvisited points. This point is returned to later. with that analysis, however, it is worth briefly noting that there
Under the oracle-based model of computation any measare other formal approaches to the issues investigated in this
of the performance of an algorithm aftet iterations is a paper. Perhaps the most prominent of these is the field of com-
function of the samplel¥,. Such performance measures wilputational complexity. Unlike the approach taken in this paper,
be indicated by®(d¥,). As an example, if we are trying computational complexity largely ignores the statistical nature
to find a minimum of f, then a reasonable measure of thef search and concentrates instead on computational issues.
performance ofi: might be the value of the lowe3t value in  Much, though by no means all, of computational complexity is
dy,: ®(d¥) = min;{d¥,(i) : ¢ = 1---m}. Note that measures concerned with physically unrealizable computational devices
of performance based on factors other tAgn(e.g., wall clock (e.g., Turing machines) and the worst-case resource usage
time) are outside the scope of our results. required to find optimal solutions. In contrast, the analysis
We shall cast all of our results in terms of probabilityn this paper does not concern itself with the computational
theory. We do so for three reasons. First, it allows simpkngine used by the search algorithm, but rather concentrates
generalization of our results to stochastic algorithms. Secomclusively on the underlying statistical nature of the search
even when the setting is deterministic, probability theorgroblem. The current probabilistic approach is complimentary
provides a simple consistent framework in which to carry otib computational complexity. Future work involves combining
proofs. The third reason for using probability theory is perhamsir analysis of the statistical nature of search with practical
the most interesting. A crucial factor in the probabilisticoncerns for computational resources.
framework is the distributio’(f) = P(f(x1),- -, f(z)x]))-
This distribution, defined ovef, gives the probability that m
each f € F is the actual optimization problem at hand. ) ) ]
An approach based on this distribution has the immediate!n this section we analyze the connection between algo-
advantage that often knowledge of a problem is statistical fii{nMs and cost functions. We have dubbed the associated
nature and this information may be easily encodabl@ ). resuIFs NFL theorems because th_ey demonstrate that if an
For example, Markov or Gibbs random field descriptions [1@/g0rithm performs well on a certain class of problems then
of families of optimization problems expre®f) exactly. it necessarily pays for that with degrg_ded performance on the
Exploiting P(f), however, also has advantages even wha&gt of all remaining problems. Additionally, the name em-

we are presented with a single uniquely specified cost functigirasizes a parallel with similar results in supervised learning

One such advantage is the fact that although it may be fu[l%/l]’ [12]. ] ) o o
specified, many aspects of the cost function affectively The precise question addressed in this section is: “How does

unknown (e.g., we certainly do not know the extrema of tH8€ Set of problemd’ C F for which algorithma, performs
function). It is in many ways most appropriate to have thidetter than algorithm;, compare to the seft; C F for which
effective ignorance reflected in the analysis as a probabilif}e reverse is true?” To address this question we compare the
distribution. More generally, optimization practitioners usuallgum over allf of P(dy,[f,m,a,) to the sum over allf of
act as though the cost function is partially unknown, in that tHe(@#|.f,m; a2). This comparison constitutes a major result of
same algorithm is used for all cost functions in a class of suliiS Paper:P(dy,|f,m, a) is independent of, when averaged
functions (e.g., in the class of all traveling salesman problerR¥er all cost functions. _
having certain characteristics). In so doing, the practitioner 1 h€orem 1:For any pair of algorithms,; anda,
implicitly acknowledges that distinctions between the cost , ,
functions in that class are irrelevant or at least unexploitable. SO P(dY|fman) =Y P(dY|f,m, az).
In this sense, even though we are presented with a single s s
particular problem from that class, we act as though we area proof of this result is found in Appendix A. An immediate
presented with a probability distribution over cost functiongorollary of this result is that for any performance measure
a distribution that is nonzero only for members of that cla$(dgn), the average over alf of P(®(dY,)|f,m,a) is inde-
of cost functions.P(f) is thus a prior specification of the pendent ofaz. The precise way that the sample is mapped to
class of the optimization problem at hand, with differen§ performance measure is unimportant.

LIn particular, note that pseudorandom number generators are deterministi(;rhiS theorem explicitly demonstrates that what an algorithm
given a seed. gains in performance on one class of problems is necessarily

. THE NFL THEOREMS
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offset by its performance on the remaining problems; that isTheorem 2: For all d¥,, D¢

m?

the only way that all algorithms can have the safr@veraged a», and initial cost functionsf;
i ) ,
per ormance Z P(dgn|f17 T7 m, al) = Z P(dgn|f17 T7 m, a2)
T T

m > 1, algorithmsa; and

A result analogous to Theorem 1 holds for a class of time-
dependent cost functions. The time-dependent functions we
consider begin with an initial cost functiofy that is present an
at the sampling of the first’ value. Before the beginning of ZP(D?,Jfl,T,m,al) = ZP(D?,Jfl,T,m,aQ).
each subsequent iteration of the optimization algorithm, the "7 T
cost function is deformed to a new function, as specified bygy in particular, if one algorithm outperforms another for
mappingl : 7 x N — F.2 We indicate this mapping with the certain kinds of cost function dynamics, then the reverse must
notation’Z;. So the function present during thh iteration is pe true on the set of all other cost function dynamics.
fiyr =Ti(fi). T; is assumed to be a (potentiathdependent)  Ajthough this particular result is similar to the NFL result
bijection betweenF and 7. We impose bijectivity because if for the static case, in general the time-dependent situation
it did not hold, the evolution of cost functions could narrows more subtle. In particular, with time dependence there
in on a region off’s for which some algorithms may performgre sjtuations in which there can ke priori distinctions
better than others. This would constitute arpriori bias in  petween algorithms even for those members of the sample
favor of those algorithms, a bias whose analysis we wish igjsing after the first. For example, in general there will be

defer to future work. distinctions between algorithms when considering the quantity

How best to assess the quality of an algorithm’s perfoE P(dY,|f, T, m,a). To see this, consider the case whare
mance on time-dependent cost functions is not clear. Here §€; set of contiguous integers and for all iteratidiss a

consider two schemes based on manipulations of the definitighift operator, replacing’(z) by f(z — 1) for all 2 [with

of the sample. In scheme 1 the particufarvalue indf,(j) min(z) — 1 = max(z)]. For such a case we can construct
corresponding to a particular value d7, (j) is given by the gigorithms which behave differentlg priori. For example,
cost function that was present whefj,(j) was sampled. In ake ¢ to be the algorithm that first samples at z;, next
contrast, for scheme 2 we imagine a sampjg given by the)’ 4t ;, 4 1, and so on, regardless of the values in the sample.
values from the present cost function for each ofthveluesin - Then for anyf, d¢, is always made up of identica! values.

dy,- Formally it dy,, = {dy,,(1), -~ dy,(m)}, thenin scheme 1 accordingly, 3" , P(d¥,|f, T, m. a) is nonzero only foul, for

we haved;, = {fi(d7. (1)), Tn-1(fm-1)(dn(m))}, @nd - which all valuesdy, (i) are identical. Other search algorithms,
in scheme 2 we hav®}, = {fm(d7, (1)) -+, fm(d,(m))}  even for the same shiff, do not have this restriction on
where f,,, = T;;—1(fm—1) is the final cost function. Y values. This constitutes ara priori distinction between

In some situations it may be that the members of th@yorithms.
sample “live” for a long time, compared to the time scale
of the dynamics of the cost function. In such situations it Mgy |mplications of the NFL Theorems

be appropriate to judge the quality of the search algorithm , )
by DY : all those previous elements of the sample that ar?AS emphasized above, the NFL theorems mean that if an

still “gii,ve” at time m, and therefore their current cost is of? gorithm does particularly well on average for one class of

interest. On the other hand, if members of the sample "\%oblems then it must do worse on average over the remaining
' roblems. In particular, if an algorithm performs better than

for only a short time on the time scale of the dynamics & X
dom search on some class of problems then in must

the cost function, one may instead be concerned with thin?& .
like how well the “living’ member(s) of the sample track erformworse than random searan the remaining problems.

