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Abstract: We establish a no inner-horizon theorem for black holes with charged scalar

hairs. Considering a general gravitational theory with a charged scalar field, we prove that

there exists no inner Cauchy horizon for both spherical and planar black holes with non-

trivial scalar hair. The hairy black holes approach to a spacelike singularity at late interior

time. This result is independent of the form of scalar potentials as well as the asymptotic

boundary of spacetimes. We prove that the geometry near the singularity takes a universal

Kasner form when the kinetic term of the scalar hair dominates, while novel behaviors

different from the Kasner form are uncovered when the scalar potential become important

to the background. For the hyperbolic horizon case, we show that hairy black hole can only

has at most one inner horizon, and a concrete example with an inner horizon is presented.

All these features are also valid for the Einstein gravity coupled with neutral scalars.
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1 Introduction

As one of the most fantastic objects among all gravitational compact objects, black holes

play a central role in understanding the nature of gravity. The development of black hole

physics has uncovered a deep and intrinsic relationship between gravitation, thermodynam-

ics and quantum theory and has provided most of our present physical understandings of

the quantum phenomena in strong gravity regime. In recent years there has been dramatic

progress in understanding black hole physics both from theoretical and experimental as-

pects. In particular, thanks to the innovation and progress of observation techniques, one

is able to directly detect the gravitational waves from a binary black hole coalescence [1]

and to take a photo of the shadow of a black hole [2, 3], opening a new window in the

study of gravity, astrophysics and cosmology.

While the exterior physics of black hole has been extensively investigated in the lit-

erature, in particular, the establishment of black hole thermodynamics and uniqueness

theorems (see e.g. refs. [4] and [5], for reviews), the interior structure of black holes be-

hind event horizon of black hole has not been well understood. Nevertheless, exploring

the internal structure of black holes and spacetime singularities inside are intriguing and

fundamental topics in general relativity and can provide a better understanding of black

hole physics, gravitation and quantum physics. For example, the existence of the inner

(Cauchy) horizon violates the predicability in general relativity and motivates the strong

cosmic censorship (SCC) conjecture (see e.g. refs. [6, 7]). Recent progress suggested that

the black hole information paradox could be solved by including “island” that lies in the
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interior of black hole [8, 9]. The possible observation of information from the interior of

black holes in the future is of great significance to understanding the nature of our universe.

The most studied theory in general relativity involves a Maxwell field, for which

Schwarzschild, Reissner-Nordström (RN) and Kerr-Newmann black holes are three well-

known solutions. The neutral Schwarzschild black hole has an event horizon and a spacelike

singularity inside, while the later two have one additional Cauchy horizon that appears to

violate SCC and a timelike singularity at the center, due to the presence of non-trivial

electric charge and angular momentum. On the other hand, scalar fields should be one

of the simplest types of “matter” considered in the literature and plays important role in

particle physics, cosmology and gravitational physics. Due to their simplicity, it is quite

natural to consider scalar fields when testing some no-go ideas as a first step. Recently, it

has been argued that SCC can be violated by turning on linear scalar field perturbations

of RN black holes in de Sitter (dS) space [10].

One anticipates that the black hole interior would be dramatically affected in presence

of scalar hair. Indeed, it has been recently shown that [11] there is no inner Cauchy horizon

for some kind of charged black holes with a neutral scalar. However, the result relies on

a strong requirement for the scalar potential (the scalar mass-square should be negative)

and breaks down for charged scalar case (the absence of inner horizon for planar black

holes with charged scalar was discussed in ref. [12] more recently, see Note added also). In

this work we will establish a stronger theorem for the inner structure of black holes for

both the Einstein-scalar and the Einstein-Maxwell-charged scalar theories. Our results are

quite generic and are independent of the form of scalar potentials as well as the asymptotic

geometry of spacetime. We will also discuss the asymptotical solutions near the singularity

and uncover some new features. In addition to the Kasner form of solutions for which the

kinetic terms dominate the dynamics, we will show numerical evidence for the existence of

novel oscillating behaviors all the way down to the singularity when the potential terms

become important to the geometry.

2 The model

We consider a (d + 2)-dimensional theory with gravity coupled with a Maxwell field Aµ
and a charged scalar field Ψ:

S =
1

2κ2
N

∫

dd+2x
√−g [R + LM ] , (2.1)

LM = −Z(|Ψ|2)

4
FµνF

µν − (DµΨ)∗DµΨ − V (|Ψ|2) ,

where Fµν = ∇µAν − ∇νAµ and Dµ = ∇µ − iqAµ with q the charge of the scalar field.

Z and V are arbitrary smooth functions of |Ψ|2. One only demands Z to be positive to

ensure positivity of the kinetic term for Aµ, and takes Z(0) = 1 without loss of generality.

The Einstein-scalar theory is obtained by turning off Aµ and most of our discussion below
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will apply to black holes in the Einstein-scalar case.1 Note that the spacetime can be

asymptotically flat, anti-de Sitter (AdS), dS or other geometries, depending on the choice

of the scalar potential V as well as the coupling Z.

The equations of motion from the action are

DµD
µΨ −

(

V̇ (|Ψ|2) +
Ż(|Ψ|2)

4
FµνF

µν

)

Ψ = 0 ,

∇µ[Z(|Ψ|2)Fµν ] = iq(Ψ∗DνΨ − ΨDνΨ
∗) ,

Rµν − 1

2
Rgµν =

1

2
LMgµν +

Z(|Ψ|2)

2
FµσFν

σ +
1

2
[DµΨ(DνΨ)∗ +DνΨ(DµΨ)∗] .

(2.2)

We are interested in static charged black holes that are homogeneous and isotropic, so that

the ansatz for metric and matter fields can be written as

ds2 =
1

z2

[

−f(z)e−χ(z)dt2 +
dz2

f(z)
+ dΣ2

d,k

]

,

Ψ = ψ(z) A = At(z)dt ,

(2.3)

where the d-dimensional line element dΣ2
d,k is

dΣ2
d,k =



























dθ2 + sin2 θdΩ2
d−1, k = 1 ,

d
∑

i=1

dx2
i , k = 0 ,

dθ2 + sinh2 θdΩ2
d−1, k = −1 ,

(2.4)

with dΩ2
d−1 the line element of (d− 1)-dimensional unit sphere. We assume that the black

hole boundary is at z = 0 and the singularity at z → ∞, but the precise location of the

boundary and singularity is not important in our discussion. For black hole spacetimes

obeying the dominant energy condition only the spherical horizon case is allowed [22].

