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No ¢-epistemic model can fully explain the indistinguishability of quantum states
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2School of Physics, The University of Sydney, Australia
SFaculty of Philosophy, University of Oxford, UK
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According to a recent no-go theorem (M. Pusey, J. Barrett and T. Rudolph, Nature Phy3i552012)),
models in which quantum states correspond to probability distributions over the values of some underlying
physical variables must have the following feature: the distributions corresponding to distinct quantum states
do not overlap. This is significant because if the distributions do not overlap, then the quantum state itself is
encoded by the physical variables. In such a model, it cannot coherently be maintained that the quantum state
merely encodes information about underlying physical variables. The theorem, however, considers only models
in which the physical variables corresponding to independently prepared systems are independent. This work
considers models that are defined for a single quantum system of dimehssoich that the independence
condition does not arise. We prove a result in a similar spirit to the original no-go theorem, in the form of
an upper bound on the extent to which the probability distributions can overlap, consistently with reproducing
quantum predictions. In particular, models in which the quantum overlap between pure states is equal to the
classical overlap between the corresponding probability distributions cannot reproduce the quantum predictions
in any dimensioni > 3. The result is noise tolerant, and an experiment is motivated to distinguish the class of
models ruled out from quantum theory.

No-go theorems such as Bell’ [1] are of central importancealerive bounds on the extent to which the probability distri-
to our understanding of quantum mechanics. Bell's theorenbutions corresponding to distinct quantum states can overlap.
shows that locally causal models must make different prewe show that what we calhaximally-epistemic modejs
dictions from quantum theory. In addition to the fundamen-in which the overlap of the probability distributions is large
tal significance of this result, Bell's theorem has applicationsenough to explain fully the indistinguishability of quantum
in quantum information processing, most notably in device-states, must make different predictions from quantum theory
independent cryptography and randomness gener&iﬁh [2-5for Hilbert space dimensiod > 3. Our result is noise-

Recently, a number of new no-go results have been derivediplerant, allowing for experimental tests to rule out this class
addressing a different question than whether nature can k& models. Furthermore, we show thatéas> oo, any model
described by a locally causal theory. The question concerngcovering quantum predictions must becaangitrarily bad
whether the quantum state should be viewed as a descriptiat explaining quantum state indistinguishability.
of the physical state of a system, or as an observer’s infor- Non-orthogonality and epistemic statedlon-orthogonal
mation about the system. Many authors (see, e.g., Reéfs. [6guantum states cannot be distinguished with certainty in a sin-
], and references therein) have argued for the latter, poingle shot. This is sometimes regarded as a distinctly quantum
ing out, for example, that quantum collapse is analogous tphenomenon, but of course a similar thing is true of classi-
Bayesian updating of a classical probability distribution whencal probability distributions. Consider a standard deck of 52
new data is obtained, or that the indistinguishability of non-playing cards and a shuffling/drawing machine with two set-
orthogonal quantum states is analogous to the indistinguishaings: with the first setting, a red card is drawn at random,
bility of overlapping probability distributions. Ref.| [9], fol- and with the second setting, the card is a randomly chosen
lowing Ref. m)], considers models of a specific form, in ace. The two settings correspond to probability distributions
which the quantum state corresponds to a probability distrip andq such thap = 2—16 for all red cards ang = i for each
bution over some set of underlying physical states, hence caace. Given a single card drawn from the pack, and asked to
be thought of as representing an observer’s partial informatiodetermine under what setting the machine was operating, one
about the physical state. It is shown that such models cannagnnot succeed with certainty. The reason is simply that the
recover the quantum predictions unless the distributions ardistributionsp andq overlap, e.g.p andq are both nonzero
disjoint for distinct quantum states. Roughly speaking, if thefor the ace of hearts.
assumptions of Re(fh[Q] are accepted, then the quantum state This suggests that the inability to distinguish non-
must describe some part of reality. orthogonal quantum states could be explained analogously.