the changing cost function. In such situations, it may mal (%ws. compgrisons rgporting the perform.ance of a particular
more sense to judge the quality of the algorithm with #fe algorithm with a par_tlcular_ _parame_ter setting on a fe"_V S‘T"mp'e
sample. problems are of limited utility. While such results do indicate

Results similar to Theorem 1 can be derived for borgc_a\havior on the narrow range of proble_ms considered, one
schemes. By analogy with that theorem, we average over Iould be very wary of trying to generalize those results to
possible ways a cost function may be time dependent, i.e., w‘.(%l\‘er problems. .
average over afl” (rather than over alf). Thus we consider ote, however, that the NFL theorems need not be viewed
S P(dY,) f1, T, m,a) where f; is the initial cost function, 35 & Way of comparing function class¢§ and 7, (or
SinceT only takes effect forn > 1, and sincef, is fixed, classes of evolution operatoil§ and 15, as the case might

there area priori distinctions between algorithms as far age)' They can be viewed instead as a statement concerning

the first member of the sample is concerned. After redefini y algorithm’s performance whefiis not fixed, under the

samples, however, to only contain those elements added aft ‘Iorm prior over cost functions?(f) = 1/|7]. If we wish

the first iteration of the algorithm, we arrive at the foIIowindnStead _to a_malyze pe_rformance whgfres not fixed, asin this
result, proven in Appendix B. alternative interpretation of the NFL theorems, but in contrast

with the NFL casef is now chosen from a nonuniform prior,

then we must analyze explicitly the sum
2An obvious restriction would be to require tHBtdoes not vary with time, :
> y P(dg,Im,a) =" P(d%,|f,m, a)P(f). (1)
f

so that it is a mapping simply fro¥ to 7. An analysis forI”s limited in
this way is beyond the scope of this paper.
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Since it is certainly true that any class of problems faced laymapping taking any sampi&to a d-dependent distribution

a practitioner will not have a flat prior, what are the practicalver X’ that equals zero for alk € d*. In this senser is

implications of the NFL theorems when viewed as a statemeslat in statistics community is known as a “hyper-parameter,”

concerning an algorithm’s performance for nonfixg®l This specifying the functionP(d;, ,,(m + 1) | dp,, o) for all m

guestion is taken up in greater detail in Section IV but wand d. One can now reproduce the derivation of the NFL

offer a few comments here. result for deterministic algorithms, only witla replaced bys
First, if the practitioner has knowledge of problem chara¢hroughout. In so doing, all steps in the proof remain valid.

teristics but does not incorporate them into the optimizatiorhis establishes that NFL results apply to stochastic algorithms

algorithm, thenP( f) is effectively uniform. (Recall thaP’(f) as well as deterministic ones.

can be viewed as a statement concerning the practitioner’s

choice of optimization algorithms.) In such a case, the NFL|\v. A GEOMETRIC PERSPECTIVE ON THENEL THEOREMS

theorgms establish t'hat there are no formal assurances that t ﬁtuitively, the NFL theorem illustrates that if knowledge
algorithm chosen will be at all effective.

Second, while most classes of problems will certainly havoéc /. perhaps specified through(f), is not m_corporated_ Into
then there are no formal assurances thaill be effective.

some structure which, if known, might be exploitable, th%’ L : S . ;
. . A . Rather, in this case effective optimization relies on a fortuitous
simple existence of that structure does not justify choice : . . .
atching betweerf anda. This point is formally established

of a particular algorithm; that structure must be known arb'ﬁ| viewing the NFL theorem from a geometric perspective

_reflgt;ted_ directly in the choice of ".’"go“thm. to serve as such gConS|der the spac# of all possible cost functions. As pre-
justification. In other words, the simple existence of structure . ) - -

e . viqusly discussed in regard to (1), the probability of obtaining
per se, absent a specification of that structure, cannot provide a

Yy
basis for preferring one algorithm over another. Formally, thi™e i 1

is established by the existence of NFL-type theorems in which P(d%,|m,a) = P(d%|m,a, f)P(f)
rather than average over specific cost functippgne averages 7

over specific “kinds of structure,” i.e., theorems in which one

averagesP(d¥, | m,a) over distributionsP(f). That such Where P(f) is the prior probability that the optimization
theorems hold when one averages over[al!f) means that prOblem at hand has cost fUnCtidﬂ This sum over functions
the indistinguishability of algorithms associated with uniforn§an be viewed as an inner productih Defining theF-space
P(f) is not some pathological, outlier case. Rather, unifor¥ectorsdyy , ., andp’ by their f componentsiyy , ..(f) =
P(f) is a “typical” distribution as far as indistinguishability P(d%,|m, a, f) andp(f) = P(f), respectively

of algpnthms is concerned. The simple fagt that fl?@f) at P(dY,|m, a) = Bys o - B @)
hand is nonuniform cannot serve to determine one’s choice of
optimization algorithm. This equation provides a geometric interpretation of the op-

Finally, it is important to emphasize that even if one igmization processd?, can be viewed as fixed to the sample
considering the case wherg is not fixed, performing the that is desired, usually one with a low cost value, and
associated average according to a unif@(if) is notessential is a measure of the computational resources that can be
for NFL to hold. NFL can also be demonstrated for a ranggfforded. Any knowledge of the properties of the cost function
of nonuniform priors. For example, any prior of the formyoes into the prior over cost functios Then (2) says the
Il.cx P'(f(x)) (WhereP'(y = f(x)) is the distribution ofy  performance of an algorithm is determined by the magnitude
values) will also give NFL theorems. Theaverage can also of its projection ontop, i.e., by how aligned,s , ,,, is with
enforce correlations between costs at differéhtalues and the problemgs. Alternatively, by averaging ovef?,, it is easy
NFL-like results will still be obtained. For example, if costso see thatE(d¥,|m,a) is an inner product betweed and
are rank ordered (with ties broken in some arbitrary way) arl( ¥, |m, a, f). The expectation of any performance measure
we sum only over all cost functions given by permutations @(4¥,) can be written similarly.
those orderings, then NFL remains valid. In any of these case®(f) or p must “match” or be aligned

The choice of uniformP(f) was motivated more from with o to get the desired behavior. This need for matching
theoretical rather than pragmatic concerns, as a way of govides a new perspective on how certain algorithms can
alyzing the theoretical structure of optimization. Neverthelesserform well in practice on specific kinds of problems. For
the cautionary observations presented above make clear thaimple, it means that the years of research into the traveling
an analysis of the uniformP(f) case has a number ofsalesman problem (TSP) have resulted in algorithms aligned
ramifications for practitioners. with the (implicit) g’ describing traveling salesman problems

. L i of interest to TSP researchers.

B. Stochastic Optimization Algorithms Taking the geometric view, the NFL result that
Thus far we have considered the case in which algorithms ; P(dy,|f, m, a) is independent of: has the interpretation
are deterministic. What is the situation for stochastic algthat for any particular¥, andm, all algorithmsa have the
rithms? As it turns out, NFL results hold even for thessame projection onto the uniform?(f), represented by the
algorithms. diagonal vectorr. Formally, vgy , ., - T = c(d¥,, m) where
The proof is straightforward. Let be a stochastic “nonpo- ¢ is some constant depending only updp, and m. For
tentially revisiting” algorithm. Formally, this means thatis deterministic algorithms, the componentsigf , ., (i.e., the
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As another example of a similarity measure suggested by the
geometric perspective, we could measure similarity between
algorithms based on similarities betweB(f)’s. For example,
for two different algorithms, one can imagine solving for the
P(f) that optimizesP(d¥, | m,a) for those algorithms, in
some nontrivial senseWe could then use some measure of
distance between those twi f) distributions as a gauge of
how similar the associated algorithms are.