The well known case that breaks the dominant energy condition is to introduce a negative

cosmological constant, for which the topology of a black hole horizon can be flat or hyper-

bolic [23–27]. In particular, the planar case has been widely investigated in the application

of holographic duality to strongly coupled systems [28–32].

With ansatz (2.3), we obtain the following equations of motion:

zd+2eχ/2(e−χ/2z−dfψ′)′ =

[

V̇eff(ψ2) − q2z2A2
t e
χ

f

]

ψ , (2.5)

zd[Z(ψ2)eχ/2z2−dA′

t]
′ =

2q2ψ2eχ/2

f
At , (2.6)

d

2
χ′ = zψ′2 +

zeχq2ψ2A2
t

f2
, (2.7)

d

2

f ′

f
− z

2
ψ′2 − d(d+ 1)

2z
=
Veff(ψ2)

2zf
− kd(d− 1)z

2f
+
zeχq2A2

t

2f2
ψ2 +

Z(ψ2)z3eχA′2
t

2f
, (2.8)

1Although there are some no-scalar-hair theorems for the existence of black hole solutions sourced by a

non-trivial scalar field in Einstein-scalar gravity [13, 14], static black holes with non-trivial neutral scalar

hair do exist, see e.g. [15–21].
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Figure 1. The schematic structure of a charged black hole with two horizons. The blackening

function f(z) vanishes both at the event horizon z = zH and the inner horizon z = zI .

where a prime denotes the derivative with respect to z and Veff(x) = V (x) − 1
2Z(x)z4eχA′2

t

with V̇eff(x) = dVeff(x)/dx. Without loss of generality, we can choose ψ(z) to be real

because of the symmetry in the problem. In general, the above coupled equations do not

have analytical solutions, so one has to solve the system numerically. Eqs. (2.5)–(2.8) have

been solved numerically outside black holes (z < zH) in the literature. To continue behind

the event horizon it is simple to switch to ingoing coordinate, for which the equations of

motion do not change.

3 Proof of no inner-horizon

Suppose that there were two horizons, including the event horizon at zH and an inner

horizon at zI , for which f(zH) = f(zI) = 0 with zH < zI . In the present study we consider

black holes with finite temperature. The structure of the black hole is shown schematically

in figure 1. The blackening function f(z) turns from positive to negative towards the

interior near zH , while it from negative to positive near the inner horizon zI (red curve) or

zI is a local maximum (green curve). Therefore, one has

f ′(zH) < 0, f ′(zI) ≥ 0 . (3.1)

Furthermore, to have a regular horizon, the metric and matter fields should be sufficiently

smooth near the horizon. For the black hole solution with non-trivial charged scalar ψ, the

equations of motion imply the condition:

At(zH) = At(zI) = 0 , (3.2)

with both ψ and χ finite at two horizons.

Before going to prove the no inner-horizon theorem, we briefly show why the discussion

of ref. [11] does not work for the charged scalar case. Following ref. [11], we obtain from

the scalar equation that

0 =

∫ zI

zH

(

feχ/2ψψ′

zd

)

′

=

∫ zI

zH

e−χ/2

zd+2

[

ψ2V̇eff + z2fψ′2 − q2z2eχA2
tψ

2

f

]

, (3.3)
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where a prime denotes the derivative with respect to z and the effective potential Veff(x) =

V (x) − 1
2Z(x)z4eχA′2

t with V̇eff(x) = dVeff(x)/dx. For the neutral case with q = 0, the

integrand in the second line is non-positive over the range (zH , zI) provided V̇eff < 0.2

Therefore, the only way for two horizons is for ψ = 0. However, for the charged scalar

case with non-zero q, there is an additional contribution which is positive. So we cannot

rule out the existence of inner horizon even when V̇eff < 0. Nevertheless, we will show

that there is no inner horizon for a charged black hole with the curvature of its horizon

be non-negative. The hyperbolic case is a bit complicated, but we are able to show that it

has at most one inner horizon with non-vanishing surface gravity.

Our key observation for the background (2.3) is the existence of the conserved quantity

Q(z) = z2−deχ/2
[

z−2(fe−χ)′ − ZAtA
′

t

]

+ 2k(d− 1)

∫ z

y−de−χ(y)/2dy , (3.4)

for which Q′(z) = 0. For the planar case with k = 0, Q was constructed in the literature

(see e.g. refs. [33, 34]) and is due to a particular scaling symmetry that is only valid for the

planar topology [33]. Intriguingly, we manage to find a radially conserved Q in eq. (3.4)

for non-planar cases even the scaling symmetry breaks down.

Evaluating Q both at the event and inner horizons, we obtain

Q(zj) =
f ′(zj)

zdj
e−χ(zj)/2 + 2k(d− 1)

∫ zj

y−de−χ(y)/2dy , (3.5)

where the subscript j = (H, I) and we have used eq. (3.2). Since Q(zH) = Q(zI), we have

f ′(zH)

zdH
e−χ(zH)/2 − f ′(zI)

zdI
e−χ(zI)/2 = 2k(d− 1)

∫ zI

zH

y−de−χ(y)/2dy . (3.6)

It is obvious that the left hand side is negative because of eq. (3.1). For black holes with

spherical (k = 1) and planar (k = 0) topologies, the right hand side of eq. (3.6) is non-

negative. Therefore, smooth inner Cauchy horizon is never able to form for spherical and

planar black holes with charged scalar hair.