One assumption of Reﬂ[g] is that the physical states arén that case, two quantum states would be indistinguishable
uncorrelated for independently prepared systems. It is inin a single-shot experiment because they would correspond to
teresting to investigate what can be established without thisverlapping distributions over states of reality. The aim of this
assumption. Various works have investigated what can bwork is to explore the extent to which such an explanation is
concluded by considering measurements on a single systeaven possible, consistently with the quantum predictions.
only, i.e, without any assumption about independent systems Ontological models for quantum theoryo formalize this
]. Here, we consider a single quantum system, anitlea, we shall use the framework ohtological models[lé,
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|E]. This framework assumes that when a physical systerefinition 1. An ontological model is)-epistemicif there
has been prepared in the quantum stajeit is actually inan  exists at least one pair of distinct quantum statésand|¢),
ontic state), which we can think of as the ‘state of reality’. such that the corresponding epistemic statgsand 14 have
An ontological model assigns to each quantum sfaéjean  nonzero overlap, i.ewc (i, > 0. If a model is not)-
epistemic state:,,, which is a probability distribution over epistemic, then it ig-ontic. [ﬁ]

the set of ontic states, and represents our ignorance about
which ontic state\ the system is in. Since an epistemic state
is a probability distribution, it must satisfy

Hardy E‘}’] raised the question of whethérepistemic
models could reproduce the predictions of quantum theory.
Ref. B] then showed that under an assumption to do with

p(X) >0 and /Mw()\) d\ = 1. (1) the independence.of eeparately prepared systems, they can-
not. The assumption is that when two quantum systems are
The framework assumes that when a measurement is peprepared independently, they can be assigned separate on-
formed, the probability for a given outcome depends only orfic states\; and A2, and that the joint distribution satisfies
the ontic state\. Hence for a measuremehtf, and outcome  fye(A1, A2) = k(A1) X 11 (A2). Various works since have
f, an ontological model assignsrasponse functigrwhich ~ €xplored the possibilities for ontological models for déeng
yields the probabilityt,; (| ) of obtaining the outcomg in ~ Systems, i.e., without this assumption. REef][11] shows tha

the state\, and we have: 1-epistemic models exist for quantum systems of arbitrary
dimension. Ref.l_L_1|5] goes further, demonstrating that for a
€m(f]A) 20 and ZgM(ﬂ/\) =1 (2) qguantum system of arbitrary dimension)eepistemic model

exists with the additional property that: (p.;, i) > 0 for
To reproduce the predictions of quantum theory, responsevery pair of non-orthogonal statgs) and|¢). Refs. [14,

functions must satisfy [15, ] show that)-epistemic models do not exist, given var-
ious additional assumptions. In Ref@[ﬁl 13], the questio
/ Enr(FIN) (V) dX = [(f[0)]? (3) israised whethep-epistemic models can reproduce quantum
predictions given an assumption about the extent to whieh th
for all |1) and . epistemic states overlap.

Standard distance measures, defined on probability distri- Refs. [12/18] are the most direct precursors to this work,
butions and quantum states, will be useful in the following. since here we are also concerned with the extent to which

For distributiong () andg(z), theclassical trace distancis  the distributionsu,, and ., can overlap in models which re-
cover the predictions of quantum theory. An advantage of the
— l/|p(x) — q(z)| dz. (4) present work is that we use distance measures that are robust
under small variations, hence our results are noise tdlarah

This quantity has an operational interpretation. Suppoae t SUPject to experimental test. . .
the distributiong(z-) andq(z) are associated with two differ- _ "€ _following is an easy theorem, previously noted in
ent preparations of the variabte(as with the cards above), Ref. @]-
and suppose that equal a priori probabilities are assigmed
the two preparations. The probability of correctly guegshe
preparation, given a single samplexois 1/2(1 + ¢ (p, q)).

In the qu_antum case, tlgpantum trace distancdor pure we (g, o) < wo (¥, ¢) Y, . (8)
states, is given by

Theorem 2. In any ontological model that recovers the pre-
dictions of quantum theory,

Proof. Consider the optimal measurement for distinguish-
Sq(ih,¢) = /1= (¥]e)]*. (5) ing two quantum states. Success occurs with probability
Py =1 —wq(y,¢)/2. Given the ontic state, the max-
If one of a pair of quantum stat¢s) or |¢) is prepared with  imum probability to correctly guess which preparation was
equal probability, then, by using an optimal measuremast, t performed is given byPo := 1 — we (s p)/2. Butin an
probability of correctly identifying which state has bee®{  ontological model the output of the quantum measuring de-

pared_isl/2(1 + 5Q(¢v b)). S vice depends only on the ontic statethus P, < Pc since
Define theclassical overlapf two distributionp andgas P, cannot be larger than what one would get by optimally
using the information encoded i O
wclp,0)i=1-dc(pg) = [win{p(e).g(@)}de. ©) | - .
cq) ¢ { ) ©) Definition 3. An ontological model isnaximallyy-epistemic
Similarly, for quantum state)) and |¢), let the quantum  if @nd only if for all pairs of statesyc (s 11s) = wo (¥, ¢).
overlapbe given by [@]
wo(t, ) =1 — 6o (1, &). @) The motivation for this terminology is that, as we have