Unfortunately, exploiting the inner product formula in prac-
tice, by going from aP(f) to an algorithm optimal for
that P(f), appears to often be quite difficult. Indeed, even
determining a plausibleP(f) for the situation at hand is
often difficult. Consider, for example, TSP problems with
cities. To the degree that any practitioner attacksialtity
Fig. 1. Schematic view of the situation in which function sp&ges three TSP cost functions with the same algorithm, he/she implicitly

dimensional. The uniform prior over this spadg,lies along the diagonal. ignores distinctions between such cost functions. In this, that
Different algorithmsa give different vectors lying in the cone surrounding

the diagonal. A particular problem is represented by its poidying on the praCtitioner_ has impligitly agreed that the problem is Qne of
simplex. The algorithm that will perform best will be the algorithm in thehow their fixed algorithm does across the set of Mlcity

cone having the largest inner product with TSP cost functions. But the detailed nature of #gf) that
is uniform over this class of problems appears to be difficult

probabilities that algorithm gives sample?, on cost function to elucidate.
f afterm distinct cost evaluations) are all either zero or one, On the other hand, there is a growing body of work that does
so NFL also implies tha” , P2(dY, |m, a, f) = c(d%,,m). rely explicitly on enumeratipn ofP(f). For example, appli-
Geometrically, this means that the length 8f ,, is cations of Markov random fields [10], [13] to cost landscapes
independent of.. Different algorithms thus generate differenyield P(f) directly as a Gibbs distribution.
vectorsvy , »,, all having the same length and lying on a
cone with constant projection ontd. A schematic of this
situation is shown in Fig. 1 for the case wheféis three
dimensional. Because the components#pf, ,, are binary, In this section, we explore some of the applications of
we might equivalently views,s , . as lying on the subsetthe NFL theorems for performing calculations concerning
of Boolean hypercube vertices having the same hammingtimization. We will consider both calculations of practical
distance fromt. and theoretical interest and begin with calculations of theo-

Now restrict attention to algorithms having the same prolpetical interest, in which information-theoretic quantities arise
ability of some particularfy,. The algorithms in this set lie in naturally.
the intersection of two cones—one about the diagonal, set by
the NFL theorem, and one set by having the same probabiliy |nformation-Theoretic Aspects of Optimization
for d¢,. This is in general anF| — 2 dimensional manifold.
Continuing, as we impose yet mo# -based restrictions on

V. CALCULATIONAL APPLICATIONS OF THENFL THEOREMS

For expository purposes, we simplify the discussion slightly

ality of the manifold by focusing on intersections of more ang2ch Possible cost value produced by a run of an algorithm, and
more cones. not the temporal order in which those cost values were gener-

This geometric view of optimization also suggests measurdgd- Many reaI—V\_/orId per_formanc_e measures are mdepen_dent
for determining how “similar” two optimization algorithmsOf such terrlpgral information. We indicate that histogram with
are. Consider again (2). In that the algorithm only give@? symbok; ¢hasy qomponent$Cyl,cy2, T ?J/m)’ where
T4 o PEThaps the most straightforward way to compafé is the number of times cost valgg occurs in the sample
two algorithmsa; andas would be by measuring how similar “m: ) L N
the vectorsiyy . . and#,s , . are, perhaps by evaluating Now consider any qugstlon like _the foIIQW|ng: What frac-
the dot product of those vectors. Those vectors, however, ocligf Of cost functions give a particular histogragnof cost
on the right-hand side of (2), whereas the performance of t}@lu‘es aftgmz dIS.tII’.ICt cost evaluatllons prOdUC‘?d by”usmg a
algorithms—uwhich is after all our ultimate concern—occurs opgrticular instantiation of an evolutionary algorithm?

the left-hand side. This suggests measuring the similarity ngt hfirst glanr(]:e this Seemj’ to be an intractable_ quistiqn,
two algorithms not directly in terms of their vectodig, , ., Ut he NFL theorem provides a way to answer it. This is

but rather in terms of the dot products of those vectors with Pecause—according to the NFL theorem—the answer must be

For example, it may be the case that algorithms behave vé’Pere”de”t of the algorithm used to genezatéonsequently,

similarly for certain P(f) but are quite different for other

P(f) In many respects, knowing this about two algorithms SIn partic_ular, one may want to impose re;trict[onsla(wf). For instance,_
one may wish to only considdP( f) that are invariant under at least partial

is of more interest than knowmg how their Vecm—fé’ma,m relabeling of the elements iit’, to preclude there being an algorithm that will
compare. assuredly “luck out” and land omin, ¢y f(x) on its very first query.
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we can choose an algorithm for which the calculatisn be used to gauge an algorithm’s performance in a particular

tractable. optimization run:
Theorem 3:For any algorithm, the fraction of cost func- i) the uniform average of(min(é) > €| f,m,a) over all
tions that result in a particular histogragh= ma is cost functions;
(om e ii) the form P(Ini_n(E) > e|f,7_n,a) takes for the random
pp(a) = 22O — eyl algorithm, which uses no information from the sample
V[ v dyn;
For large enoughn, this can be approximated as iii) the fraction of algorithms which, for a particulgf and

m, result in a¢ whose minimum exceeds
exp [m S(a)]

g These measures give benchmarks which any algorithm run
P:"l a}/Q on a particular cost function should surpass if that algorithm is
. . to be considered as having worked well for that cost function.
}';/h:rf(i(;;ﬁ t&zsggggyn%itgg;e":’ltg%uglOﬁ’ andC(m, |V]) _ Without Ioss‘of generality assume that tktb_ <_:ost value
This theorem is derived in Appendix C. If some of tigare (ie., ) e_qualst. SO CO.St _values range from minimum of_one
L ) ; . to a maximum of|Y|, in integer increments. The following
zero, the approximation still holds, only wifyi redefined to results are derived in Appendix E
exclude they's corresponding to the zero-valuég. However, Theorem 5: '
Yis defined and the normalization constant of (3) can be found )
by summing over ali¥ lying on the unit simplex [14]. ZP(min(E) >e| fym) =w"(e)
A related question is the following: “For a given cost f
function, what is the fractiop,;, of all algorithms that give
rise to a particulag?” It turns out that the only feature gf
relevant for this question is the histogram of its cost valué

ps(d@) = C(m, V)

wherew(e) =1 — ¢/|Y] is the fraction of cost lying above
gthe limit of | Y| — oo, this distribution obeys the following

formed by looking across allt. Specify the fractional form relationship:
of this histogram by3 so that there aréV; = 3; |X'| points in > E(min(e) | f,m) 1
X for which f(x) has theith ) value. V| T+l

In Appendix D it is shown that to leading order,, (¢, ﬁ) , ) ]
depends on yet another information-theoretic quantity, theUnIess one’s algorithm has its best-cost-so-far drop faster
Kullback-Liebler distance [15] betwea# and 4. than the drop associated with these results, one would be hard
Theorem 4: For a givenf with histogramN = |X|ﬁ the Pressed indeed to claim that the algorithm is well suited to the

fraction of algorithms that give rise to a histograin= ma cost _funct!on gt hand. After all, for such a performance the
is given by algorithm is doing no better than one would expect it to when
\ run on a randomly chosen cost function.
oo Hgll (1;) Unlike the preceding measure, the measures analyzed below
pais(@; B) = W (3)  take into account the actual cost function at hand. This is
m manifested in the dependence of the values of those measures
For large enoughn, this can be written as on the vectorN = |X|ﬁ given by the cost function’s
histogram.

e~ D1 (@) Theorem 6: For the random algorithni

-

palg(&v ﬂ) = C(m7 |X|7 |y|)

Hgll Oéil/2 me1 »
L . _ Pluin@ > ¢| fym,a) = [ BOHA
where Dy 1. (&, ) is the Kullback-Liebler distance between S IRy

the distributionsa and 3. X

As before,C can be calculated by summimgover the unit whereQ(e) = Y"1 N; /|| is the fraction of points int for
simplex. which f(x) > e. To first order inl/|X|
B. Measures of Performance Plmin(@) > ¢ f,m, a) =

m m(m —1)(1 = e)) 1

We now show how to apply the NFL framework to calculate Q™(e) <1 - 20(e) Ed + - ) (5)
certain benchmark performance measures. These allow both
the programmatic assessment of the efficacy of any individualThis result allows the calculation of other quantities of
optimization algorithm and principled comparisons betweenterest for measuring performance, for example the quantity
algorithms. N

