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NO HYPERBOLIC PANTS

FOR THE 4-BODY PROBLEM WITH STRONG POTENTIAL

CONNOR JACKMAN AND RICHARD MONTGOMERY

The N-body problem with a 1/r2 potential has, in addition to translation

and rotational symmetry, an effective scale symmetry which allows its zero

energy flow to be reduced to a geodesic flow on complex projective (N − 2)-

space, minus a hyperplane arrangement. When N = 3 we get a geodesic

flow on the 2-sphere minus three points. If, in addition we assume that the

three masses are equal, then it was proved in a previous paper that the cor-

responding metric is hyperbolic: its Gaussian curvature is negative except

at two points. Does the negative curvature property persist for N = 4, that

is, in the equal mass 1/r2 potential 4-body problem? Here we prove that

it does not by computing that the corresponding Riemannian metric in this

N = 4 case has positive sectional curvature at some 2-planes. This curvature

computation underlines an essential difference between the 3- and 4-body

problem, a difference whose consequences remain to be explored.

1. Introduction

In [Montgomery 2005] it was shown that the reduced Jacobi–Maupertuis metric for

a certain 3-body problem had negative Gaussian curvature (except at two points

where it is zero). This hyperbolicity led to deep dynamical consequences. Does

hyperbolicity, i.e., curvature negativity, persist for the analogous N -body problem

with N > 3? No. We show that the analogous reduced 4-body problem with its

metric has 2-planes at which the sectional curvature is positive.

The N -body problem in question has equal masses and the inverse cube law

attractive force between bodies.

2. Setup

Identify the complex numbers C with the Euclidean plane R
2. Then the planar

N -body problem has configuration space C
N \ 1. Here 1 is the “fat diagonal”
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consisting of all collisions:

1 = {q = (q1, q2, . . . , qN ) ∈ C
N : qi = q j for some pair i 6= j}.

The quotient of C
N \ 1 by translations and rotations is the “reduced N -body

configuration space”:

CN = YN × R
+, YN = CP

N−2 \ P1,

where CP
N−2 is the projectivization of the center of mass subspace

C
N−1 =

{

q ∈ C
N :

∑

mi qi = 0
}

and P1 ⊂ CP
N−2 is the projectivization of 1 ∩ C

N−1. The R
+ factor records the

overall scale of the planar N -gon and is coordinatized by
√

I with I = 6mi |qi |2
being the total moment of inertia about the center of mass. YN is the moduli space of

oriented similarity classes of noncollision N -gons and will be called “shape space”.

The following considerations reduce the zero angular momentum, zero energy

N -body problem to a geodesic flow on shape space YN , provided the potential V

is homogeneous of degree −2. If V is homogeneous of degree −α then the virial

identity, also known as the Lagrange–Jacobi identity, asserts that along solutions of

energy H we have Ï = 4H − (4 − 2α)V , which implies that the only case in which

we can generally guarantee that Ï = 0 is when α = 2 and H = 0. If in addition

İ = 0 then solutions lie on constant levels of I .

Now we recall the Jacobi–Maupertuis (JM) reformulation of mechanics, which

asserts that the solutions to Newton’s equations at energy H are, after a time

reparametrization, precisely the geodesic equations for the Jacobi–Maupertuis

metric
ds2

JM = 2(H − V ) ds2

on the Hill region {H −V ≥ 0}⊂ C
N \1 with ds2 the mass metric. We are interested

in the case H = 0, −V > 0 with V homogeneous of degree −2, in which case the

Hill region is all of C
N \ 1 and

ds2
JM = U ds2, U = −V .

The case of prime interest to us is

(1) U = −V =
∑

i 6= j

mi m j/r2
i j .

This U , and hence the JM metric, is invariant under rotations and translations.

