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We prove that Gaussian operations are of no use for protecting Gaussian states against Gaussian errors

in quantum communication protocols. Specifically, we introduce a new quantity characterizing any single-

mode Gaussian channel, called entanglement degradation, and show that it cannot decrease via Gaussian

encoding and decoding operations only. The strength of this no-go theorem is illustrated with some

examples of Gaussian channels.
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Quantum information processing based on continuous
variables has attracted a lot of attention over recent years
due to both its conceptual simplicity and experimental
advantages. In particular, the set of Gaussian states and
operations have been shown to enable many quantum
information primitives, such as teleportation [1], key dis-
tribution [2], and cloning [3]. Interestingly, when the quad-
ratures of the electromagnetic field are used to carry
information, the entire set of Gaussian operations can be
implemented by combining passive linear optical compo-
nents such as beam splitters and phase shifters together
with squeezers and homodyne detection followed by feed-
forward. All these elements are, up to some degree, readily
accessible in today’s optical laboratories. However, ma-
nipulating Gaussian states with Gaussian operations also
leads to some limitations. Probably the most significant
one is the impossibility to distill entanglement from
Gaussian entangled states with Gaussian local operations
and classical communication [4–6]. As a result, some
important quantum primitives, such as quantum repeaters,
cannot be implemented within the Gaussian regime and
hence require the use of experimentally more demanding
non-Gaussian resources, such as photon subtraction [7] or
de-Gaussification operations [8]. Given the present state of
technology, understanding what is possible or not within
the Gaussian regime is thus of great importance as it
underpins the ‘‘main stream’’ use of optical continuous
variables in quantum information protocols.

Recently, several schemes have been developed to fight
noise and losses in continuous-variable quantum transmis-
sion lines. Given the well-known connection between
quantum error correction and entanglement distillation
for discrete-variable quantum systems [9], it was implicitly
assumed that correcting Gaussian errors with Gaussian
operations would be impossible. Logically, these schemes
were thus all focused on non-Gaussian error models, such
as discrete errors [10,11], phase-diffusion noise [12],
probabilistic phase-space kicks [13], or probabilistic losses
[14,15]. However, the sole existence of a no-go theorem for
Gaussian error correction had yet remained unresolved.

In this Letter, we address this problem by introducing a
new intrinsic feature of single-mode Gaussian channels,
which we call entanglement degradation D. This parame-
ter characterizes the extent to which the channel degrades
entanglement when acting on one-half of two-mode
squeezed vacuum at the limit of infinite squeezing. By
exploiting a connection between quantum error correction
and entanglement distillation in the Gaussian regime, we
prove that D can never decrease when one is restricted to
Gaussian encoding and decoding operations. Our result is
thus of the form of a no-go theorem, establishing the
impossibility of improving the transmission of Gaussian
states in a Gaussian channel with Gaussian error correction
only.
Let us briefly remind the Gaussian formalism. Any

n-mode Gaussian state is completely characterized by its
first and second moments d and �, respectively. Intro-
ducing the vector of quadratures r ¼ ðx1; p1; . . . ; xn; pnÞ,
the coherent vector and covariance matrix read dj ¼ hrji
and �ij ¼ hrirj þ rjrii � 2didj. A quantum Gaussian

channel is a trace-preserving completely positive map T
that transforms Gaussian states into Gaussian states ac-
cording to � ! Tð�Þ. It can be understood as resulting
from a Gaussian unitary operation U (associated with a
quadratic bosonic Hamiltonian) acting on the state � to-
gether with its environment in a Gaussian state �E, i.e.,
Tð�Þ ¼ TrEUð� � �EÞUy, where TrE denotes partial trace
with respect to the environment [16]. Gaussian channels
are known to model many physical lines, e.g., the trans-
mission through a lossy optical fiber. At the level of
covariance matrices, the action of T is completely charac-
terized by two matrices M and N, namely

� ! M�MT þ N; (1)

where M is real and N � 0 is real and symmetric. In the
case of a single-mode channel, the condition of complete
positivity of the map implies that

detN � ðdetM� 1Þ2; (2)

which means that any map � ! M�MT can be approxi-
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mately realized provided that sufficient noise N is added.
An important subclass of Gaussian operations are sym-
plectic transformations, corresponding to N ¼ 0 and
detM ¼ 1. Well-known examples of such operations are
phase shifters and squeezers, with symplectic matrices