Without loss of generality, assume that the goal of the sear . N . ~
process is finding a minimum. So we are interested incthe %len(é’ﬂf,m, @) = Ze [Plmin(@ 2 ¢ f,m, )
dependence of’(min(€) > ¢| f,m,a), by which we mean
the probability that the minimum cost an algorithenfinds
on problemf in m distinct evaluations is larger than At Note that for many cost functions of both practical and
least three quantities related to this conditional probability caneoretical interest, cost values are approximately distributed

e=1

— P(min(é) > e+ 1| f,m,a)].
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Gaussianly. For such cases, we can use the Gaussian najive a point lying above zero. In general, even if the points
of the distribution to facilitate our calculations. In particularall lie to one side of zero, one would expect that as the
if the mean and variance of the Gaussian areand ¢2, search progresses there would be a corresponding (perhaps
respectively, then we hav@(e) = erfc((e — p)/v/20)/2, systematic) variation in how far away from zero the points lie.

where erfc is the complimentary error function. That variation indicates when the algorithm is entering harder
To calculate the third performance measure, note that for easier parts of the search.
fixed f andm, for any (deterministic) algorithna, P(¢ > Note that even for a fixedf, by using different starting

e | f,m,a) is either one or zero. Therefore the fraction opoints for the algorithm one could generate many of these
algorithms that result in & whose minimum exceeds is plots and then superimpose them. This allows a plot of the
given by mean value of + 1 — 1/2(d) as a function of» along with
. an associated error bar. Similarly, the single numb
2o P(min(d) > c | f’m’a). characterizing the random algorithm could be replacgf'j) with
a1 a full distribution over the number of required steps to find a
Expanding in terms of, we can rewrite the numerator ofn€w minimum. In these and similar ways, one can generate
this ratio asy_»P(min(é) > €& Y, P(€ | f.m,a). The a more nuanced picture of an algorithm’s performance than
ratio of this quantity toy_, 1, however, is exactly what wasis provided by any of the single numbers given by the
calculated when we evaluated measure ii) [see the beginnRfformance measure discussed above.
of the argument deriving (4)]. This establishes the following
theorem. VI. MINIMAX DISTINCTIONS BETWEEN ALGORITHMS
Theorem 7: For fixed f andm, the fraction of algorithms
which result in a¢ whose minimum exceedsis given by the

The NFL theorems do not directly address minimax prop-
erties of search. For example, say we are considering two
. deterministic algorithms; and a.. It may very well be that
%ere exist cost functiong such thata,’s histogram is much
better (according to some appropriate performance measure)

. . . - . anas’s, but no cost functions for which the reverse is true.
equal to this value, the quantity given in (5) is less than 1/2. . o

o . . X r the NFL theorem to be obeyed in such a scenario, it would
In such a situation the algorithm in question has performc?_l

worse than over half of all search algorithms, for thandm ave to be_ true that ther’e are many mgrdor Wh'.Ch. 23
L histogram is better than;’s than vice-versa, but it is only
at hand, hardly a stirring endorsement.

None of the above discussion explicitly concems the dsllghtly better for all thosef. For such a scenario, in a certain

. o ) ensez; has better “head-to-head” minimax behavior than
namics of an algorithm’s performance asincreases. Many {

aspects of such dynamics may be of interest. As an examp gre aref for which a, beatsa badly, but none for which

let us consider whether, as grows, there is any change in“L does substantially worse than.

o Formally, we say that there exists head-to-head minimax
how well the algorithm’s performance compares to that of the " . . . .
. istinctions between two algorithms anda iff there exists
random algorithm.

To this end, let the sample generated by the algorithma k such that for at least one cost functigh the difference

after m steps bed,,, and definey’ = min(dY,). Let k be E(¢] fﬂ_”v@lL E(E| f7m7a2)ﬂ k, but there is no other
e ; me . f.for which E(€| f,m,a2) — E(C| f,m,a1) = k. A similar
the number of additional steps it takes the algorithm to find .. ; A .
p . efinition can be used if one is instead interested{@&) or
an x such thatf(z) < 3. Now we can estimate the numbe

£
y S

of steps it would have taken the random search algorithm({ llt ;athggr;h?r?; analvzing head-to-head minimax proverties

searchY — d and find a point whosg was less than’. The pp yzing prop

expected value of this number of stepslj&(d) — 1, where of algorithms is substantially more difficult than analyzing

+(d) is the fraction ofY' —dZ, for which f(z) < 3. Therefore average behavior as in the NFL theorem. Presently, very

k+1— 1/2(d) is how much worse: did than the random little is known abqut minimax behawor_ involving stochastic
. algorithms. In particular, it is not known if there are any senses
algorithm, on average.

. . . , in which a stochastic version of a deterministic algorithm
Next, imagine letting: run for many steps over some f|tnes% L . S

; : g . as better/worse minimax behavior than that deterministic
function f and plotting how wellz did in comparison to the

: . ) algorithm. In fact, even if we stick completely to deterministic
random algorithm on that run, as increased. Consider theaI orithms, only an extremely preliminary understanding of
step wheres finds itsnth new value ofimin(c). For that step, 9  onYy yp y g

. ; : minimax issues has been reached.

there is an associatefd [the number of steps until the next What is known is the following. Consider the quantity
min(d¥,)] and z(d). Accordingly, indicate that step on our '
plot as the poin(n,k+1—1/z(d)).. Put down.as many points Zpdy o (52 |f,maq, 02)
on our plot as there are successive valuesinf(¢(d)) in the ral
run of a over f.

If throughout the ruru is always a better match tp than for deterministic algorithms:; and as. (By Pa(a) is meant
is the random search algorithm, then all the points in the plifte distribution of a random variablé evaluated atA = a.)
will have their ordinate values lie below zero. If the randorfor deterministic algorithms, this quantity is just the number
algorithm won for any of the comparisons however, that woultf f such that it is both true that; produces a sample

measuring the value ahin(é) produced in a particular run
of an algorithm. Then imagine that when it is evaluated<for
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with ) components: and thata, produces a sample with As a preliminary analysis of whether there can be head-

Y componentsz’. to-head minimax distinctions, we can exploit the result in
In Appendix F, it is proven by example that this quantityAppendix F, which concerns the case whékg = |Y| = 3.
need not be symmetric under interchange:@nd »’. First, define the following performance measures of two-
Theorem 8:In general element samplesp(d}).
ZP . . (7 7, | f . ) I) (I)(y27y3) = (I)(y?nyQ) =2
Do o V502 L T L B2 i) @(y1,92) = (y2,1) = 0.
s i) ® of any other argument 1.
£ Py (77| fim a1 as). In Appendix F we show that for this scenario there exist
! pairs of algorithmsa; and a» such that for onef a; gen-

This means that under certain circumstances, even knowi r&tes the h|stogr§r{y1,y2} and_ag generates the h'St"gTam
only the ) components of the samples produced by two alg yQ’y?’.}’ but there is nof for which the reverse occurs (ie.,
rithms run on the same unknowfy we can infer something ere is nof such thata, generates the histograqyz, ys}

concerning which algorithm produced each population. ang 2 gtinerates{y;_[,yg}_)t.h defined perf
Now consider the quantity o0 in this scenario, with our defined performance measure,

there are minimax distinctions between; and as. For one
Zpa 2 (22| fym, a1, a) J the performance measures of algorithms and a, are,
7 respectively, zero and two. The difference in tfevalues
for the two algorithms is two for thaf. There are no other
again for deterministic algorithms; anda,. This quantity is f, however, for which the difference is2. For this® then,
just the number off such that it is both true that; produces algorithma, is minimax superior to algorithm;.
a histogramz and thata, produces a histogram’. It too |t is not currently known what restrictions oh(d¥,) are
need not be symmetric under interchangezoénd »* (see needed for there to be minimax distinctions between the
Appendix F). This is a stronger statement than the asymmegiigorithms. As an example, it may well be that f(d¥,) =
of d¥’s statement, since any particular histogram corresponglsn;{d¥, (i)} there are no minimax distinctions between al-
to multiple samples. gorithms.