Quotienting first by translations, we take representatives in the totally geodesic

center-of-mass-zero subspace C
N−1, which reduces the dynamics to geodesics of the

metric ds2
JM|CN−1 on C

N−1. Moreover, ds2
JM|CN−1 is also invariant under scaling since
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the homogeneities of U and the Euclidean mass metric ds2 on C
N−1 cancel. Thus the

JM metric admits the group G = C
∗ of rotations and scalings as an isometry group.

Now YN is the quotient space: YN = (CN−1 \ 1)/G = CP
N−2 \ 1. (By abuse

of notation, we continue to use the symbol 1 to denote the image of the collision

locus 1 under projectivization and intersection.) Insisting that the quotient map

π : C
N−1 \1 → YN is a Riemannian submersion induces a metric on YN . Recall

that this means that we can define the metric on YN by isometrically identifying

the tangent space to YN at a point p with the orthogonal complement (relative to

ds2
JM or ds2, and at any point lying over p in C

N−1) to the G-orbit that corresponds

to that point. These orthogonality conditions are equivalent to the conditions that

the linear momentum, angular momentum, and “scale momentum” İ are all zero.

To summarize, by using the JM metric and forming the Riemannian quotient, the

zero angular momentum, zero energy 1/r2 potential N -body problem becomes

equivalent to the problem of finding geodesics for the metric defined by Riemannian

submersion on YN .

Remark. The metric quotient procedure just described realizes the Marsden–

Weinstein symplectic reduced space of T ∗(CN \ 1) by the action of translations,

rotations and scalings, C⋊C
∗, at momentum values 0, together with the N -body

reduced Hamiltonian flow, but valid only at zero energy.

Remark. This metric on YN can be expressed as U ds2
FS where ds2

FS is the usual

Fubini–Study metric on CP
N−2.

Remark. For the standard 1/r2 potential of (1), this metric on YN is complete,

with infinite volume.

The collinear N -body problem defines a totally geodesic submanifold

RP
N−2 \ 1 ⊂ CP

N−2 \ 1.

We obtain this submanifold by placing the N -masses anywhere along the real

axis R ⊂ C, arranged so their center of mass is zero and so that there are no

collisions, and then taking the quotient. In other words, RP
N−2 \1 is the quotient

of R
N−1 ⊂ C

N−1 by dilations and real reflections.

3. Main result

In case N = 3, with the potential (1) above, Y3 is a pair of pants — a sphere minus

three points. The point of [Montgomery 2005] was to show that the metric on Y3

just described is hyperbolic provided m1 = m2 = m3. Specifically, in this equal mass

case the Gaussian curvature of the metric on the surface Y3 is negative everywhere

except at two points (these being the “Lagrange points” corresponding to equilateral

triangles.) What about Y4?
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center

of mass

2 4 3 1

Figure 1. The collinear configurations p which we consider.

Theorem 1. Consider the Jacobi–Maupertuis metric on Y4 induced as above for

the case of 4 equal masses under the strong force 1/r2 potential (1). Then there

are 2-planes σ tangent to Y4 at which the Riemannian sectional curvature K(σ )

is positive.

Remark. The 2-planes σ of the theorem pass through special points p ∈RP
2 ⊂CP

2

which represent certain special collinear configurations. See Figure 1. The 2-plane

σ at p will be the orthogonal complement to TpRP
2, the normal 2-plane, and is

realized as σ = iTpRP
2, using the standard complex structure on CP

2.

Remark (negative curvatures). The RP
2 of the previous remark is a totally geodesic

surface fixed by an isometric involution. There are other such totally geodesic

surfaces defined as fixed loci of symmetries, and computer experiments suggest that

these all have negative Gaussian curvature everywhere while their normal 2-planes

can have positive sectional curvature at some points, like our special case RP
2.

Computer experiments also indicate that in the direction of the normal plane there

is positive sectional curvature over all collinear configurations of RP
2 and not just

the special configurations verified in the theorem. An analytic proof of these claims

beyond our special case, however, looks frightening.