MPS ¼ cos� sin�
� sin� cos�

� �
; MSq ¼ e�r 0

0 er

� �
: (3)

Let us now define a Gaussian Error-Correcting Code
(GECC) associated with the Gaussian channel T, as de-
picted in Fig. 1. It consists of a finite number n� 1 of
ancillas in a vacuum state j0i, Gaussian unitary operations
for encoding E and decoding D acting each on n modes,
and n uses of the channel T. The code is denoted by
Gðn; E;DÞ, and its overall effect is to turn the Gaussian
channel T with matrices M and N into a Gaussian channel
TGC with matrices MGC and NGC.

We are now ready to turn to the proof of our no-go
theorem, which can be greatly simplified by introducing
two Lemmas. For discrete systems, it is well known that
any error-correcting code is equivalent to a one-way en-
tanglement distillation protocol, and vice versa [9]. For
continuous variables, this relation is not as straightforward,
but one can nevertheless prove the following lemma:

Lemma 1.—If j�ri is a two-mode squeezed vacuum state
with squeezing parameter r, the code Gðn; E;DÞ trans-
forming the Gaussian channel T into the Gaussian channel
TGC is equivalent to a one-way protocol transforming n
copies of the state � ¼ limr!11 � Tðj�rih�rjÞ into one
copy of the state �GC ¼ limr!11 � TGCðj�rih�rjÞ by
local Gaussian operations only.

Proof.—Our main tool is the well-known isomorphism
between CP maps and positive operators [17]. In particu-
lar, to any Gaussian CP map T acting on a Hilbert space
H corresponding to one mode, one can associate a
Gaussian positive operator � on H �H defined as

� ¼ lim
r!11 � Tðj�rih�rjÞ; (4)

where j�ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2ðrÞp P

ntanh
nðrÞjn; ni is a two-

mode squeezed vacuum state. Acting with T on a
Gaussian state � can thus be seen as teleporting � through
the quantum gate defined by the resource state � [6]. It

follows that the n uses of T appearing in the GECC can be
replaced by n teleportations associated with the resource
state �, as shown in Fig. 2. Note that the operations
involved in the teleportation, i.e., Bell measurement, one-
way classical communication, and displacement all main-
tain the overall Gaussian character of the scheme. If the
input of the GECC is now chosen to be one half of the state
j�ri, then Gðn; E;DÞ is turned into a one-way Gaussian
protocol that transforms n copies of state � into one copy
of state �r ¼ 1 � TGCðj�rih�rjÞ. The protocol is the fol-
lowing: Alice prepares the entangled state j�ri and n� 1
ancillas, then applies the Gaussian operation E on the
ancillas and one half of j�ri. Next, she performs n Bell
measurements using the n copies of the resource state �
and communicates the results to Bob. Bob displaces his
shares of the n resource states accordingly, and applies the
Gaussian operation D. Alice and Bob now share one copy
of the state�r. In particular, if Alice prepares the entangled
state limr!1j�ri, the state they finally share is �GC ¼
limr!1�r. j
The preceding Lemma does not say anything about the

entanglement of the resource state � and final state �GC,
which is why we referred to a one-way protocol, not a one-
way entanglement distillation protocol. For the protocol to
be a true entanglement distillation protocol, one has to
show that it increases entanglement, i.e., that E½�GC�>
E½�� for some entanglement measure E. This is addressed
by the following Lemma.
Lemma 2.—Given a Gaussian channel T with matrices

M and N acting on one half of the entangled state �in ¼
limr!1j�rih�rj, the entanglement of the output state
�out ¼ limr!11 � Tðj�rih�rjÞ is completely character-
ized by the entanglement degradation of the channel

D½T� ¼ min

�
detN

ð1þ detMÞ2 ; 1
�
: (5)

In particular, the logarithmic negativity is the decreasing
function EN½�out� ¼ � 1

2 logD½T�.
Proof.—Let us first assume that detM> 0. Without re-

striction, we can choose M ¼ �1 since the channel can
always be transformed into another Gaussian channel with
M0 ¼ SVMU and N0 ¼ SVNVTS by adding two phase
shifts of symplectic matrices U and V at the input and
output, respectively, followed by a single-mode squeezer

1

2

ρout

n n

D

|0〉

|0〉

|0〉
3 E
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FIG. 1. Scheme of a Gaussian error-correcting code Gðn; E;DÞ
for a Gaussian channel T, where E and D are n-mode unitary
Gaussian operations used for encoding and decoding, respec-
tively.