For the hyperbolic case with k = −1, since both sides of eq. (3.6) share the same sign,

it is possible to develop an inner horizon, provided eqs. (3.3) and (3.6) are satisfied. A

concrete example for the hyperbolic black hole with an inner horizon is presented in figure 2

(see appendix A for numerical details). Nevertheless, we can show that for the hyperbolic

case, there only exists at most one inner horizon with nonzero surface gravity. The proof

contains two steps. We first prove the horizon zI must be a single root. Otherwise, we

must have f ′′(zI) ≤ 0. Computing Q′(zI), we find

Q′(zI) =
f ′′(zI)

zdI
e−χ(zI)/2 − Zz2−d

I eχ(zI)/2A′

t(zI)
2 − 2(d− 1)z−d

I e−χ(zI)/2 < 0 . (3.7)

This is contradictory to the fact that Q′(z) = 0. Thus, zI should be a single root with

f ′(zI) > 0. Secondly, suppose there is a second inner horizon appearing at z = zII > zI .

2The authors of ref. [11] considered a neutral scalar with V = m2ψ2 and Z = 1, which yields V̇eff < 0

for m2 < 0.
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z/zH
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0
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2

zI
zH

ψ/ψ(zH), χ/|χ(0)|, f, At/maxAt

Figure 2. Numerical solution for hyperbolic black hole in AdS. The hairy black hole has an event

horizon at zH = 1.193936 and a Cauchy horizon at zI ≈ 4.15699837. We have considered the four

dimensional model with V = −6 − 0.18388ψ2, Z = 1 and q = 1.5.

It is then obvious that f ′(zII) ≤ 0 with f(zII) = 0. Using a similar discussion, we obtain

f ′(zI)

zdI
e−χ(zI)/2 − f ′(zII)

zdII
e−χ(zII)/2 = −2(d− 1)

∫ zII

zI

y−de−χ(y)/2dy , (3.8)

for k = −1. While the right hand side is negative, the left hand side is positive, since

f ′(zI) > 0 and f ′(zII) ≤ 0. Thus, the second inner horizon cannot appear.

4 Geometry near singularity

After knowing the inner structure behind the event horizon, we are now interested in the

dynamics near the singularity. Since there involves the dynamics in nonlinear regimes, the

behavior should be in general sensitive to the details of the model [11, 12]. Instead of

dealing with specific models, we aim to provide some generic features of the geometry near

the singularity. Now, we assume that the singularity appears at z → ∞.

To characterize the charge degrees of freedom behind the surface generating a nonzero

electric flux in the deep interior, we introduce [35]

Q(z) =
1

2κ2
N

∫

Σ
Z ⋆F = −

ω(d)

2κ2
N

Zz2−deχ/2A′

t , (4.1)

where ω(d) is the volume of the section with t and z fixed and we have used the ansatz of

eq. (2.3). For the hyperbolic case it is possible to have an inner horizon (see figure 1). We

find that this timelike singularity of a charged hyperbolic black hole always carries charge,

i.e. Q(z → ∞) 6= 0. More precisely, one can prove that behind the inner horizon zI , Q(z)2

is monotonically increasing towards the singularity (see appendix B for several lemmas of

the gauge sector).
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For other cases we have shown that there exists no inner horizon and the spacetime

ends at a spacelike singularity. The geometry near the singularity depends on the details

of a model one considers. We shall specify Z = 1 to simplify the discussion. For the model

in which the kinetic term of scalar dominants the dynamics, we can neglect the potential

V (ψ2) and then obtain3

ψ =
√
dα ln z + · · · , A′

t = Esz
d−2−α2

+ · · · ,
eχ = χsz

2α2

+ · · · , f = −fsz1+d+α2

+ · · · ,
(4.2)

as z → ∞, with (α,Es, χs, fs) constants. One can check that Q(z → ∞) approaches to a

constant, so the spacelike singularity in the present case carries a finite charge. Changing

the z coordinate to the proper time τ via τ ∼ z−(1+d+α2)/2, we then obtain

ds2 = −dτ2 + ctτ
2ptdt2 + csτ

2psdΣ2
d,k, ψ = −pψ ln τ , (4.3)

where

pt =
1 − d+ α2

1 + d+ α2
, ps =

2

1 + d+ α2
, pψ =

2
√
dα

1 + d+ α2
. (4.4)

One immediately finds that

pt + dps = 1, p2
t + dp2

s + p2
ψ = 1 , (4.5)

and therefore the geometry has the Kasner form [36, 37].4

As we have emphasized, for above discussion to be consistent, one should require the

kinetic term of scalar to be dominant. In particular, one should at least has the following

constraint:

lim
z→∞

|V (ψ2)|
zd+1+α2

≪ 1 , (4.6)

which allows the scalar potential V to be arbitrary algebraic functions, including polynomial

functions. For a potential that diverges exponentially or even worse, the condition (4.6) is

violated and the Kasner form (4.3) would break down. For example, we take

V = −6 + (1 − γ)ψ2 + sinh(γψ2) , (4.7)

for which the hairy black hole is asymptotically AdS. When γ = 0, we expect to ob-

tain (4.2). In contrast, once turning on γ > 0, the asymptotic solution would be different

from the Kasner solution. The deviation from the Kasner form happens beyond a criti-

cal point

zc = c0 e
d+1+α2

γdα2 , (4.8)

with c0 a coefficient (see appendix C). This scaling behavior is confirmed by our numerics

in figure 3(a).

3See appendix C for more details.
4A significant amount of work has been done for discussing Kasner-like behavior in the vicinity of a

spacelike singularity, see e.g. [38, 39] and references therein.
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(d)

Figure 3. Numerical results for scalar potentials of eq. (4.7). Relationship between zc beyond

which the Kasner behavior is modified and γ matches with the theoretical prediction (4.8) quite

well, as shown in (a). For polynomial potentials (b), the numerical results satisfy the Kasner form.

For non-polynomial potentials, the asymptotic solutions are different from the Kasner behavior.

We observe strong oscillating behavior all the way down to the singularity, as shown in (c) and (d).

We consider the planar black holes and specify d = 2, q = 1.