Remark (uniqueness of free homotopy classes). The work in [Montgomery 2005]

was chiefly meant as a route for proving the uniqueness (mod symmetries) of the

N = 3 strong force figure-eight solution. For N = 4, hyperbolicity fails and we

have no direct “hyperbolic” path for establishing uniqueness of various 4-body

choreographies or free homotopy class representatives.

Open Question. A geodesic flow can still be hyperbolic as a flow, without the

underlying metric having all sectional curvatures negative. Is geodesic flow on Y4

hyperbolic as a flow? Is it even partially hyperbolic?

4. Proof of the theorem

We take the case N = 4 in the above considerations. When all the masses are equal

to 1, the mass metric, used to compute the kinetic energy and moment of inertia,

is the standard Hermitian metric in coordinates (q1, q2, q3, q4) ∈ C
4, where the qi

represent the positions of the i-th body. We reduce by translations by going to

the center-of-mass-zero space, which is a 3-dimensional subspace C
3 ⊂ C

4 having
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Jacobi coordinates as Hermitian orthonormal coordinates:

C
3 L−→ C

4 given by the matrix
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in standard bases.

As is well-known, if we start tangent to the center-of-mass-zero subspace L(C3),

we stay tangent to it. Hence we can restrict the dynamics, potential, metric, etc.

to the center-of-mass-zero subspace. We denote the potential restricted to the

center-of-mass-zero subspace in Jacobi coordinates as UL = U ◦ L and still write

ds2
JM = ULds2 for the restricted JM metric on C

3 \ 1 where ds2 is the standard

metric on C
3.

Continuing along the outline above, we now quotient by scaling and rotation

isometries C
∗ of ds2

JM to obtain the “shape space” Y4 and we label the quotient map

π : C
3 \ 1 → Y4, which takes a configuration q to its orbit C

∗q. We denote the

vertical and horizontal distributions as

Vp = ker dpπ = Cp and Hp = V
⊥
p

dπ∼= Tπ(p)Y4.

Requiring dπ |
H,ds2

JM|H to be an isometry defines our induced metric on Y4 whose

geodesics correspond to N -body motions in “shape space”. Under this induced

metric on Y4 we denote sectional curvature through the plane σ ∈ Tπ(p)Y4 by K(σ ).

Suppressing the notation of evaluating at a representative p ∈ π(q), our main

tool in the computation of K(σ ), the ds2
JM curvature, is the equation

(2) U 3
LK(σ )

= 3
4

(

(∂1UL)2 + (∂2UL)2
)

−
∥

∥

∥

∇U

2

∥

∥

∥

2

−
UL

2
(∂2

1 UL + ∂2
2 UL)+3

U 2
L

‖p‖2
(v1· iv2)

2

Here ∂a f denotes d f (va) where f ∈ C∞(C3) and where a = 1, 2 with v1, v2 ∈ H

being ds2-orthonormal vectors whose pushforwards dπva span σ . The · , ‖ ‖, and ∇
refer to the norm, metric, and Levi-Civita connection for the Euclidean metric ds2.

For the derivation of (2) see the Appendix.

The collinear configurations form a totally geodesic projective plane RP
2 ⊂ CP

2,

the image under π of the real 2-sphere in C
3, which we parametrize by

p = (cos φ cos θ, cos φ sin θ, sin φ).

We evaluate (2) and find positive sectional curvature over the configurations with

θ = π/2 (see Figure 1) in the direction of the iT RP
2 plane. This plane is spanned
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by the pushforwards of

v1 = −i
∂p

∂φ
= i(sin φ cos θ, sin φ sin θ, − cos φ),

v2 = i

cos φ

∂p

∂θ
= i(− sin θ, cos θ, 0).

Terms 1. Over RP
2 in the iT RP

2 direction, the last and first summands on the

second line of (2) vanish:

v1 · iv2 = 0, ∂aUL = 0.