〉

〉

〉

FIG. 2. From a GECC to Gaussian entanglement distillation.
(m) Bell measurement; (d) displacement.
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of symplectic matrix S. Note that these operations are
local, so they do not affect the entanglement properties
of the channel. By singular value decomposition, U and V
can be chosen such that VMU is diagonal. Then, tuning the
squeezing appropriately can make M0 proportional to the
identity, i.e., M0 ¼ �1. Importantly, the determinant of
symplectic matrices being equal to unity, detM0 ¼ detM
and detN0 ¼ detN.

Let us now consider the action of T on one-half of the

state j�rih�rj with covariance matrix �ðrÞ
in . Recalling that

covariance matrices of two-mode Gaussian states can be
decomposed in four 2� 2 blocks, we easily find the input
and output covariance matrices to be

�ðrÞ
in ¼ Ar Cr

Cr Ar

� �
; �ðrÞ

out ¼ Ar �Cr

�Cr �2Ar þ N

� �
; (6)

with

Ar ¼ coshð2rÞ 1 0
0 1

� �
; Cr ¼ sinhð2rÞ 1 0

0 �1

� �
:

Now, remember that the entanglement of a two-mode
Gaussian state with covariance matrix

� ¼ A B
BT C

� �

is fully characterized by the smallest symplectic eigen-
value �� of the partially transposed state [18]. In particu-
lar, the logarithmic negativity is given by EN ¼
maxf0;� log��g. One can calculate �� from � using

2�2� ¼ ~��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4 det�

q
;

where ~� ¼ detAþ detC� 2 detB [19]. For the output

state �ðrÞ
out ¼ 1 � Tðj�rih�rjÞ of covariance matrix �ðrÞ

out, a
few lines of calculation yields

~� ¼ cosh2ð2rÞð1þ �2Þ2 þOð coshð2rÞÞ;
det�ðrÞ

out ¼ cosh2ð2rÞ detN þOð coshð2rÞÞ; (7)

where we have used some known rules for the determinant
of block matrices and the relation detðAþ 	1Þ ¼ detAþ
	TrAþ 	2, which is valid for 2� 2matrices. We can now
calculate �2� for the state �out ¼ limr!11 � Tðj�rih�rjÞ.
Using Eq. (7) and

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p ¼ 1� x=2þOðx2Þ, we find

lim
r!12�

2� ¼ lim
r!1

~��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4 det�ðrÞ

out

q

¼ lim
r!1

2 det�ðrÞ
out

~�

¼ 2 detN

ð1þ �2Þ2 : (8)

Recalling that detM ¼ �2, we obtain the logarithmic nega-
tivity of the state �out

EN½�out� ¼ � 1

2
log

�
min

�
detN

ð1þ detMÞ2 ; 1
��
: (9)

Let us now consider a second class of channels, charac-
terized by detM< 0. An example of such channel is the
approximate phase-conjugation map [20]. Using the same
arguments as before, it is easy to show that we can restrict
our attention toM ¼ �
, where
 is a real diagonal matrix
with det
 ¼ �1. The two symplectic invariants can again

be easily calculated, and while det�ðrÞ
out is unchanged, now

~� ¼ cosh2ð2rÞð1� �2Þ2 þOð coshð2rÞÞ. Remembering
that detM ¼ ��2, we find again

lim
r!12�

2� ¼ 2 detN

ð1þ detMÞ2 : (10)

Moreover, combining this expression with the condition
(2) of complete positivity, one finds that for such channel
�� is always larger than 1, i.e., EN½�out� ¼ 0, so that the
output state �out can never be entangled. These channels
are called entanglement breaking channels. Finally, the last
class of channels, characterized by detM ¼ 0, can easily be
proven to be entanglement breaking using similar argu-
ments, which completes the proof. j
We are now in a position to prove our main result.
Theorem.—Given a Gaussian channel T with matricesM

and N, there exists no GECC that transforms T into a
Gaussian channel TGC with matrices MGC and NGC having
a lower entanglement degradation, i.e., such that

detNGC

ð1þ detMGCÞ2 <min

�
detN

ð1þ detMÞ2 ; 1
�
: (11)