already argued, the impossibility of discriminating non-
Following Ref. m)], orthogonal quantum states would be explained in a natural
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way if the two quantum states sometimes correspond to thand the outcome’, is a projector onto the orthogonal sub-
same state of reality. But this explanation would not be satspace and has zero probability on each of the three states.
isfying if the quantum and classical overlaps were not equal Assume for contradiction that there is a subs&tC A of
For then, the two classical distributions could in prineipe  non-zero measure such that: (\), 115 (A), 1 (A) > 0 for all
better discriminated by a device with access\fand some )\ ¢ A+, Eq. [I0) and Eqﬂéll) then imply that for some
additional explanation must be adduced as to why the twe (¢ |\) = ¢,,(f2|\) = &x(f3|A) = 0. But this, along
quantum states are hard to distinguish. In a maximahy  ith the fact thatf, has probability zero on all three states,
epistemic model, on the other hand, the difficulty of diserim contradicts Eq[{2). For quantum state, let Ay, denote the

nating non-orthogonal quantum states is completely and-qua sy pport of the distributiop,,. It follows that for anya # 3,

titatively explained by the difficulty of discriminatingecor-
responding epistemic states.
Ruling out maximally)-epistemic modelur results rule

out maximally«-epistemic models for quantum systems of

dimensiond > 3, and are noise-tolerant. Fdr= 2, an onto-

logical model due to Kochen and Specl@ [21] can be shown

to be maximallyy-epistemic([22].

The case of three-dimensional systems, and an analysis
signed to account for experimental noise, will follow below

First, consider systems of dimensiar> 4.

Theorem 4. Suppose that an ontological model reproduces

the quantum predictions for a system of dimensign 4, and
that

wC(M’lIJa/Ltb) > kaW,(b) V’L/J,¢,

for some constarit. Thenk < 4/(d—1). If d is power prime,
thenk < 2/d.

Proof. Using terminology introduced by Caves, Fuchs and i

Schack [[28], three pure statés), |b) and |c), are PP-
incompatiblef there exists an orthonormal bagig;) }3_, for
the subspace spanned|ay, |b) and|c) such that f,|a) = 0,
(f2|b) = 0, and(fs]c) = 0. Ref. [23] shows the following.
Let 21 := |(a|b)|?, z2 := |(b|c)|* and x5 := |(c[a)|*. Then
|a), |b) and|c) are PP-incompatible if and only 4]

1 +xo+a3 <1
(.CCl —+ X2 —|—ZC3 — 1)2 Z 4561562173 .

9

Recall that a pair of bas€$a;)}; and{|b;)}, is mutually
unbiasedf | (a;|b,)|* = 1/d for all i, j, whered is the Hilbert-
space dimension. W is power prime, then there exigt+ 1
mutually unbiased ba525]. Leb be an element of one
such basis, and fary € {1, ..., d}, letthed remaining bases
be{|e])}:, wherey ranges over the distinct bases, araver
the elements within a basis. Far# g andd > 4, the set
{le$"), |ef> ,|c)} is PP-incompatible by EqX9).

and for anyi, 7, Ae? NA_s N A.is aset of measure zero.
J
Now, for any pair of distributiong., and,

/A typ(A) AN = we (g, po) - (12)

dAssume that the ontological model satisfies (g, pp) >

EWQ (v, ¢) for all pairs of states. Then for any ,
/ pe(\) dA > k (1—\/1—1/d) . (13)
Ay

Fori # j the vectorde/) and|e]) are orthogonal, and can
be distinguished by a single shot measurement. It folloas th
AN Ae; is a set of measure zero. Hence

/ fe(N) dA > d k (1 V1o 1/d) . (14)

UAy

Using the fact that\eg NA_s NA.is asetof measure zero,
/ e\ dX > d2 k (1—\/1—1/d) . (@5)
F94e

This gives

k<o (1 yIo1d) < 2.

The result for a system of arbitrary dimensién> 4 now
follows immediately. Consider d'-dimensional subspace,
whered” < d andd’ is power prime. The theorem ap-
plies to ontological models that recover the quantum predic
tions for preparations and measurements within this sulespa
Hence any ontological model for thédimensional system
must havek < 2/d’. Bertrand’s Postulate states that for ev-

(16)

Now, consider an ontological model for systems of dimen-gry natural numben > 2, there is a prime betweenand2n

siond > 4 with d power prime. From the PP-incompatibility
of {|e?), |ef> ,|e)}, it follows that there exists a measurement

M with outcomesf;, i = 1, ...,4 such that

/AiM(f1|/\)Meg (N dx = [(filef)]? =0, (10)

/ Enr(fol Mty (A) A = / Enr (fsl MV dA = 0. (11)
A J A

]. Choosing: = |d/2] yieldsk < 4/(d — 1). O

Corollary 5. No maximally epistemic ontological model can
reproduce the quantum predictions for a system of dimension
d>4.