Proof. That v1 · iv2 = 0 is clear: i rotates v2 into purely real coordinates. To

evaluate the first partials, note that Lp has purely real coordinates and ∇U has k-th

component
∑

j 6=k(q j − qk)/r4
jk , so ∇|LpU has purely real coordinates. Now since

Lva has purely complex coordinates,

∂aUL = ∇|LpU · Lva = 0. �

Terms 2. With the notation Lp = (q1, q2, q3, q4), Lva = i(v1
a, v

2
a, v

3
a, v

4
a), and

ρ jk = 1/(q j − qk), α jk = (v
j

1 − vk
1)

2 + (v
j

2 − vk
2)

2 ∈ R,

the sum of second partials in (2) is given by

∂2
1 UL + ∂2

2 UL = −2
∑

j>k

α jkρ
4
jk .

Proof. We write our standard coordinates on C
4 as q j = x j + iy j . Then since Lva

is purely imaginary, we have

∂2
a UL = ∇|Lp(∇U · Lva) · Lva =

(

∇|Lp
∂U

∂yk
vk

a

)

· Lva = ∂2U

∂y j∂yk

∣

∣

∣

∣

Lp

vk
av

j
a .

Next we compute
∂2U

∂y j∂yk

∣

∣

∣

Lp
= 2ρ4

jk for j 6= k and
∂2U

∂y2
k

∣

∣

∣

Lp
= −2

∑

j 6=k

ρ4
jk , so now

∂2
a UL = −2

∑

j 6=k

ρ4
jk

(

(vk
a)

2 − v j
avk

a

)

= −2
∑

j>k

ρ4
jk

(

(vk
a)

2 − 2vk
av

j
a + (v j

a )2
)

= −2
∑

j>k

ρ4
jk(v

k
a − v j

a )2. �

Result. Over the circle θ = π/2, K(iT RP
2) is positive.
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Now, substituting Terms 1 and 2 into formula (2), we see that

(3)

0 < K ⇐⇒ 0 < U 3
LK = −‖∇U/2‖2 + UL

∑

j>k

α jkρ
4
jk

⇐⇒
∑

k

(

∑

j 6=k

ρ3
jk

)2

<

(

∑

j>k

ρ2
jk

)(

∑

j>k

α jkρ
4
jk

)

.

Taking θ = π/2 and with the notation introduced in Terms 2, we find the relations

ρ12 = 1√
2 cos φ

, ρ34 = 1√
2 sin φ

α12 = 1

ρ2
34

, α34 = 1

ρ2
12

ρ13 =
√

2

cos φ−sin φ
= −ρ24 α13 = 1

ρ2
14

+ 1 = α24

ρ14 =
√

2

cos φ+sin φ
= −ρ23 α14 = 1

ρ2
13

+ 1 = α23.

Now the left side of (3) works out to

2((ρ3
12 + ρ3

13 + ρ3
14)

2 + (ρ3
13 − ρ3

14 − ρ3
34)

2)

= 2

(

∑

k> j

ρ6
jk + 2ρ3

12(ρ
3
13 + ρ3

14) + 2ρ3
34(ρ

3
14 − ρ3

13)

)

= 2
∑

k> j

ρ6
jk − 96

1

sin2 2φ cos2 2φ
= 2

∑

k> j

ρ6
jk + negative term,

and the right side of (3) works out to

(

ρ2
12 + ρ2

34 + 2(ρ2
13 + ρ2

14)
)

(

ρ4
12

ρ2
34

+
ρ4

34

ρ2
12

+ 2

(

ρ4
13 + ρ4

14 +
ρ4

13

ρ2
14

+
ρ4

14

ρ2
13

))

=
(

2

sin2 2φ
+ 8

cos2 2φ

)(

sin2 2φ(ρ6
12 + ρ6

34)

+ cos2 2φ

2
(ρ6

13 + ρ6
14) + 2(ρ4

13 + ρ4
14)

)

= 2
∑

k> j

ρ6
jk + cot2 2φ(ρ6

13 + ρ6
14) + 8 tan2 2φ(ρ6

12 + ρ6
34)

+ (ρ4
13 + ρ4

14)

(

4

sin2 2φ
+ 16

cos2 2φ

)

= 2
∑

k> j

ρ6
jk + positive term.