Proof.—Our proof works by contradiction. Suppose that
there exists a GECC as in Fig. 1 whose overall effect is to
transform T into TGC, and such that the condition (11) is
satisfied. By Lemma 1, there exists a one-way Gaussian
protocol as in Fig. 2 which transforms n copies of the
state � into the state �GC ¼ limr!11 � TGCðj�rih�rjÞ.
Lemma 2 combined with condition (11) shows that
EN½�GC�>EN½��; hence, the resulting one-way protocol
is a true entanglement distillation protocol based on
Gaussian operations only. This is in clear contradiction
with the impossibility to distill entanglement of a
Gaussian state with Gaussian operations [21]. We conclude
that such a GECC does not exist. j
We now illustrate this no-go theorem by applying the

criterion (11) to some well-known Gaussian channels.
Attenuation channel.—This channel T� is characterized

by M ¼ �1 and N ¼ j1� �2j1, with �< 1. It is the
prototype channel for optical communication through a
lossy fiber, and can be modeled by a beam splitter of
transmittance �. Its entanglement degradation

D½T�� ¼ ð1� �2Þ2
ð1þ �2Þ2 < 1 (12)

is a decreasing function of �. Hence, by (11), it is impos-
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sible to find a GECC that turns T� into another attenuation

channel with less losses. As is well known, one can never-
theless reduce the attenuation by amplifying (�<�GC<1)
but at the expense of an increasing noise NGC. A bound on
the minimum achievable noise is given by (11).

Amplification channel.—It is similar to the attenuation
channel, but with�> 1. Thus, Eq. (12) holds, but nowD is
an increasing function of �, so that it is impossible to make
�GC <�. Again, one can reduce the amplification at the
expense of an increased noise, e.g., by concatenating the
amplification channel with an attenuation channel.

Classical noise channel.—This channel TN adds
Gaussian classical noise to the input state, i.e., M ¼ 1
and N > 0. Its entanglement degradation is

D½TN� ¼ min

�
detN

4
; 1

�
; (13)

so that our theorem implies that it is impossible to reduce
the noise when detN � 4, and that it is impossible to
reduce the noise under 4 when detN > 4. Note that this
limit of 4 can always be reached as the number of available
ancillas goes to infinity. Alice simply needs to optimally
measure the input state and send to Bob an infinite number
of states centered on her measurement result. Bob mea-
sures the received states and prepares a state centered on
the average value of his measurements. This measure-and-
prepare strategy yields detN ¼ 4.

To summarize our results, we have introduced an intrin-
sic property of single-mode Gaussian channels called en-
tanglement degradation, and proven that it cannot be
reduced by Gaussian encoding and decoding operations
only. Such a no-go theorem for the correction of Gaussian
errors with Gaussian operations nicely complements the
well-known impossibility to distill the entanglement of
Gaussian states with Gaussian local operations. In this
Letter we focused on deterministic Gaussian CP maps
since these describe the most common practical commu-
nication channels. However, the no-go theorem can be
straightforwardly extended to probabilistic trace-
decreasing Gaussian CP maps isomorphic to generic
two-mode Gaussian states � [5,6]. One only needs to
defineD½T� ¼ minð1; �2�Þ, where �� is the lower symplec-
tic eigenvalue of the covariance matrix of the partially
transposed �.

Interestingly, the entanglement degradation can be re-
lated to another important intrinsic properties of channels,
namely, the quantum capacity Q. In particular, one can
show that the quantum capacity of a single-mode Gaussian
channel T is always upper bounded by the function of D

Q½T� � �1
2 logD½T�: (14)

This result follows from [22], where a computable upper
bound on the quantum capacity was introduced. This ca-

pacitylike quantity Q� can be defined as the maximal
entanglement, as measured by the logarithmic negativity,
of states transmitted through the channel T, i.e., Q�½T� ¼
� 1

2 logD½T� for single-mode Gaussian channels. A natural

and promising extension of our Letter would therefore be
to investigate whether a Gaussian no-go theorem also holds
for the quantum capacity of Gaussian channels.
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