It would seem that neither of these two results directly More generally, at present nothing is known about “how
implies that there are algorithms; and a, such that for big a problem” these kinds of asymmetries are. All of the
some f ai’s histogram is much better tham,’s, but for examples of asymmetry considered here arise when the set
no f's is the reverse is true. To investigate this problemf X valuesq; has visited overlaps with those thas has
involves looking over all pairs of histograms (one pair foyisited. Given such overlap, and certain properties of how the
eachf) such that there is the same relationship between (thgjorithms generated the overlap, asymmetry arises. A precise
performances of the algorithms, as reflected in) the histogranggecification of those “certain properties” is not yet in hand.
Simply having an inequality between the sums presented abo¥sr is it known how generic they are, i.e., for what percentage
does not seem to directly imply that the relative performances pairs of algorithms they arise. Although such issues are
between the associated pair of histograms is asymmetric. @gsy to state (see Appendix F), it is not at all clear how best
formally establish this would involve creating scenarios it answer them.
which there is an inequality between the sums, but no head-Consider' however, the case where we are assured that,
to-head minimax distinctions. Such an analysis is beyond the m steps, the samples of two particular algorithms have
scope of this paper.) not overlapped. Such assurances hold, for example, if we are

On the other hand, having the sums be equal does carry @bmparing two hill-climbing algorithms that start far apart (on
vious implications for whether there are head-to-head minimgxe scale ofn) in X. It turns out that given such assurances,
distinctions. For example, if both algorithms are deterministighere are no asymmetries between the two algorithmsifor
then for any particularf, Pys 4+ (21,22 | f,m,a1,a2) elementsamples. To see this formally, go through the argument
equals one for onéz, z2) pair and zero for all others. In suchused to prove the NFL theorem, but apply that argument to
a caseEf Py 17(13”(;:1,/:«2 | f,m,a1,a2) is just the number the quantityzf Pdi’npdi‘nz(zvz/ | f,m,a1,as) rather than
of f that result in the pai(z, z). S03, Py a4 (2,7 | P(€| f,m,a). Doing this establishes the following theorem.
fomyar,a2) = Y Py g (2,2 | f/m,a1,a;) implies  Theorem 9:If there is no overlap betweeif,, , andd, ,,
that there are no head-to-head minimax distinctions betwel&gn
a1 anday. The converse, however, does not appear to fiold.

!
Z-‘Ddfml,dfmz(zvz | fim, a1, a2)
4Consider the grid of allz, z') pairs. Assign to each grid point the number f
of f that result in that grid point'§z, z’) pair. Then our constraints are i) ,
= Zpdfml,dy 2(75 2| fym, a1, a2).
f

m,

by the hypothesis that there are no head-to-head minimax distinctions, if grid
point (z1, z2) is assigned a nonzero number, then s@zis, z1) and ii) by

the no-free-lunch theorem, the sum of all numbers in roequals the sum

of all numbers in columre. These two constraints do not appear to imply  An immediate consequence of this theorem is that under
that the distribution of numbers is symmetric under interchange of rows apd " . ,
columns. Although again, like before, to formally establish this point Woul&Ie no-overl.ap Cond|t'9ns' the .quanUEf PChCZ (z, Z |
involve explicitly creating search scenarios in which it holds. f,m,a1,as) is symmetric under interchange efand 2/, as
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are all distributions determined from this one o¥&randC, the number of elements ia.,,. Then

(e.g., the distribution over the difference between th6%e

extrema). S _ > Plesm | frdyd k0., A)
Note that with stochastic algorithms, if they give nonzero

probability to all &%,, there is always overlap to consider. B , ,

So there is always the possibility of asymmetry between —ZP(C>m|f7 d,d . k,a,d,B).

algorithms if one of them is stochastic. @

a,a’

Implicit in this result is the assumption that the sum excludes
those algorithmse and o’ that do not result ind and d’
respectively when run orf.

All work to this point has largely considered the behavior In the precise form it is presented above, the result may
of various algorithms across a wide range of problems. In thippear misleading, since it treats all samples equally, when
section we introduce the kinds of results that can be obtaind any givenf some samples will be more likely than others.
when we reverse roles and consider the properties of maByen if one weights samples according to their probability
algorithms on asingle problem. More results of this type areof occurrence, however, it is still true that, on average, the
found in [5]. The results of this section, although less sweepifioosing procedure one uses has no effect on likely. This
than the NFL results, hold no matter what the real worldig established by the following result, proven in Appendix H.
distribution over cost functions is. Theorem 11:Under the conditions given in the preceding

Let a anda’ be two search algorithms. Define a “choosingheorem
procedure” as a rule that examines the samplgs and
.. produced_ bya and a’,_respectively, and based on those ZP(C>’" | fm, k,a,d, A)
samples, decides to use eitlgor o’ for the subsequent part of o
the search. As an example, one “rational” choosing procedure ,
is to usea for the subsequent part of the search if and only if - ZP(C>”’ | f;m.k, 0,0, B).
it has generated a lower cost value in its sample thanchas e
Conversely we can consider an “irrational” choosing procedure

that uses the algorithm that hadt generated the sample with These results show that no assumption feff) alone
the lowest cost solution. justifies using some choosing procedure as far as subsequent

At the point that a choosing procedure takes effect tﬁgarch is concerned. To have an intelligent choosing procedure,
cost function will have been sampled dt, = d,, U d’ " “one must take into account not onB§( f) but also the search
= dn -

Accordingly, if d-.,,, refers to the samples of the cost functioﬁ‘lgorif[hmS one is .chloosing amr:)ng.. This CO”EIUSizn may be
that come after using the choosing algorithm, then the usertPrsing. In particular, note that it means that there is no

interested in the remaining sample... As always, without intrinsic advantage to using a rational choosing procedure,

. . : p .
loss of generality, it is assumed that the search algorith\f’ﬁ",Ch qontlnues W',th the better fafan_da, rather than using
selected by the choosing procedure does not return to irrational choosing procedure which does the opposite.
points in d,.5 hese results also have interesting implications for degen-

The following theorem, proven in Appendix G, establisherate choosing procedures= {always use algorithm} and

that there is naa priori justification for using any particular B = {always use algorithm'}. As applied to this case, they

choosing procedure. Loosely speaking, no matter what tH#an that for_fixedfl_ and f», if f, does better (on average)
cost function, without special consideration of the algorithi!th the algorithms in some sed, then f, does better (on

at hand, simply observing how well that algorithm has dor?everage) with the algorithms in the set of all other algorithms.
so far tells us nothinga priori about how well it would In particular, if for some favorite algorithms a certain “well-

do if we continue to use it on the same cost function F&ehaved”f results in better performance than does the random

simplicity, in stating the result we only consider deterministi¢: then that well-behaved givesworse than randorbehavior
algorithms. on the set all remaining algorithms. In this sense, just as there

Theorem 10:Let d,, and d, be two fixed samples of are no universally efficacious search algorithms, there are no

size m, that are generated when the algorithmsand o’ universally benigry which can be assured of resulting in better

respectively, are run on the (arbitrary) cost function at han@an random performance regardless of one’s algorlthm.
In fact, things may very well be worse than this. In super-

Let A and B be two different choosing procedures. Llebe X . )
vised learning, there is a related result [11]. Translated into

the current context, that result suggests that if one restricts
54 can know to avoid the elemeritshas seen before. Howevampriori, «  SUMS t0 only be over those algorithms that are a good match
has no way to avoid the elements observedibjas (and vice-versa). Rather {g P(f) then it is often the case that “stupid" Choosing
than have the definition of somehow depend on the elementsdin— d ’ . . . .
(and similarly fora'), we deal with this problem by defining.,,, to be set procedures—llke the irrational procedure of ChOOSIﬂg the
only by those elements it~ »,, that lie outside ofi,. (This is similar to the algorithm with the less desirabi@—outperform “intelligent”
convention we eXp|0Ited above to deal with pOtentIally retracing algorlthm%nesl What the set of algorlthms summed over must be in

Formally, this means that the random variable,, is a function ofdy as der f . | ch - d b .
well as ofd~ ,. It also means there may be fewer elements in the histograq{ er for a rational choosing procedure to be superior to an

¢>m than there are in the sample. ;. . irrational procedure is not currently known.

VII. P(f)-INDEPENDENT RESULTS
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VIIl. CONCLUSIONS Therefore that sum equaly’|!*1=1, independent ofi?