Proof. For a maximally epistemic ontological model, the an-
tecedent of Theorefd 4 holds with= 1. But then we con-
clude thatt < 1, reaching a contradiction. O
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Moreover, the upper bound ah asymptotically tends to Now consider an ontological model that predicts probabili-
zero, meaning that as — oo, every ontological model will  ties that coincide with the observed data. This means that fo
assign a ratio between the classical and quantum overlagsch preparatiofh and outcomey, the probability predicted
tending to zero for at least some pairs of quantum states. by the model satisfies

Note. Examination of the proof shows that it is possible to
state a stronger result (which we have left out of Thedrem 4 P(gly) := / Enr(gIN) e (V)dX = Rg|y].  (20)
for simplicity). Suppose thak(v, ¢) is defined so that for A
each pair of statesyc (py, o) = k(¥, ¢) wq (¥, ¢). Then, a
bound can be derived on the valuekdi), ¢), averaged over
the states used in the proof:

o 1
P )

7 1+3Ze(c,e?,ef)+2Ze(e‘;‘,e;—’).(21)

where|c), |e$) all lie within a power prime-dimensional sub- a<p
space. Sincgc) can be chosen to be an arbitrary state (by i,j
applying the same unitary to) and all the other states inthe ¢ \ye average the noise terms over all possible choices of

proof, thus maintaining their overlaps), this implies thet  ,casurement used in the experiment, defining
every quantum state ih > 4, there exists a finite set of states

For simplicity, the following assumes that the dimensibis
power prime. It is shown in Appendix 1 that in this case,

i<j

§uch that the average ratio of classical and quantum owerlap - ZKBM e(c, e, ef) - Z%Kj e(ef,e?)
is bounded as above. €1 1= 3 ) €= — s
. : . d3(d—1)/2 d?(d—-1)/2
The noisy case.In a real experiment, observed relative (22)

frequencies will not exactly match the quantum predictjonspen

hence if the experiment is to rule out a class of ontologi-

cal models, it is necessary to consider models that only ap- , » f—— 3 3

proximately reproduce quantum predictions. Suppose that a kd (1 vl 1/d) i+ §d (d=1)ex

experiment is carried out in which quantum systems are re- 4 dz(d —1ey. (23)

peatedly prepared and then measured. Each time, the prepa-

ration is (intended to be) of a pure state chosen at randorience

from the set of mutually unbiased bases employed in the 1 ) 3

proof of Theorenf}4. The measurement is (intended to be) ¥ < — (1 +d*(d—1) (§d€1 + 62)) (1 +v1- 1/d)

either a projective measurement onto one of these bases, or

a projective measuremenf with outcomesfy, ..., f4, cho- < 2 4 d? (3dey + 2¢€3) . (24)

sen so that f1]e®) = <f2|ef) = (fs]c) = 0 for some triple _

(le2), |e§?>7 Ic)), with f, corresponding to a projector onto the For any value oﬂ_ > 4there eX|_st small but non-zero values

orthogonal subspace. of €; andes for wh|ch the experlme_ntally determined boun_d
Let R[g|«/] be the relative frequency with which outcome k < 1 can be achleved..The resuI'F is therefore robust agamgt

g is observed when the preparationgs Quantum theory small ampgnts of experimental noise and does not adrmt a fi-

predicts, for example, that iff,|e) = 0, and the experi- nite precision Ioc_)phgle. In particular, a value lof< 1 is

ment s carried out perfectly, the®) 1 |¢2] will be zero, while ~ POSsible if the noise is bounded by:

noise will ensure thaR|f; |e] is typically greater than zero. 9 1

The following analysis is designed to take this noise into ac 3dey + 22 < 1 (1 —/1-1/d— ﬁ) . (25)

count. For simplicity, we assume that the measurementis per

fectly aligned in the three-dimensional subspace spangied bassuminge = ¢; = e, this requires an error af < 0.0034