We also show some representative cases inside the event horizon for different potentials

in figure 3. To present our numerical data, we introduce

R1 = zψ′, R2 = ln

(

z2
H

z2
− h

)

, R3 = 4z2−deχ/2A′

t , (4.9)

with h = e−χ/2f/z1+d. For the Kasner solution, one has limz→∞Ri(z) = const. with

i = 1, 2, 3. When the kinetic term dominates the dynamics, the numerical behavior satisfies

the universal asymptotic form (4.2) [figure 3(b)]. In contrast, when the condition is not

satisfied, in particular, eq. (4.6) is violated, numerical results exhibit behaviors that are
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(z − zI)/ψ
2
H
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ψHz∂zψ
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V3

Figure 4. Behaviors of zψ′ around the “would-be” inner horizon z = zI that is destroyed by the

condensate of the charged scalar field ψ. We have considered three different potentials V1(x) =

x− 6, V2(x) = x+ 2x3 − 6 and V3(x) = −99x+ sinh(100x) − 6 with ψH = ψ(zH) = 10−3 and Z = 1.

quite distinct from the Kasner form. For potentials with exponential forms, we observe

behaviors with strong oscillations all the way down to the singularity [figures 3(c) and 3(d)].

Numerical details and more examples are provided in appendix C.

Before concluding this section, it is worth discussing the interior geometry a bit more

with a non-trivial potential V (|Ψ|2). In the simplest holographic superconductor described

by a free charged scalar in planar AdS black holes, it was found in ref. [12] that below the

critical temperature Tc there are intricate dynamical behaviors before ending at a spacelike

Kasner singularity, including collapse of the Einstein-Rosen bridge, Josephson oscillations

in the condensate and possible Kasner inversions. It would be interesting to see how much

of these epochs could persist with non-trivial potential as compared to the free scalar

case [12]. We are not able to solve the problem thoroughly due to the complicated forms

of eqs. (2.5)–(2.8). However, note that such intricate dynamics happens when the scalar

field is quite small for which the non-linear terms of V is not important. Therefore, one

anticipates that the collapse of the Einstein-Rosen bridge and Josephson oscillations are not

sensitive to the potential V . It was confirmed by checking some cases explicitly, see figure 4

and more discussions in appendix D. On the other hand, when the value of ψ becomes large

(for example, the case with temperature far below Tc in ref. [12]), the interactions of the

scalar field become important and the collapse of the Einstein-Rosen bridge and subsequent

Josephson oscillations derivate from the free scalar case. We also stress that when the

condition (4.6) is broken, the asymptotic behavior around the spacetime singularity will

be different from the Kasner behavior and the Kasner inversion is also broken.

5 Discussion

We have shown a no inner-horizon theorem for black holes with charged scalar hair and

discussed the possible asymptotic geometries near the singularity. Note that to prove the

theorem we do not make direct use of the scalar potential V , thus our result applies to quite

generic spacetimes. Since eqs. (3.6) and (3.8) do not depend on At, our no inner-horizon

results also apply to the Einstein-scalar theory in absence of Aµ. We then discussed the

geometry near the singularity. The Kasner form of solutions has been obtained when the

– 9 –
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potential terms can be neglected. However, we have found strong numerical evidence for

the existence of novel oscillating behavior all the way down to the singularity when the

potential terms become important to the geometry.

Although one could engineer complicated hairy black holes by adjusting the scalar

potential, our results suggest that the inner structure behind hairy black holes is pretty

simple. There is no way to construct spherical and planar black holes with a Cauchy horizon

for both Einstein-scalar (see e.g. ref. [40] for spherical case) and Einstein-Maxwell-charged

scalar theories. Our theorem has some direct significance for the SCC by showing that

the Cauchy horizon in large classes of theories will be definitely removed by a non-trivial

scalar hairy. For example, it has been recently argued that SCC can be violated under the

linear charged scalar perturbation of RN black holes in dS space [41–43]. Nevertheless, this

linear perturbation result breaks down by considering non-linear effect of the charged scalar

field. As the energy accumulates near the inner horizon, non-linear effects from the scalar

field cannot be neglected. Furthermore, if one considers time-dependence, the static hairy

black hole could be the final state of the dynamically formed black hole. Notice that SCC

asks for the instability and ensuing disappearance of Cauchy horizons. We have proved

in this paper that the backreaction of the charged scalar field can sufficiently modify the

background geometry and the resulted hairy black hole, if exists, has no Cauchy horizon.5

In the present study, we have limited ourselves to black holes with maximally sym-

metric horizon, it would be interesting to consider more general cases with inhomogeneous

spacetimes and also with additional forms of matter. We have explicitly shown that some

hyperbolic black holes can have an inner horizon with charged timelike singularity (see

figure 2). It is interesting to further understand the interior of hyperbolic case. The dy-

namics near singularity seems to allow different behaviors from the Kasner form (4.3). It

is desirable to understand this feature in the future.

Note added. While this work was being completed, the work [12] appeared in arXiv,

which discusses the interior dynamics for planar black holes by considering a free charged

scalar. Similar construction was used to prove the no Cauchy horizon feature for the planar

horizon topology.
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A Example for hyperbolic black holes with inner-horizon

For the hyperbolic black holes, our method adopted in the main text can not be appropriate

to prove the black hole no-inner horizon or that the inner horizon of black hole with charged

scalar hairs may exist. In this section, we show that for the hyperbolic case (k = −1) it is

indeed possible to have an inner horizon.

In order to have much higher numerical stability and to improve the error control, we

further recombine the functions into the following form:

h := fe−χ/2z−1−d, Q̃ := −2κ2
N

ω(d)
Q = z2−deχ/2A′

t . (A.1)

By using these new variables, we can rewrite eqs. (2.5)–(2.8) into the following form and

then numerically solve the variables {χ, h, ψ, Q̃, At}.

χ′ =
2

d

[

ψ2A2
t q

2

h2z2d+1
+ zψ′2

]

, (A.2)

h′ = −(d− 1)k

zd
e−χ/2 +

e−χ/2

d

(

Q̃2zd−2

2
+
V (ψ2)

zd+2

)

, (A.3)

Q̃′ =
2ψ2Atq

2

z2d+1h
, A′

t = Q̃e−χ/2zd−2 , (A.4)

ψ′′ = −
(

h′

h
+

1

z

)

ψ′ +

(

V̇ (ψ2)e−χ/2

zd+3h
− A2

t q
2

h2z2d+2

)

ψ , (A.5)

where we have set Z = 1.