A framework has been presented in which to compare , Vi
general-purpose optimization algorithms. A number of NFL ZP(d‘If | fim=1a)= |y|l1| '
theorems were derived that demonstrate the danger of com- s
paring algorithms by their performance on a small sample @hich is independent of. This bases the induction.
problems. These same results also indicate the importance ofhe inductive step requires that ¥, P(dY,|f,m.a) is
incorporating problem-specific knowledge into the behavior %dependent of; for all @,, then so also igf P(dY% | f.m+

the algorithm. A geometric interpretation was given showing7 a). Establishing this step completes the proof.
what it means for an algorithm to be well suited to solving \ye begin by writing

a certain class of problems. The geometric perspective also

suggests a number of measures to compare the similarity aP(d¥, ., |f,m +1,a) = P({d¥,, (1), -, d% 11 (m)},
various optimization algorithms. A (m 1) f,m A+ 1,a)

More direct calculational applications of the NFL theo- ,
rem were demonstrated by investigating certain information- = Pldy,, dypa(m+1)[f;m +1,0)
theoretic aspects of search, as well as by developing a number = P(dy, 11 (m + 1)|dm, f,m +1,a)
of benchmark measures of algorithm performance. These -P(dY,|f,m+1,a)
benchmark measures should prove useful in practice.

We provided an analysis of the ways that algorithms cand thus
differ a priori despite the NFL theorems. We have also , ,
provided an introduction to a variant of the framework that ZP(dfn+l|f’m +1a) :ZP(dan(m +1)

focuses on the behavior of a range of algorithms on spe- S

cific problems (rather than specific algorithms over a range |d%,, f,m +1,a)

of problems). This variant leads directly to reconsideration <P(d¥ | f,m+1,a).

of many issues addressed by computational complexity, as

detailed in [5]. The newy value,d?, ,, (m + 1), will depend on the newt

Much future work clearly remains. Most important is theyalue, f, and nothing else. So we expand over these possible
development of practical applications of these ideas. Can thevalues, obtaining
geometric viewpoint be used to construct new optimization , ,
techniques in practice? We believe the answer to be yes. At Y P(@% 1l fim+1,a) =Y P(d%,, (m +1)|f,z)
a minimum, as Markov random field models of landscapes f £

become more wide spread, the approach embodied in this - P(z|dy,, f,m+1,a)
paper should find wider applicability. -P(dY|f,m+1,a)
= Z 6(dfn+l(m + 1), f(z))
APPENDIX A Iz
NFL PROOF FORSTATIC COST FUNCTIONS - P(z|dy,, f,m+1,a)
We show thaty", P(¢] f,m,a) has no dependence on -P(dy,|f,m+1,0).

a. Conceptually, the proof is quite simple but necessary ) o

bookkeeping complicates things, lengthening the proof con-Next note that sincer = a(dz,, d,), it does not depend
siderably. The intuition behind the proof is straightforwardirectly on f. Consequently we expand i, to remove the
by summing over allf we ensure that the past perfors dependence i (z|dy,, f,m+1,a)

mance of an algorithm has no bearing on its future pe ,

formance. Accordingly, under such a sum, all algorithmzp(dfwﬂfam+1va) = Z 8(dp1(m + 1), f(x)
perform equally. 4 Jomods,

The proof is by induction. The induction is based on - P(zldp,, a)
m = 1, and the inductive step is based on breakjhinto - P(dE |, f,m+1,a)
two independent parts, one fere d7, and one forz & d¥,. P(dY.|f,m +1,a)
These are evaluated separately, giving the desired result. v ’

Form = 1, we write the first sample ad = {d7, f(d})} = Z (g1 (m +1), f(a(dm)))
whered7 is set bya. The only possible value fai{ is f(d}), Sz,
so we have - P(dy|f,m, a)

Zp(dlll |fom=1,a) = Zg(dllg F(d®)) where use was made of the fact t#¥tc|d,,,, a) = §(z, a(dm))
7 7 and the fact that’(d,,,|f, m + 1,a) = P(d|f,m, a).

The sum over cost functiong is done first. The cost
where ¢ is the Kronecker delta function. function is defined both over those points restrictedjoand
Summing over all possible cost function&dY, f(d7)) is those points outside of’,.P(d,,|f, m,a) will depend on the
one only for those functions which have ceftat pointdf. f values defined over points insidg, while 6(d¥, ,(m +
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1), f(a(dm))) depends only on theg values defined over Note that} . P(c|f,T,m,a) is independent of the values
points outsided®,. (Recall thata(d?,) ¢ dZ,.) So we have of T;~.—1, SO those values can be absorbed into an overall
a-independent proportionality constant.
ZP(d%H-ﬂf’m""l’ a) = Z Z P(d|f,m,a) Consider the innermost sum ovef,_, for fixed values of
7 2, f(zedz,) the outer sum indexe%y ---T,,_». For fixed values of the
, outer indexesT,—1(Tim—2 Ti(f1 is just a particular
Z6(dfn+1(m+1)’f(a(dm)))' ©6) fixed cost functlon.( Acco(rdmglé, t)rzc)e innermost sum over
flagds,) T,.—1 is simply the number of bijections gF that map that
fixed cost function tof,,. This is the constant(|F| — 1)!.

The sum}_ ;. ..., contributes a constanty||¥I=m-1, C " luating t I
equal to the number of functions defined over points not monsequen y, evaluating tig,, -, sum yields
passmg thrOUQNde(m‘i‘ 1) f( (d ))) S0 ZP(C| f7 Tvmval Z Z C|f7 m m | f:m7a)
Z y |x| 1 Z T < fm
P(d) | f,m+1,a) = Y17 P(dn|f,m,a)

f flzeds ), de, 25 f2,T1(f1)) -

1

= Pld,|f,m,a
|y|§ ( |f ) Zéfm 1, L2
T2
P(d¥ |f,m,a) (To—s(- - T1(f1))))-
v Z mlf

The sum ovefl,,_» can be accomplished in the same manner

By hypothesis, the right-hand side of this equation is indepefm—1 is summed over. In fact, all the sums over &l can
dent ofa, so the left-hand side must also be. This complet&§ done, leaving

the proof.
ZP(C|f,T,m,CL1 Z Z 7 m
T
APPENDIX B P( |f )
NFL PROOF FORTIME-DEPENDENT COST FUNCTIONS @
In analogy with the proof of the static NFL theorem, the o Z Z c|f’ m)
proof for the time-dependent case proceeds by establishing the fi F
a-independence of the suin,. P(c| f,T,m,a), where here Pdy, | free fme1smya). (7)

¢ is eitherd, or Dy,. In this last step, the statistical independence: ahd f,,, h
To begin, replace eacti’ in this sum with a set of cost bneer:suseszds €p, the statistical independence: fm has

functi i f h iterati f the algorithm. To d y
unctions, /i, one for each iteration of the algorithm. To da Further progress depends on whetherepresents{?,

this, we start with the followin
1S, W w wing: DY,. We begin with analysis of thé¥, case. For th|s case

ZP(C|f7T,m a ZZ Z (el f,d=,, T, m,a) (c|f’ ) = P(Dp|fm dy), Since Dy, only reflects cost
T

T m? values from the last cost funcuo;ﬁ,n. Using this result gives

(f2 fn“ m | fl’T m7a) ZP(DngvTvmval) X Z ZP(dfanl ) "frn—l,m,a)
- Z Z 7 rn ( fn | f:mv a) T g, foofm—1
'ZP(D%me,dﬁl).
ZP 2"'fnl|f17T7m7a) frn
T

The final sum overf,, is a constant equal to the number of
where the sequence of cost functioifs, has been indicated ways of generating the samplg¥, from cost values drawn
by the vectorf (f1,+++, fm)- In the next step, the sum overfrom f,,,. The important point is that it is independent of
all possibleT is decomposed into a series of sums. Each suifie particulardy,. Because of this the sum ovef, can be
in the series is over the valugs can take for one particular evaluated eliminating the dependence
iteration of the algorithm. More formally, using;1 = Z;(f;),

we write > P(DY|f,T,m,a)
T
> P(f, Tyma) = Z P(E| . d)P(dy, | fim,a) x Y P | frees fner,mia) o L
T dz, fooofrmo1 d2
Z ( fQ’Tl (f1) - This completes the proof of Theorem 2 for the caseDdf.