(le2),1€5). |e)), ignoring the possibility that the outconfe  for ¢ = 4 and even lower for higher dimensions. A high-

occurs. We also ignore the related issue of detector ineffiprecision measurement is required to achieve this, but it is

ciency. one that is within the reach of the current state of the art us-
For each triple define the average ing, for example, ion trap [28, 29] or magnetic resonahck [30
1 technology.
el eft,ef) = 3 (R[f1|€?] + R[folef]] + R[f3|0]) . (18) Ruling out maximally epistemic models fér= 3. The

proof of Theoreni4 does not apply to tHe= 3 case, since
For each pair of states, chosen from the same bgsande}  mutually unbiased bases supply PP-incompatible triplés on
(i # j), consider a measurement onto that basis, and defing ¢ > 4. It is, nonetheless, possible to rule out maximally
the average epistemic models. The analysis of the noisy case turns out to
1 be useful, because i = 3 one can construct a proof that
elef,ef) =5 (R[eﬂe?] + R[eﬂef]) : (19)  makes use of triples of quantum states that are close te&rrath



than exactly, PP-incompatible. One canthen apply anidequa 090402 (2013).

ity analogous to Eq[(21). The details of this argument ard15] S. Aaronson, A. Bouland, L. Chua, and G. Lowther,
given in Appendix 2. We obtaih < 0.95. “Psi-Epistemic Theories: The Role of Symmetry,” (2013),
. . . arxiv:1303.2834.
Conclusion. We have considered ontological models for [16] The terminology derives from the idea thatif, and 1 do

guantum systems, wherein a quantum state corresponds to a not overlap for any pair of distinct quantum states, thetirdis
probability distribution over some set of ontic states. tSuc quantum states always refer to distinct states of realityhis

a model might be viewed as a schematic account of an un-  case, the quantum state itself can be regarded as a part-of rea
derlying theory, more fundamental than quantum theory, but ity (hence it isontic). In the contex_t of ontologic_al_rr_lodels, it
might equally be thought of as a classical simulation of guan ™St be the case that, andy, typically overlap if itis to be

. . . . . maintained that the quantum state represents only infesmat
tum theory. Either way, itis interesting to investigate tioa- about reality (hence ispistemiy. (As it stands, the definition

straints on such models, given that they reproduce quantum  of y-epistemic is very weak because it is only required that the
predictions. From an analysis of preparations and measure- distributions overlap for one pair of quantum states. Thivas
ments on a single system, we have derived an upper bound to make results that rule out-epistemic models stronger.).
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APPENDIX 1 Note that from the normalization @f. we have
We derive the inequality in EJ_(21) as follows. v (U on Eq) <v(C) =1 (A.31)
The measure space Eq. (A:30) then becomes:

For an ontic state space, let us define the set > v(CNEY) <1+ > v (O NE"N Ef)

I':= A x R*. A positive functionf(\) > 0 that is integrable o a<p
onA (i.e. fA F(A) dX\ < o) defines a regioi” of T (i.e. the 7
area undey), where: +> v (O NE*N Ef) (A.32)
Fi={(\2)[0<z< f(N)} (A.26) i<
The union and intersection of two such regions are Itwill be useful to subst;tute: 5
FUG={(\2)]0 <z < max(f(N), g(\)} v(enEnEy) <v(ErnE]) (A.33)
FNG={(\z)]0<z<min(f()\),g(\)} for the cases where = 3. Using Eq.[[A.2V), we then have:

The volume measure on the spacéis= d\ x dz, where .
dz is the Lebesgue measure. This gives Z/ T A, flep dA <

F)_/de_/Ad)\/Of(A) d:z::/Af(/\)d/\ : 1+Z/mm fre(N); peg (A),uef(k)) dA

a<[5
and
+ / min ue e (N) ) dA (A.34)
WP UG) = [ max(7(3),900) A Zg: )
i<j
v(FNG) = /min(f(/\),g(/\)) dA (A.27)
Noise
For quantum states, a regidns defined by the correspond-
ing epistemic stategs. Eq. [A.28) becomes: Consider a set of. quantum stateg¢,...,¢,} and a
measurememt/ with outcomes| f1, ..., f»}. In an ontolog-
= <z< ) . : .
¢ ={A2)[0 @< u(V} (A.28) ical model, the experimentally observed frequengies |v;]
are obtained by using the corresponding response functions
Bonferroni Inequality Em(filA) and epistemic statesy, :
Now, using the first Bonferroni inequality [32], on any mea- /A Ent (fil M, (A) AX = R[fil)]. (A.35)

sure space with measureve have: ]
Now, sinceVi, min; (g, (A)) < py, (N),

v <ij Ak> > zk: v (Ay) — k; v(A,NAy)  (A29) /AgM(fiM) min (ny; (V) AN < R[filvs] . (A.36)
Consider a family of state§e®)}; o, such thatv labels aba-  From the normalization constrait;_; {i(filA) = 1, we
sis, andi a basis element. Using Eq._{A]28) each such statéhen have:

defines a regio®*. Let |c) be a fixed state, with regiofi.