We stress that a Cauchy horizon for the hyperbolic black holes exists only for some

specific value of the parameters. We now present a concrete numerical example for the

hyperbolic black hole with an inner Cauchy horizon. The four dimensional model (d = 2)

is given by

V (ψ2) = −6 +m2ψ2 , Z = 1 , (A.6)

with m2 = −0.18388 and q = 1.5. At the event horizon zH = 1.193936, we choose the

following initial conditions:

χ(zH) = h(zH) = At(zH) = 0 ,

ψ(zH) ≈ 1.10683410, ψ′(zH) ≈ 0.115816263, Q̃(zH) ≈ 0.650999915 .
(A.7)

We then integrate eqs. (A.2)–(A.5) with k = −1 numerically from z = zH + ε1 to

z → ∞ (here we set ε1 = 10−9). For example, we have used the solver ode45 of MATLAB

with accuracy control “odeset(’RelTol’,1e-13,’AbsTol’,1e-13)”. As eqs. (A.2)–(A.5)

will meet coordinate singularity at z = zI , numerical solver will fail at this singularity

and cannot directly pass through this point. To overcome this issue, we slightly modify

eqs. (A.2), (A.4) and (A.5) into the following form:

χ′ =
2

d

[

ψ2A2
t q

2

(h+ iε2)2z2d+1
+ zψ′2

]

, Q̃′ =
2ψ2Atq

2

z2d+1(h+ iε2)
,

ψ′′ = −
(

h′

h+ iε2
+

1

z

)

ψ′ +

(

V̇ (ψ2)e−χ/2

zd+3(h+ iε2)
− A2

t q
2

(h+ iε2)2z2d+2

)

ψ .

(A.8)
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Figure 5. Numerical solution for hyperbolic case (k = −1) with the boundary conditions (A.7).

The hairy black hole has the event horizon at zH = 1.193936. There is a Cauchy horizon at

zI ≈ 4.15699837 and all functions are smooth at two horizons. From the right panel, we see that

f(0) = 1, ψ(0) = 0, χ(0) and At(0) are both finite, which implies that this solution is indeed an

asymptotically AdS black hole. We have considered the four dimensional model with V (ψ2) =

−6 − 0.18388ψ2, Z = 1 and q = 1.5.

This leads to the fact that the solutions all have imaginary parts with order O(ε2). Then

we carefully tune ε2 from 10−3 to 10−9 to verify the convergency of real parts for variables

{h(z), ψ(z), At(z), χ(z), Q̃(z), ψ′(z)}. For example, when ε2 = 10−5, 10−7, 10−9, we have

ψ(6) ≈ 1.13489227 + 3 × 10−6i, 1.13540830 + 6 × 10−7i, 1.13541591 + 1.0 × 10−8i , (A.9)

respectively. Thus, the real parts will convergent and we can ignore all imaginary parts

when ε is small enough. The numerical results are shown in figure 5. It is clear that the

inner horizon appears at zI ≈ 4.15699837 at which f(zI) = At(zI) = 0. Note that if one

wants to obtain higher accuracy, e.g. by setting ε < 10−9, the accuracy of initial condi-

tions (A.7) should also be improved. Notice also that the hairy black hole is asymptotically

AdS as z → 0, see the right panel of figure 5.

B Properties of gauge sector

The properties of gauge potential At play a crucial role in understanding the structure of

interior geometry behind the event horizon. In this section we will discuss some general

features for the gauge sector. In particular, we will present a few lemmas of the gauge

sector, which are important to build our no inner-horizon theorem in the main text.

Lemma 1. For hairy charged black hole (i.e. ψ and At are not zero somewhere), At(zi)

must be zero at any horizon z = zi where f(zi) vanishes.

Proof of Lemma 1. This proof uses the smoothness of the spacetime geometry away from

the singularity. When f(zi) = 0, to insure the smoothness around z = zi for other functions,
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we have the following two choices:

(a) At(zi) = 0, or (b) At(zi) 6= 0, ψ(zi) = 0 .

What we need is to exclude the second case. We first assume that case (b) is true. As ψ(z)

is smooth and nonzero somewhere, we have the following Taylor expansion:

ψ = ψnδ
n + ψn+1δ

n+1 + · · · , n ≥ 1 , (B.1)

with ψn 6= 0 and δ = z − zi. Similarly, f has the expansion

f = flδ
l + fl+1δ

l+1 + · · · , l ≥ 1 . (B.2)

with fl 6= 0. Since we have assumed At(zi) 6= 0, smoothness of eq. (2.7) implies n ≥ l. Up

to the leading order, eq. (2.5) becomes

ψnn(n− 1)δn−2 = −nlψnδn−2 − eχ(zi)A2
t (zi)q

2ψn
f2
l

δn−2l , (B.3)

where we have used Z(0) = 1. Then we find that

− eχ(zi)A2
t (zi)q

2 = f2
l n(n− 1 + l)δ2l−2 . (B.4)

This is impossible because the left side is negative, while the right side is not negative.

Therefore, we arrive at the result of Lemma 1.

Lemma 2. In an interval (z1, z2), if f(z) ≥ 0, then At(z)
2 has no local maximum.

Proof of Lemma 2. We only need to consider the case for which At is not a constant in the

interval (z1, z2). We write eq. (2.6) into the following form

(A2
t )

′′ −
(

d− 2

z
− 1

2
χ′ +

d lnZ(ψ2)

dz

)

(A2
t )

′ =
4ψ2A2

t q
2

z2fZ(ψ2)
+ 2A′2

t . (B.5)

Then in the interval (z1, z2) with f > 0, we see that

(A2
t )

′′ −
(

d− 2

z
− 1

2
χ′ +

d lnZ(ψ2)

dz

)

(A2
t )

′ ≥ 0 . (B.6)

If there is a local maximum which locates at zm ∈ (z1, z2), we have the following Taylor

expansion

A2
t = A0 −As(z − zm)2s + · · · , (B.7)

with As > 0 and the integer s ≥ 1. Taking it into eq. (B.6), we find

− 2s(2s− 1)As(z − zm)2s−2 + O((z − zm)2s−1) ≥ 0 . (B.8)

As the left side of eq. (B.8) is negative, eq. (B.8) cannot be satisfied. Thus, there is no

local maximum in the interval (z1, z2). In addition, if At(z) is continuous at two endpoints,

then the maximum of At(z)
2 in the interval [z1, z2] is given by max{At(z1)2, At(z2)2}.
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Figure 6. As At(z1)2 = 0, At(z)
2 increases at beginning when z > z1. If At(z)

2 begins to decrease

after z > za, At(za)2 will be a local maximum. However, there should be no any local maximum

according to Lemma 2. Thus, the point za should not exist.