The proof of Theorem 2 is completed by turning to tfe
Z 6(fims Tne1 (Tr—a(- -~ T1(f1)))). case. This is considerably more difficult sing%e | f,d=,)
Tyt cannot be simplified so that the sums ovgr cannot be
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decoupled. Nevertheless, the NFL result still holds. This is APPENDIX C
proven by expanding (7) over possibig, values PROOF OF p; RESULT
As noted in the discussion leading up to Theorem 3, the
> P(d|f,T,m,a) Z Z ZP fraction of functions giving a specified histograth= ma
T o fm dY, is independent of the algorithm. Consequently, a simple algo-
( v f dz) rithm is used to prove the theorem. The algorithm visits points
= in X in some canonical order, sayi, x>, --,Z,,. Recall
P o Lo ) ) i peer o rm .
(d |, f1’ fm-1,m;0) that the histogran® is specified by giving the frequencies
= ZP(diJn|diJn) of occurrence, across the , s, -, zm, for each of theg)|

possible cost values. The number 6 giving the desired
Z Z P(dE | f1+ foe1,m,a) histogram under this algorithm is just the multinomial giving

a5 fafm the number of ways of distributing the cost value&iit the
m remaining|X’| — m points in X’ the cost can assume any of
.H(S(dgn(i), Fi(dE,(5))). (8) thel|Y|f values giving the first result of Theorem 3.

The expression ofp,(&) in terms of the entropy ofx
follows from an application of Stirling’s approximation to
The innermost sum overf,, only has an effect on the order O(1/m), which is valid when all of the:; are large.
8(dg,(4), fi(d,(2))) term so it contributesy”, 6(d%,(m), In this case the multinomial is written

fm(dZ,(m))). This is a constant, equal t)|l¥1=1. This N
leaves ln < m ) “mlonm — Z clag
C1C2 -+~ C|y| =
ZP(dngfvTvm?a)O(ZP |dm Z Z 1 i [V
T d¥, o fmo1 + = lnm—ZIn@
P( m|f1"'fm—lvmva) 2_ ‘
mt =~ m S(&)
3 | RO CAGH] : N
= —i—% (1—|y|)lnm—21noci
The sum overd?,(m) is now simple L =1

from which the theorem follows by exponentiating this result.

ST P(dLIf,Toma) o> PG ]ds) > >
T T

dz (1) d2z (m-1) fofmo1 APPENDIX D
P _ | fie " frm2,m, ) PROOF OF pa; RESULT
m—1 Y s . In this section the proportion of all algorithms that give a
: H 6(dy, (1), fildn,(2))). particular € for a particularf is calculated. The calculation

proceeds in several steps
Since X is finite there are a finite number of different

:—ehrﬁa?raavesaerqnu?:g?slize?f ahreatiaeTterla{?T:zm Caosnfe) u%?% Wl'rt]h samples. Therefore any (deterministic)s a huge, but finite,
9 P q Y: 1N jist indexed by all possibld’s. Each entry in the list is the

an analogous manner to the scheme used to evaluate the s S theq in question outputs for that-index.

over fr, anddy, (m) that existed in (8), the sums ovgf,_, Consider any particular unordered setqaf(X,)) pairs
andd?,(m — 1) can be evaluated. Doing so simply generates,
Where no two of the pairs share the samevalue. Such a
more a-independent proportionality constants. Continuing in
this manner, all sums over the can be evaluated to find set is called an unordered path Without loss of generality,
from now on we implicitly restrict the discussion to unordered
paths of lengthn. A particularr is in or from a particularf

> PEILTm ) ZP 2| ) D P(d,(1) | ma) it there is a unordered set a (z, f(x)) pairs identical tor.
T dr. (1) The numerator on the right-hand side of (3) is the number of
’ ( %, (1), f1(dn.(1))). unordered paths in the givefithat give the desired.

The number of unordered paths jnthat give the desired
There is algorithm dependence in this result, but it is th& the numerator on the right-hand side of (3), is proportional
trivial dependence discussed previously. It arises from hdw the number ofa’s that give the desire@ for f and the
the algorithm selects the firat point in its sampledZ,(1). proof of this claim constitutes a proof of (3). Furthermore, the
Restricting interest to those points in the sample that are ggmeportionality constant is independent pfand é.
erated subsequent to the first, this result shows that there are no Proof: The proof is established by constructing a map-
distinctions between algorithms. Alternatively, summing overing ¢ : a — 7 taking in anqa that gives the desired for
the initial cost functionf;, all points in the sample could be f, and producing ar that is in f and gives the desired
considered while still retaining an NFL result. Showing that for anyr the number of algorithma such that
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¢(a) = 7 is a constant, independent of f, and¢. and that at some point by now, and therefore there isanthat agrees

¢ is single valued will complete the proof. with both of them. Since this is true for any,,.; from A and
Recalling that every: value in an unordered path is distinctany B, from B, we see that there is noin ¢~1(A) that is

any unordered path gives a set ofn! different ordered paths. also in$~1(B). This completes the proof.

Each such ordered path,,.; in turn provides a set ofn To show the relation to the Kullback—Liebler distance the

successivel's (if the emptyd is included) and a following product of binomials is expanded with the aid of Stirling’s

z. Indicate byd(w,.q) this set of the firstn d’s provided by approximation when botlV; and¢; are large

ford: : : N N

From any ordered path,,q a “partial algorithm” can be N\ 1

constructed. This consists of the list of anbut with only the IHH <ci ) = Z D) In27 + N;In NV;

m d(m,rq) €ntries in the list filled in, the remaining entries are =t =t

blank. Since there are:! distinct partiala’s for eachr (one —cilne = (Ni =) In(N; - i)

for each ordered path correspondingatp there arem! such + l(ln N; —In(N; — ¢;) — Iney).

partially filled-in lists for eachr. A partial algorithm may or 2

may not be consistent with a particular full algorithm. Thig has been assumed thaf N; < 1, which is reasonable when
allows the definition of the inverse @f: for any = that is in < |X|. Expandingln(1 — z) = —,z —22/2—-.., to second
f and givesé, ¢~1(7) = (the set of alla that are consistent order gives ’

with at least one partial algorithm generated franand that

give € when run or!f). _ V] N\ [ N,
To complete the first part of the proof, it must be shown that lnH e )= ;

for all 7 that are inf and giveé&, ¢~(x) contains the same i=1 "

number of elements, regardlessmf f, or c. To that end, first 1 G (ci—14--).

=1

— —In27 -
generate all ordered paths inducedrbgnd then associate each 2 2N;

such ordered path with a distingi-element partial algorithm. . . o i

Now how many full algorithm lists are consistent with at lead¢Singm/|X| < 1 then in terms ot and # one finds

one of these partial algorithm partial lists? How this question is N

answered is the core of this appendix. To answer this question, IHH <NZ> ~ _mDy (&, ﬂ*) +m—mln <ﬂ)
Ci

reorder the entries in each of the partial algorithm lists by paie} |X|

permuting the indexed of all the lists. Obviously such a IVl

reordering will not change the answer to our question. _ M ln 27 — Z = In(aim)
Reordering is accomplished by interchanging pairs of 2 pet

d indexes. First, interchange ang index of the form m [

entry is filled in any of our partial algorithm lists with

d(d) = ((dn(1),2),-,(d},(i),2)), where z is some whereD (& ) = 3, a; In(3;/) is the Kullback—Liebler
arbitrary constanp value andz; refers to thejth element igiance petween the distributiods and #. Exponentiating
of X. Next, create some arbitrary but fixed ordering os expression yields the second result in Theorem 4.

all z € A (x1,---,x¢)). Then interchange any’ index

of the form ((d7,(1),z,---,(d;, (i £ m),z) whose entry

is filled in any of our (new) partial algorithm lists with APPENDIX E

d"(d') = ((z1,2),, (Tm, 2)). Recall that all thel®, (i) must BENCHMARK MEASURES OFPERFORMANCE

be distinct. By construction, the resultant partial algorithm lists The result for each benchmark measure is established in

are independent of, ¢ and f, as is the number of such liststurn.