We shall use Eq[(A.29) withl;, = A, , = C N EY, i.e. we / min (g, (A
replace the indek with the pair of indicega, ).

_Z [filwi]- (A.37)

Using this, along with Egs.[(18),[{1l9) and_{20) in

Eq. (A33), we obtain
V(UCQEZO‘) >ZV(CQE$‘) " |
e o 3 /A min (j1o(A), res (V) dA <
N v(CcnENE)) =N v(CnE*NE? v
Zj;a ( ) %; ( /) 1433 efc,ef, e +2Z (c2,e2). (A38)

(A.30) P i<
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Then suppose, as in Theoréin 4, that the ontological modelntological model recovers the quantum predictions for the
satisfiesve (g, tg) > kwo (1, ¢) for all pairs of states of a  d = 3 system. Then the derivation of the following inequal-
system of dimensiod > 4, for some constarit. Thisimplies ity goes through exactly as that of EQ. (Al 38) in Appendix 1,
that except that experimental frequenciBE|-| are replaced with
quantum probabilitie$’(-|-), and the quantity (e, e) cor-

/ min (,uc()\), ,ue;." ()\)) d) 2 k <1 _ (1 _ é) . (A39) reSpOI’ldS tCP(ef‘|e?), Wh|Ch |SO fOI’i 7é ]
A

If d is power prime, theri+ 1 mutually unbiased bases can be Z/ min (e(A), pes (X)) dA <
found, as in the proof of Theordnh 4. In this case, substigutin ¢
Eq. [A39) in Eq.[(A3B) yields EqL{21) as required. 1+3 Z e e’). (A.40)

€ .7
a<,3
4,7

APPENDIX 2
If the triple | > led) |eB> is not PP-incompatible, then

In the casel = 3, there exist four mutually unbiased bases.the quantitye(c, e, ﬁ) is non-zero for any choice of basis
However, if three vectors are chosen, each from a dlf'feren{f1 f2, f3}. For each tripldc) , |e2) , |e > we found numeri-
basis in the mutually unbiased set, then El. (9) of the main te cally the basig f1, f», f} such that(c, ¢
shows that the resulting triple is not PP-incompatible. sThi e
means that the argument employed in the proof of The@lem
does not go through il = 3. It is still possible, however,
to rule out maximally)-epistemic models, by adapting the
results derived in Appendix 1 for the noisy case to the case
in which triples of vectors are used that are approximatety b 3 Z cel 2) = 092957
not quite PP-incompatible. €05 €5)

Consider the following three mutually unbiased bases in

c,e¢, ) is minimized.
hese are shown in TablBT] Il ahd Ill, in which we display

the optimal bases fotx = 1,5 = 2, « = 1,5 = 3, and

= 2,3 = 3 respectively.

Reading from the last column of Talfle | we have:

d=3: By including the data from Tablé&d Il abd]lll we then have
1 0 0
o 1y _ 1y _
ler) = 8 sleg) = (1) les) = (1) ) 3 Z Cvel’ej +Z 0’6“67 Z Cvel’ej
ij
0.649. (A.41)
1 1 1
= 1)1 = (@) ey = = [w 2
V3 \ 2 ’ VERW ’ V3, ’ For the states used we obtdin, ; (1 — /1= [(eZ]c)] ) =
1.739.  Assuming that an ontological model satisfies
and weo iy, pty) > kwg(y,¢) for all pairs of states, and re-
1 1 1 produces perfectly the quantum predictions, Eq. (A.40¢g)iv
|63>:i w €3>=i |€3>=i w2 k<095<1.
RERRVER U A RVER O AL R A i

wherew = ¢27/3_ Define the fixed normalised state:

—0.374 — 0.236i
le) = | 0.778 —0.071i
0.018 — 0.441i

For a triple |c>,|e§‘>,|ef>, and a measurement basis

{f1, f2, f3}, let
cle.ef o) = 1 (PURleR) + PURleD) + PUSsIO))

This is similar to Eq.[(IB) in the main text, except that the
guantities on the right hand side are the probabilities pre-
dicted by quantum theory for @ = 3 system, rather than
observed frequencies in a noisy experiment. Suppose that an