The charge degrees of freedom behind the surface generate a non-zero electric flux and

can be characterized by

Q(z) =
1

2κ2
N

∫

Σ
Z(|Ψ|2) ⋆F = −

ω(d)

2κ2
N

Z(ψ2)z2−deχ/2A′

t , (B.9)

where ω(d) is the volume of the section with t and z fixed and we have used the ansatz (2.3).

We have the following Lemma for Q(z).

Lemma 3. In an interval (z1, z2) with f(z) ≥ 0 and At(z1) = 0, Q(z)2 is monotonic

increasing in the interval (z1, z2).

Proof of Lemma 3. We first rewrite eq. (2.6) as

(z2−deχ/2ZA′

t)
′ =

2eχ/2ψ2q2

zdf
At . (B.10)

Making use of eq. (2.6), we then have

Q′ = −
ω(d)

2κ2
N

2eχ/2ψ2q2

zdf
At ⇒ QQ′ = −Q

ω(d)

2κ2
N

2eχ/2ψ2q2

zdf
At =

ω2
(d)Zz

2eχψ2q2

2κ4
Nz

2df
AtA

′

t . (B.11)

Thus, we obtain

(Q2)′ =
ω2

(d)Zz
2eχψ2q2

2κ4
Nz

2df
(A2

t )
′ . (B.12)

From Lemma 2, in the interval (z1, z2) with f(z) > 0, A2
t has no local maximum. Since

At(z1) = 0, one obtains (A2
t )

′ ≥ 0 (see figure 6 for a schematic explanation). Then, we

immediately have

(Q2)′ > 0 , (B.13)

in an interval (z1, z2) with f(z) ≥ 0 and At(z1) = 0. Note that when f = 0, eq. (B.11)

seems to be singular. Nevertheless, the smoothness of equations of motion (2.5)–(2.8)

insures that this is a removable singularity. Thus the desired result follows.
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One interesting feature is that the timelike singularity must be charged. The hairless

solution is described by the Reissner-Nordström black hole, for which there is no any

medium to conduct the charge, thus the charge has to stay at the original point. When the

charged scalar hair develops, the charge can escape from the singularity via the complex

scalar field. Therefore, one could ask whether the original point is neutral or not after

the charged scalar condenses. The answer is negative. The proof is as follows. As the

singularity is timelike, there must be a horizon at z = zs and f(z) > 0 when z > zs. Then,

we obtain from Lemma 3 that

Q(z → ∞)2 > Q(zs)
2 ≥ 0 , (B.14)

where we have assumed that the spacetime singularity appears as z → ∞. Thus, the

timelike singularity must be charged, suggesting that near the timelike singularity, the

gravitational attraction always dominates the electric repulsion.

C Asymptotic solutions near the spacelike singularity

As we have shown in the main text that for a large class of hairy black holes there exists no

inner horizon and the spacetime ends at a spacelike singularity. In this section, we present

the analytical analyzes as well as numerical details for constructing the geometry near the

spacelike singularity. To simplify our discussion, we shall specify Z = 1 so that the theory

becomes a standard Einstein-Maxwell-scalar theory.

We begin our discussion with the case that the potential of scalar field can be neglected

near the singularity. We will show that in this case the spacelike singularity always has the

asymptotic Kasner geometry. We then discuss what will happen if this condition is broken.

C.1 Analytical analyze

Near the singularity, the functions will be divergent, which challenges the numerical preci-

sion. So we first give some analytic discussion about the geometry near the singularity.

When the contribution from the scalar effective potential can be neglected, we obtain

the following equations from eqs. (A.2)–(A.5) near the singularity as z → ∞:

χ′ =
2

d

[

ψ2A2
t q

2

h2z2d+1
+ zψ′2

]

, (C.1)

h′ =
Q̃2zd−2e−χ/2

2d
, (C.2)

Q̃′ =
2ψ2Atq

2

z2d+1h
, A′

t = Q̃e−χ/2zd−2, (C.3)

ψ′′ = −
(

h′

h
+

1

z

)

ψ′ − A2
t q

2

h2z2d+2
ψ. (C.4)

It is obvious from eq. (C.2) that h(z) is a monotonic increasing function when z is large

enough. Since we have assumed that the singularity is spacelike, we have h < 0 as well as

lim
z→∞

h(z) = −h0 < 0 . (C.5)
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Then, we find O(h′) < O(1/z). Therefore, we obtain from eq. (C.3) that

A′2
t = 2dh′e−χ/2zd−2 < O(zd−3) , (C.6)

and thus |At| < |O(z(d−1)/2)|. Here we have used the fact that e−χ/2 ≤ O(z0) since χ is

a monotonic increasing function and is finite at the event horizon. This leads to that the

coefficient of the last term of eq. (C.4) satisfies

A2
t q

2

h2z2d+2
< O(1/zd+3) < O(1/z2) . (C.7)

Therefore, the last term of eq. (C.4) can be neglected. The solutions of ψ in large z limit

then reads

ψ(z) ∼
√
dα ln z , (C.8)

with α a constant. Taking it into eq. (C.1), we can find χ′ = 2α2/z. Finally, we obtain a

simple result for the geometry near the singularity.

ψ =
√
dα ln z + · · · , A′

t = Esz
d−2−α2

+ · · · ,
χ = 2α2 ln z + · · · , f = −fsz1+d+α2

+ · · · ,
(C.9)

where Es and fs are constants.

Changing the z coordinate to the proper time τ via τ ∼ z−(1+d+α2)/2, we obtain

ds2 = −dτ2 + ctτ
2ptdt2 + csτ

2psdΣ2
d,k, ψ(z) = −pψ ln τ , (C.10)

with

pt =
1 − d+ α2

1 + d+ α2
, ps =

2

1 + d+ α2
, pψ =

2
√
dα

1 + d+ α2
. (C.11)

One can immediately check that

pt + dps = 1, p2
t + dp2

s + p2
ψ = 1 , (C.12)

and therefore the geometry around the spacelike singularity has the Kasner form. We

now arrive at the conclusion: when the scalar potential can be neglected in the spacelike

singularity, the asymptotic solutions are of Kasner type in eq. (C.10).