(it is m!). Therefore the number of algorithms consistent with The first measure i3~ P(min(d¥,)|f, m, a). Consider

at least one partial algorithm list in=(r) is independent of

7, c and f. This completes the first part of the proof. ZP(min(dfnﬂf,m, a) 9
For the second patrt, first choose any two unordered paths 7

that differ from one anotherd and B. There is no ordered )

path A, constructed fromi that equals an ordered palty,; 7 Which the summand equals zero or one for Alland

constructed fromB. So choose any such,,; and any such deterministica. It is one only if

B,q. If they disagree for the nul, then we know that there 1) f(d;,(1)) = d7,(1)

is no (deterministic): that agrees with both of them. If they i) f(a[dnm(1)]) = d¥,(2)

agree for the nuli, then since they are sampled from the samédil) f(al[dy (1), dn(2)]) = d3,(3)

f, they have the same single-elemetlf they disagree for and so on. These restrictions will fix the value fifr) at m

thatd, then there is na that agrees with both of them. If theypoints while f remains free at all other points. Therefore

agree for thatd, then they have the same double-elemént i

Continue in this manner all the up to tiig: — 1)-elementd. SO P(d, | fym,a) =YV

Since the two ordered paths differ, they must have disagreed f
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Using this result in (9) we find 2) If at its first pointa; sees ay; oOr ao, it jumps tox,.
1 Otherwise it jumps tars.
> P(min(dy,) > | f,m) = NE > P(min(d¥,) > c|d¥,)  3) Ifatits first pointay sees ayy, it jumps toz;. If it sees
f d¥, a yz, it jumps to zs.

1 Z 1 Consider the cost function that has as Pevalues for the

i, S ) > three X values{y;, 2, v3}, respectively.
1 i i For m = 2, a; will produce a sample(y;,y2) for this
= (V=™ function, anday will produce (y2, y3).

Y The proof is completed if we show that there is no cost

which is the result quoted in Theorem 5. function so thata; produces a sample containing and s
In the limit as|Y| gets large write) - ; E(min(c)|f,m) = and such that, produces a sample containigg and y».

ZIEJ;‘I1 efw™(e = 1) — w™(e)] and substitute in forw(e) = There are four possible pairs of samples to consider:
1—¢/|V|. Replacing: with ¢+1 turns the sum intd_ 1 ¢+ ) [, 98): (w1, 1)
1] [(1- §p)™ = (1= S5y, Next, write| V| = b/Aforsome 1) [{v2. ), (2,1 )
b and multiply and divide the summand by, Since|y| — oo~ 0 [(us,12), (v, 1)L

thenA — 0. To take the limit ofA — 0, apply L’hopital’s rule 'V? [(ZJ;,_m)t(ymy%)]-_ _ o
to the ratio in the summand. Next use the fact thas going ~ Since if its first point is &3, a; jumps tozx, which is where
to zero to cancel terms in the summand. Carrying through tfie Starts, whem,'’s first point is ays its second point must
algebra and dividing by/A, we get a Riemann sum of the€dualaz’s fl_rs_t_pom_t_._ This r_ules out possibilities i) and ii).
form ™ fb dz z(1 — z/b)™~L. Evaluating the integral gives For possibilities iii) and iv), bya;’s sample we know that
b2 JO . ' J must be of the form{ys, s, 42}, for some variables. For
the second result in Theorem 5. Y3, 5,425 ) -
The second benchmark concerns the behavior of the rand&#7¢ iii), s would need to equaj,, due to the first point in

algorithm. Summing over th¥ values of different histograms 2 S Sample. For that case, however, the second poirsees
¢, the performance of: is

would be the value at, which isys, contrary to hypothesis.
For case iv), we know that thewould have to equayj,, due
P(min(é) > €|f,m,a) = ZP(min(c“) > ¢|Q)P(df,m,a). to the first point inax’'s sample. That would mean, however,
z that a; jumps toxz for its second point and would therefore
o . . - . see ayo, contrary to hypothesis.
Now P(€] f,m,a) is the probability of obtaining histogram A ..o dingly, none of the four cases is possible. This is

¢in e random O!faWS from the his'gqgragﬁ Of, the funct_ipn a case both where there is no symmetry under exchange of
f. This can be viewed as the definition @f This probability d¥'s betweeny; anday, and no symmetry under exchange of

C

has been calculated previously B, (%) /('*)). so histograms.
1 m m |y|
P(min(@) > | fym, @) = - S 8D em APPENDIX G
(m ) e1=0 ¢y =0 \i=1 FIXED COST FUNCTIONS AND CHOOSING PROCEDURES
VI A Since any deterministic search algorithm is a mapping from
- P(min(€) > €& H< f) d C Dtox C &, any search algorithm is a vector in the
NG spaceX”. The components of such a vector are indexed by
T m [ the possible samples, and the value for each component is the
= 17 >+ 3 8> e,m| athat the algorithm produces given the associated sample.
() ce=0  ¢y=0 \i=¢ Consider now a particular sampte of size m. Given d,
1V we can say whether or not any other sample of size greater
. H <NZ) thanm has the (ordered) elementsdas its firstm (ordered)
ime \Gi elements. The set of those samples that do start ithis
(E‘i‘ M) (Q<€)|X|) way defines a set of components of any algorithm veator
= m =1 m Those components will be indicated lby,.
(l;}ll) (l;}ll) The remaining components afare of two types. The first is
which is (4) of Theorem 6. given by those samples that are equivalent to the fifst m
elements ind for someM. The values of those components
for the vector algorithma will be indicated byac-4. The
APPENDIX F

second type consists of those components corresponding to
all remaining samples. Intuitively, these are samples that are
not compatible withd. Some examples of such samples are
This proof is by example. Consider three points ifhose that contain as one of their firatelements an element
X, x1,r2, andzxs, and three points iV, y1,y2, andys. not found ind, and samples that re-order the elements found
1) Let the first pointa, visits bex; and the first pointze  in d. The values of: for components of this second type will
visits be xs. be indicated bya 4.

PROOF RELATED TO MINIMAX
DISTINCTIONS BETWEEN ALGORITHMS
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Let proc represent eithed or B. We are interested in

Z P(C>m|f7 di,da, k,a, alvaoc)

= Z Z Z P(c>rn|f7d7d/7kvavalvaoc)'

’ ’ ’
ALds@) 4 BCd: By B0,

(1]

The summand is independent of the values:@f; andda’, ;  [2]
for either of our twod's. In addition, the number of such

values is a constant. (It is given by the product, over aIP]

samples not consistent witly, of the number of possible  [4]
each such sample could be mapped to.) Therefore, up to w
overall constant independent df d’, f, and proc, the sum
equals [6]
Z Z Plesm | f,d,d' asa, a541, acd, ac g, proc). 7
o
By definition, we are implicitly restricting the sum to thos 10]

a and ¢’ so that our summand is defined. This means that

we actually only allow one value for each componentiy;  [11]
(namely, the value that gives the nextelement ind) and [12]
similarly for ai,,. Therefore the sum reduces to
[13]
Z Plesm | f,d,d' asa, a5, proc).
ada;al [14]

Note that no component af5q lies in 4. The same is true

of a,,. So the sum oveu-, is over the same componentg'®]
of a as the sum oveus, is of a’. Now for fixedd and d’,
proc's choice ofa or o’ is fixed. Accordingly, without loss of
generality, the sum can be rewritten as

Z P(c>rn | f7 d7 dlv agd)

a;d

with the implicit assumption that.,, is set byas,. This sum
is independent oproc.

APPENDIX H
PROOF OF THEOREM 11

Let proc refer to a choosing procedure. We are interested

Z P(c>rn | f7 m, k? a, a/7p7’OC)
a,a’

= Z P(esm | f,d,d  k,a,d , proc)

7 U
a,a’,d,d

x P(d,d"| f,k,m,a,d ,proc).

The sum overd and &’ can be moved outside the sum
over a and «'. Consider any term in that sum (i.e.,
any particular pair of values ofd and d’). For that

term, P(d,d'|f,k,m,a,a’,proc) is just one for those
a and ¢ that result ind and d’, respectively, when
run on f, and zero otherwise. (Recall the assumptio
that ¢ and &« are deterministic.) This means that the
P(d,d'| f,k,m,a,a,proc) factor simply restricts our sum
over ¢ and ¢’ to the a and a’ considered in our theorem.
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Accordingly, our theorem tell us that the summand of the sum
overd andd’ is the same for choosing procedurdsand B.
Therefore the full sum is the same for both procedures.
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