TABLE I. Minimizing bases{ f; }:, for thea = 1, 8 = 2 family of states

(i, ) h f2 f3 e, e, e)
0 —0.3439 — 0.61787 | —0.6621 — 0.24827
(1,1) 0.8171 — 0.5765¢ 0 0 0
0 0.3631 — 0.6068¢ 0.1161 + 0.69751%
0 0.5317 — 0.52857 0.5013 — 0.4320¢
(1,2) —0.3945 — 0.6556% 0.2415 4+ 0.3511¢ | —0.2446 — 0.4161% 0
—0.1740 4 0.61997 | —0.1069 + 0.4949: | 0.1607 — 0.5507%
0.05556 + 0.081037 0.2653 + 0.54402 0.0222 + 0.7897:
(1,3) —0.8215 — 0.1098¢ | —0.0186 — 0.4206¢ | —0.0416 + 0.36622 0.02280
—0.4846 + 0.2620¢ 0.4961 + 0.4586¢ | —0.1328 — 0.47164
0.2686 + 0.175217 —0.5579 + 0.0032¢ | —0.7647 — 0.0321¢
(2,1) || —=0.01766 + 0.06827: | 0.7702 — 0.2381¢ | —0.5608 + 0.1751% 0.02046
0.9430 + 0.05397 0.1924 — 0.04232 0.2096 — 0.15831
0.8190 + 0.5614% 0.06326 — 0.055144 | 0.05078 — 0.06618%
(2,2) || —0.05017 — 0.058767 | 0.7839 + 0.1828:; | —0.0791 — 0.5829: 0.02854
—0.03910 — 0.08064: | 0.2974 — 0.5065% 0.7911 + 0.145314
—0.2272 — 0.8467¢ 0.2412 4 0.1173¢ 0.1067 — 0.38481
(2,3) 0.2018 + 0.06897 0.7575 4 0.3690¢ | —0.4565 + 0.19027 0.1119
0.4148 — 0.1180¢ —0.1806 — 0.43067 | —0.6536 — 0.4109:
—0.1365 — 0.24541 0.3174 — 0.7208: | —0.5095 — 0.2032:
3,1) —0.6944 — 0.66267 | —0.0261 + 0.22907 | 0.1600 + 0.01267 0
0 0.5715 4 0.0063¢ 0.0198 + 0.82031
0.7135 4 0.60712 0.1176 4+ 0.2737¢ | —0.0914 — 0.15874
(3,2) —0.0483 — 0.3463¢ | —0.2521 4 0.7572¢ | 0.0999 — 0.4804: 0
0 0.4121 4+ 0.3232: 0.7268 + 0.4443:
0.2274 — 0.7062¢ 0.5788 4 0.0661% 0.3110 + 0.11621
(3,3) 0.0076 + 0.657017 0.5561 — 0.0538¢ 0.4974 — 0.09341 0.04198

0.11815 + 0.063331

—0.1493 — 0.5711%

0.1659 + 0.7785¢




TABLE Il. Optimal bases forr = 1,8 =3

(i,9) h f2 fs ele,ef,ef)
0 0.6374 — 0.30614 —0.7064 — 0.03242
(1,1) || —0.7439 + 0.6683i 0 0 0
0 0.5838 4 0.3990¢ 0.3251 + 0.62791¢
—0.005857 — 0.001555% 0.3537 — 0.5332i 0.0495 — 0.7668¢
(1,2) 0.1079 — 0.4250¢ —0.0440 + 0.68847 | —0.2572 — 0.5155¢ || 0.0001107
—0.6994 — 0.56441 —0.2999 — 0.15732 0.2785 — 0.00452
0.08300 + 0.064241 0.5014 — 0.3472i 0.1033 — 0.7787%
(1,3) —0.5131 — 0.29614 0.0173 4 0.6084¢ —0.3589 — 0.3869: 0.02699
—0.5763 4 0.55311% —0.4724 — 0.18544 0.2506 — 0.2041%
0.5057 — 0.8375% 0.10296 + 0.07596¢ | —0.1545 — 0.05102
(2,1) 0.02134 4 0.067212 0.1922 — 0.7829¢ —0.4138 — 0.41702 0.02046
0.0046 — 0.1945¢ —0.4809 — 0.3202¢ 0.7088 — 0.355017
0.01974 — 0.01750¢ —0.1549 — 0.55977 | —0.4182 — 0.69807
(2,2) 0.09781 + 0.04938: 0.4684 4 0.6598¢ —0.4498 — 0.3619: 0.04659
0.9804 — 0.16174 —0.08905 — 0.013514 | 0.06312 4 0.02456¢
0.3240 — 0.10342 —0.3572 4+ 0.35637 | —0.7926 — 0.0401¢
(2,3) —0.1937 — 0.0011% —0.5076 — 0.6591¢ | —0.1714 + 0.4909: 0.09913
0.2916 + 0.8728¢ 0.2304 — 0.01564 —0.1203 + 0.29233
0.5078 4 0.61602 0.1906 + 0.4559¢ —0.3061 — 0.15752
(3,1) —0.2341 + 0.5549:¢ 0.4183 — 0.50427 0.0031 + 0.4563% 0
0 —0.5270 — 0.22127¢ | —0.7834 + 0.244017
0.0329 — 0.6609:¢ —0.2892 + 0.4989:7 | —0.1802 + 0.4439:
(3,2) 0.7188 — 0.2129¢ 0.4983 + 0.0983: 0.4239 + 0.01597 || 0.00006005
0.002024 — 0.0039773 —0.2098 — 0.60457 0.3559 + 0.6811%
0.1364 4 0.5608: 0.5771 4+ 0.30107 —0.4290 — 0.24352
(3,3) 0.0167 — 0.81307 0.3595 4+ 0.2569: —0.2174 — 0.31032 0.01415