Note that in above discussion we have assumed that the scalar kinetic term should

dominate the dynamics near the singularity. One should at least has the following con-

straint:

lim
z→∞

|V (ψ2)|
zd+1+α2

≪ 1 . (C.13)

In particular, it allows the scalar potential V to be arbitrary algebraic functions, includ-

ing polynomial functions. However, if one chooses a potential that diverges exponentially or

even worse, the condition (C.13) will be broken and we can not obtain (C.9). For example,

we take

V (ψ2) = P (ψ2) + sinh(γ ψ2) , (C.14)

with P (x) a polynomial. When γ = 0, we expect to obtain (C.9) no matter how high order

of polynomial one considers. In contrast, once we choose γ > 0, the asymptotic solution
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will be different from (C.9). This can be understood as follows. Suppose we are in the

Kasner regime, where we have ψ ∼
√
dα ln z at large z. After including the second term of

eq. (C.14), one has

|V (ψ2)|
zd+1+α2

∼ edγα
2(ln z)2

zd+1+α2
>
edγα

2(κ ln z)

zd+1+α2
=

zκγdα
2

zd+1+α2
. (C.15)

Here κ is a constant for which we only demand κ < ln z. Therefore, κ can be sufficiently

large as we approach the singularity. In particular, when κ > d+1+α2

γdα2 , the numerator of

eq. (C.15) is larger than the denominator and therefore the constraint (C.13) is broken.

As a consequence, no matter how small the value of γ is, the Kasner solution is expected

to be modified when z > zc, where the critical point is given by

zc = c0 e
d+1+α2

γdα2 , (C.16)

where c0 is a coefficient that depends on a model one considers. To be self-consistent, we

need zc ≫ zH such that the solutions are approximately in the Kasner regime when γ = 0.

C.2 Numerical check

In this section we examine the geometry inside hairy charged black holes by numerically

solving eqs. (A.2)–(A.5). We are particularly interested in the behavior near the singularity.

We also would like to check our analytic results obtained in the last part.

Note that the Kasner type solution means {h,Q,At, zχ′, zψ′} approach to constant.

To present our numerical data, we further introduce

R1 = zψ′, R2 = ln

(

z2
H

z2
− h

)

, R3 = 4Q̃ , (C.17)

for which the Kasner solution yields

lim
z→∞

Ri(z) = const., i = 1, 2, 3 . (C.18)

We first consider the class of potentials

V (ψ2) = −6 + ψ2n + sinh(γψ2) , (C.19)

and numerically solve eqs. (A.2)–(A.5) by using the Runge-Kutta method. We consider

the planar black holes with k = 0 and specify d = 2, zH = 1, q = 1. We choose A′

t(zH) =

1, χ(rH) = 0 and ψ(rH) = 1/2 in all cases. As we only care about the inner geometry, we

do not consider the UV completion for (C.19). We first present the numerical result for the

polynomial case, for which we set γ = 0 and vary n. According to the discussion above,

we anticipate Kasner type solutions (C.9) as z → ∞. In figure 7 we show our numerical

results for V = −6 + ψ2 and V = −6 + ψ20. As expected, the functions {R1, R2, R3} all

approach to constant when z/zH → ∞, confirming the Kasner form near the singularity.

As the value of γ is increased, the contribution from V to the geometry near the

singularity becomes more and more important. The numerical results are presented in
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Figure 7. Numerical results for different polynomial scalar potentials. {R1, R2, R3} all approach

to be constant values as z/zH → ∞, confirming the Kasner form geometry near the singularity. We

have fixed Z = 1.
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Figure 8. Numerical results for non-polynomial potentials. The behaviors near the singularity are

different from the Kasner form. The oscillating behavior appears when z is large. The observation

of intensity oscillation becomes more and more manifest as γ is increased.

figure 8. For non-polynomial potentials which violate (C.13), the asymptotic solutions are

different from the Kasner behavior (C.9). We observe some strong oscillating behavior all

the way down to the singularity. The oscillating behavior can be found more clearly from

the behavior of ψ, which is shown in figure 9.

We see that the scalar field does no longer satisfy the asymptotic behavior shown in

eq. (C.9). Interestingly, our numerical result implies that the asymptotic solution of ψ

approximately obeys

ψ ∼ T0(z) T1[ln(z/zH)] , (C.20)

where T0(x) is a slow-varied function and T1[ln(z/zH)] a periodic function of ln(z/zH)

(see the left panel of figure 9). We have carefully checked the convergence of our numeri-

cal results.
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Figure 9. The behavior of the scalar field near the singularity for V = −6 + ψ2 + sinh 5ψ2. Left

panel: ψ as a function of ln(z/zH). Right panel: we zoom in the peak in the red circle of the left

panel, which shows that the solution is smooth near the peak.
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Figure 10. Numerical results for non-polynomial potentials which allow black holes in AdS. The

behaviors near the singularity are different from the Kasner form. The oscillating behavior appears

when z is large. The observation of intensity oscillation becomes more and more manifest as γ

is increased.

One may worry that for the choice of potentials in eq. (C.19), the asymptotic geometry

near the black hole boundary is different for different γ. To avoid this issue, we consider

the second class of potentials

V (ψ2) = −6 + (1 − γ)ψ2 + sinh(γψ2) , (C.21)

for which the black holes are asymptotic AdS as z → 0 and near the AdS boundary V

behaves as V = −6+ψ2 + · · · . We obtain very similar oscillating behavior as the first class

of potentials, see figure 10.

For a potential of eq. (C.14), as we have discussed around eq. (C.15), once γ is turned

on, no matter how small it is, the Kasner form (C.9) would be broken. Numerically, it is not
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Figure 11. Left panel: numerical results about the scalar field ψ near the singularity for V =

−6 + 0.99ψ2 + sinh(0.01ψ2). We can still observe the logarithmic behavior ψ ∼ ln(z/zH) when

z < zc ≈ zH ×1044 (green circle), which implies that the Kanser form solution is valid when z < zc.