Therefore the inequality (3) holds! �
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Appendix: Derivation of (2)

Take a ds2-orthonormal basis {va} for C
3 with v1, v2 ∈ Hp.

The Kulkarni–Nomizu product formula for conformal curvatures [Sakai 1996,

p. 51] reads:

Rabcd − UL Rabcd = −
{

ds2
JM ∧©

(

∇du − du ⊗ du + 1
2
‖du‖2ds2

)}

abcd

where u := 1
2

log UL , the overbars denote curvature with respect to the ds2
JM-metric,

and all other quantities (without overbars) are with respect to the ds2-metric. Then

Rabcd = 0 since ds2 is the flat Euclidean metric of C
3 = R

6. Taking cd = ab, we

have

U 2
L K ab = Rabab = −UL

(

∇dubb + ∇duaa − dub ⊗ dub − dua ⊗ dua + ‖du‖2
)

= −UL

(

∂2
a u + ∂2

b u − (∂au)2 − (∂bu)2 + ‖∇u‖2
)

.

Next, O’Neill’s formula [1983, p. 213] gives

K(dπv1, dπv2) = K 12 + 3
4

∣

∣[V1, V2]V
∣

∣

2

ds2
JM

,

where Va = va/
√

UL(p) and XV denotes ds2
JM projection of X onto V .

We then compute

∂au = ∂aUL

2UL
= ∇|LpU ·Lva

2UL(p)

and

∂2
a u = ∂2

a UL

2UL
− (∂aUL)2

2U 2
L

= ∇|Lp(∇U ·Lva)·Lva

2UL(p)
− (∂aUL)2

2UL(p)2
.

Note that ∇U ∈
{

q ∈ C
4 :

∑

q j = 0
}

and Lva is a ds2 orthonormal basis for this

center-of-mass-zero subspace, hence

‖∇U‖2 =
∑

(∇U · Lva)
2

=
∑

(∂aUL)2 = 4U 2
L‖∇u‖2.

Substitution into the Kulkarni–Nomizu formula gives

(4) K 12 = − 1

U 3
L

(

UL

2
(∂2

1 UL + ∂2
2 UL) − 3

4
(∂1U 2

L + ∂2U 2
L) +

∥

∥

∥

∇U

2

∥

∥

∥

2
)

.

To compute O’Neill’s Lie bracket term we write our standard coordinates on C
3

as (x1 + i x2, . . . , x5 + i x6).
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Let H1 = X j∂x j , H2 = Y j∂x j ∈ H be any horizontal vector fields. The vertical

vector fields are spanned by the Euler vector field E = x j∂x j and i E . Then

H j · E = H j · i E = 0 and

[H1, H2] · E =
∑

k

X j xk∂x j Y k − Y j xk∂x j X k

=
∑

k

X j (∂x j (xkY k) − δk
j Y

k) − Y j (∂x j (xk X k) − δk
j X k)

=
∑

k

X kY k − Y k X k = 0,

and likewise,

[H1, H2] · i E =
∑

k odd

(Y j∂x j X k − X j∂x j Y k)xk+1 + (X j∂x j Y k+1 − Y j∂x j X k+1)xk

= 2
∑

k odd

−X kY k+1 + X k+1Y k = 2H1 · i H2.

Then

∣

∣[V1, V2]Vp
∣

∣

2 = ds2
JM

(

[V1, V2],
Ep

|p|
√

UL(p)

)2

+ ds2
JM

(

[V1, V2],
i Ep

|p|
√

UL(p)

)2

=
U 2

L

|p|2UL

(

([V1, V2] · E)2 + ([V1, V2] · i E)2
)

= 4UL(p)(V1·i V2)
2

|p|2 = 4

UL(p)|p|2 (v1 · iv2)
2.

Now substitution of this Lie bracket expression and (4) into O’Neill’s formula and

multiplying by U 3
L yields (2). �
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