—0.07506 + 0.01027%

0.6086 + 0.1037%

0.7462 + 0.2374¢




TABLE lll. Optimal bases forx = 2,8 =3

(i,9) h f2 f3 elc,efsef)
0.5526 — 0.5319¢ 0.3382 4 0.1860: —0.4930 — 0.14022

(1,1) —0.5183 + 0.28112 0.6172 4 0.3289: —0.2454 — 0.32122 0
0.2344 — 0.09577 0.6014 4 0.0158¢ 0.7443 4+ 0.14142
—0.2839 4+ 0.42077 | —0.11852 — 0.003517 | —0.1025 + 0.8472%

(1,2) —0.3820 — 0.3959: 0.7436 + 0.1541¢ 0.2789 4 0.2070¢ 0.0001284
—0.3617 — 0.55574 —0.6194 — 0.1599¢ 0.3721 4+ 0.11244
0.6414 4 0.22884 0.2473 4+ 0.4718: —0.4496 — 0.2245:

(1,3) —0.6346 — 0.3339: 0.2927 4 0.5058¢ —0.2340 — 0.2992: 0.02836
0.0596 4 0.13611% 0.3784 4 0.4812¢ 0.6818 4 0.3720¢
0.6128 — 0.42774 —0.4496 — 0.20712 0.4062 4 0.17734

(2,1) 0.6001 4 0.2710¢ 0.1370 4 0.59152 0.0270 — 0.4439: 0

—0.07809 + 0.04348: 0.5353 — 0.3158: 0.7219 — 0.2907%

0.6699 + 0.13257 —0.2021 — 0.591617 0.3611 4+ 0.1114¢

(2,2) 0.2754 4 0.6738¢ —0.3359 + 0.42217 | —0.1302 — 0.4027% 0
0.05128 — 0.034044 0.5380 4+ 0.1695¢ 0.6515 — 0.5036¢
0.2226 — 0.06147 0.5312 — 0.4491¢ 0.1305 — 0.66774

(2,3) —0.6241 + 0.15621 0.1084 + 0.4556¢ —0.3309 — 0.5073% 0.01016
—0.2877 + 0.6708% —0.3835 — 0.38711% 0.3932 — 0.1256¢
0.5453 — 0.1345¢ 0.2223 — 0.1133¢ —0.7708 — 0.16774

3,1) —0.4957 — 0.4368: 0.3686 + 0.5809:¢ —0.2060 — 0.21862 0.04370
0.4810 — 0.1291¢ 0.6644 4+ 0.1519¢ 0.4802 + 0.23852
0.3333 4 0.462517 0.1472 — 0.70841 —0.0102 — 0.38914

(3,2) 0.1160 + 0.4700¢ —0.1432 + 0.62847 | —0.2557 — 0.5337% 0.02959
0.5308 — 0.39861 0.1481 4+ 0.1977¢ 0.6191 — 0.3393:
0.3768 — 0.20467 —0.0433 — 0.51774 0.2192 4 0.70582

(3,3) —0.6513 — 0.23182 0.5348 — 0.47351 0.08950 — 0.06175¢ 0.1035

0.5662 + 0.1325¢

0.3389 — 0.32421

0.3229 — 0.5811%
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