Right panel: relationship between zc and γ, which obeys the approximated scaling behavior (C.22)

and matches the theoretical prediction (C.16).

easy to verify this feature for small γ. This is because the exponential term will play role

only when the scalar field is large enough, which means one has to solve the equations to

sufficiently large z. Nevertheless, one anticipates from numerics that there exists a critical

value zc, beyond which the Kasner behavior would be modified. To check this point, we

consider the class of potentials in eq. (C.21) and numerically study how zc depends on the

parameter γ. We indeed observe expected features from our numerics shown in figure 11.

In particular, from the left panel of figure 11, one finds that there is a critical value of

z at which the Kasner solution ceases to be valid for a given small value of γ. We then

numerically find the relationship between zc and γ, which is shown in the right panel of

figure 11.

We obtain from figure 11 that for small γ, there is a scaling behavior

γ ln(zc/zH) = const. , (C.22)

suggesting that the oscillating behavior will appear for large enough z, no matter how small

γ is. Interestingly, the scaling relation (C.22) is exactly we have obtained in eq. (C.16). We

also compare the numerical results with our theoretical prediction (C.16) quantitatively.

We obtain α by using the relation ψ =
√
dα ln z when z . zc (the linear region in the left

panel of figure 11). After fitting the coefficient z0 in eq. (C.16), we find that the numerical

results match with the theoretical prediction (C.16) quite well (see the solid line in the

right panel of figure 11). This scaling law is also checked by the case (C.19) as well as

other potentials.

D Dynamical epochs inside event horizon

Looking inside the horizon of the holographic s-wave superconductor, the authors of ref. [12]

recently studied the dynamical epochs inside the horizon after the spontaneous scalarization

– 20 –



J
H
E
P
0
3
(
2
0
2
1
)
2
6
3

appears in a planar asymptotically AdS black hole. When the temperature is slightly

below the critical temperature Tc, they found the collapse of the Einstein-Rosen bridge

and Josephson oscillations of the condensate. In addition, they also found that geometry

near the singularity shows a Kasner cosmology and sometimes with transitions that change

the Kasner exponents. Their model is a special case of our general theory by setting

k = 0, V (|Ψ|2) = m2|Ψ|2 − 6 and d = 2, i.e. a free charged scalar. Then a question arises

naturally: how interactions of the scalar field could alter the interior dynamics as compared

to the case of ref. [12]?

Notice that whether or not the scalarization is spontaneous is not important in the

study of dynamical epochs inside the event horizon. Instead of temperature [12], one can

directly use the value of scalar at the event horizon ψH = ψ(zH) to measure the strength of

scalar field. Then, we study how the dynamical epochs inside the horizon depend on ψH .

It was noticed that near Tc both the collapse of the Einstein-Rosen bridge and Josephson

oscillations happen when scalar field is small. The crucial point in ref. [12] is that the “mass

term” in equation of scalar field and the charged coupling term in the Maxwell equation

are negligible. As have mentioned by ref. [12], it is not simply ψ being small that allows

terms to be dropped and the nonlinear dynamics effects always play important roles inside

black hole no matter how small the condensation is. Thus, naturally one may wonder

if the nonlinear potential V may change these phenomena. This question is not easy to

answer analytically due to the complicated forms of eqs. (A.2)–(A.5). Following the spirit

of ref. [12], we do that by a “posteriori assumption”, i.e. we first assume that the potential

term could be dropped, then find what are the self-consistent conditions and check the

conclusions numerically finally.

Based on the results of ref. [12], when we drop above two terms, the scalar field around

the “would-be” inner horizon z = zI of RN AdS has the following behavior:

ψ(z) = ψH cos

{

c0

ψH
ln[−gtt(z)] + c1

}

, (D.1)

with c0 and c1 two constants. When the scalar field at the event horizon is small, which

corresponds to the case that the spontaneous condensation just happens in the model of

ref. [12], ψ′ tends to be divergent and thus leads to strong nonlinear dynamics singularity

near the “would-be” inner horizon of RN AdS. However, the scalar field itself is bounded

and will approach to zero, for which the non-linear terms of V is not important. Thus,

we anticipate that our “posteriori assumption” is self-consistent for all smooth potentials.

This suggests that the collapse of the Einstein-Rosen bridge and Josephson oscillations of

the condensate would not depend on the potential V (|Ψ|2) as long as ψH is sufficiently

small. To check this conclusion explicitly, we take the following parameters and initial

values for numerically solving eqs. (A.2)–(A.5).

zH = Z = q = Q̃(zH) = 1, χ(zH) = h(zH) = At(zH) = k = 0, d = 2 . (D.2)

There is a Cauchy horizon at zI ≈ 4.9675 when ψ(zH) = 0 (i.e. RN AdS case). In figure 12,

we show the value of zψ′ for different potentials. It is clear that the behavior of zψ′ around

the z = zI are independent of the potential V when ψH is small (left panel). On the
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Figure 12. Behaviors of zψ′ around the z = zI in three different potentials V1(x) = x− 6, V2(x) =

x+ 2x3 − 6 and V3(x) = −99x+ sinh(100x) − 6. Left panel: ψH = 10−3. Right panel: ψH = 0.25.

other hand, for large value of ψH (right panel), the interactions of the scalar field become

important and the collapse of the Einstein-Rosen bridge and Josephson oscillations derivate

from the free scalar case. We also found that both the collapse of the Einstein-Rosen bridge

and subsequent Josephson oscillations becomes less dramatic as ψH becomes large and tend

to disappear for sufficiently large vale of ψH .

We have shown in our main text that the spacetime ends at a spacelike Kasner singu-

larity when the condition (4.6) is satisfied. In this case, the potential term can be neglected

around the spacetime singularity and so all the analyses of ref. [12], including the Kasner

inversions, seem to be valid. Unfortunately, due to the complicated forms of eqs. (A.2)–

(A.5), we are not able to understand the dynamical epochs inside event horizon thoroughly

so far. Nevertheless, we have shown that, once the condition (4.6) is broken, the asymptotic

behavior around the spacetime singularity will be different from the Kasner behavior and

the Kasner inversion is also broken.
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