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According to a recent no-go theorem (M. Pusey, J. Barrett and T. Rudolph, Nature Physics8 475 (2012)),
models in which quantum states correspond to probability distributions over the values of some underlying
physical variables must have the following feature: the distributions corresponding to distinct quantum states
do not overlap. This is significant because if the distributions do not overlap, then the quantum state itself is
encoded by the physical variables. In such a model, it cannot coherently be maintained that the quantum state
merely encodes information about underlying physical variables. The theorem, however, considers only models
in which the physical variables corresponding to independently prepared systems are independent. This work
considers models that are defined for a single quantum system of dimensiond, such that the independence
condition does not arise. We prove a result in a similar spirit to the original no-go theorem, in the form of
an upper bound on the extent to which the probability distributions can overlap, consistently with reproducing
quantum predictions. In particular, models in which the quantum overlap between pure states is equal to the
classical overlap between the corresponding probability distributions cannot reproduce the quantum predictions
in any dimensiond ≥ 3. The result is noise tolerant, and an experiment is motivated to distinguish the class of
models ruled out from quantum theory.

No-go theorems such as Bell’s [1] are of central importance
to our understanding of quantum mechanics. Bell’s theorem
shows that locally causal models must make different pre-
dictions from quantum theory. In addition to the fundamen-
tal significance of this result, Bell’s theorem has applications
in quantum information processing, most notably in device-
independent cryptography and randomness generation [2–5].

Recently, a number of new no-go results have been derived,
addressing a different question than whether nature can be
described by a locally causal theory. The question concerns
whether the quantum state should be viewed as a description
of the physical state of a system, or as an observer’s infor-
mation about the system. Many authors (see, e.g., Refs. [6–
8], and references therein) have argued for the latter, point-
ing out, for example, that quantum collapse is analogous to
Bayesian updating of a classical probability distribution when
new data is obtained, or that the indistinguishability of non-
orthogonal quantum states is analogous to the indistinguisha-
bility of overlapping probability distributions. Ref. [9], fol-
lowing Ref. [10], considers models of a specific form, in
which the quantum state corresponds to a probability distri-
bution over some set of underlying physical states, hence can
be thought of as representing an observer’s partial information
about the physical state. It is shown that such models cannot
recover the quantum predictions unless the distributions are
disjoint for distinct quantum states. Roughly speaking, if the
assumptions of Ref. [9] are accepted, then the quantum state
must describe some part of reality.

One assumption of Ref. [9] is that the physical states are
uncorrelated for independently prepared systems. It is in-
teresting to investigate what can be established without this
assumption. Various works have investigated what can be
concluded by considering measurements on a single system
only, i.e, without any assumption about independent systems
[11–15]. Here, we consider a single quantum system, and

derive bounds on the extent to which the probability distri-
butions corresponding to distinct quantum states can overlap.
We show that what we callmaximallyψ-epistemic models,
in which the overlap of the probability distributions is large
enough to explain fully the indistinguishability of quantum
states, must make different predictions from quantum theory
for Hilbert space dimensiond ≥ 3. Our result is noise-
tolerant, allowing for experimental tests to rule out this class
of models. Furthermore, we show that asd → ∞, any model
recovering quantum predictions must becomearbitrarily bad
at explaining quantum state indistinguishability.

Non-orthogonality and epistemic states.Non-orthogonal
quantum states cannot be distinguished with certainty in a sin-
gle shot. This is sometimes regarded as a distinctly quantum
phenomenon, but of course a similar thing is true of classi-
cal probability distributions. Consider a standard deck of 52
playing cards and a shuffling/drawing machine with two set-
tings: with the first setting, a red card is drawn at random,
and with the second setting, the card is a randomly chosen
ace. The two settings correspond to probability distributions
p andq such thatp = 1

26 for all red cards andq = 1
4 for each

ace. Given a single card drawn from the pack, and asked to
determine under what setting the machine was operating, one
cannot succeed with certainty. The reason is simply that the
distributionsp andq overlap, e.g.,p andq are both nonzero
for the ace of hearts.

This suggests that the inability to distinguish non-
orthogonal quantum states could be explained analogously.
In that case, two quantum states would be indistinguishable
in a single-shot experiment because they would correspond to
overlapping distributions over states of reality. The aim of this
work is to explore the extent to which such an explanation is
even possible, consistently with the quantum predictions.

Ontological models for quantum theory.To formalize this
idea, we shall use the framework ofontological models[6,
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10]. This framework assumes that when a physical system
has been prepared in the quantum state|ψ〉, it is actually in an
ontic stateλ, which we can think of as the ‘state of reality’.
An ontological model assigns to each quantum state|ψ〉 an
epistemic stateµψ, which is a probability distribution over
the set of ontic statesΛ, and represents our ignorance about
which ontic stateλ the system is in. Since an epistemic state
is a probability distribution, it must satisfy

µψ(λ) ≥ 0 and
∫

µψ(λ) dλ = 1. (1)

The framework assumes that when a measurement is per-
formed, the probability for a given outcome depends only on
the ontic stateλ. Hence for a measurementM , and outcome
f , an ontological model assigns aresponse function, which
yields the probabilityξM (f |λ) of obtaining the outcomef in
the stateλ, and we have:

ξM (f |λ) ≥ 0 and
∑

f

ξM (f |λ) = 1. (2)

To reproduce the predictions of quantum theory, response
functions must satisfy

∫

Λ

ξM (f |λ)µψ(λ) dλ = |〈f |ψ〉|2 (3)

for all |ψ〉 andf .
Standard distance measures, defined on probability distri-

butions and quantum states, will be useful in the following.
For distributionsp(x) andq(x), theclassical trace distanceis

δC(p, q) :=
1

2

∫

|p(x) − q(x)| dx . (4)

This quantity has an operational interpretation. Suppose that
the distributionsp(x) andq(x) are associated with two differ-
ent preparations of the variablex (as with the cards above),
and suppose that equal a priori probabilities are assigned to
the two preparations. The probability of correctly guessing the
preparation, given a single sample ofx is 1/2(1 + δC(p, q)).

In the quantum case, thequantum trace distance, for pure
states, is given by

δQ(ψ, φ) =

√

1− |〈ψ|φ〉|2 . (5)

If one of a pair of quantum states|ψ〉 or |φ〉 is prepared with
equal probability, then, by using an optimal measurement, the
probability of correctly identifying which state has been pre-
pared is1/2(1 + δQ(ψ, φ)).

Define theclassical overlapof two distributionsp andq as

ωC(p, q) := 1− δC(p, q) =

∫

min{p(x), q(x)} dx. (6)

Similarly, for quantum states|ψ〉 and |φ〉, let the quantum
overlapbe given by

ωQ(ψ, φ) := 1− δQ(ψ, φ). (7)

Following Ref. [10],

Definition 1. An ontological model isψ-epistemicif there
exists at least one pair of distinct quantum states,|ψ〉 and|φ〉,
such that the corresponding epistemic statesµψ andµφ have
nonzero overlap, i.e.,ωC(µψ, µφ) > 0. If a model is notψ-
epistemic, then it isψ-ontic. [16]

Hardy [17] raised the question of whetherψ-epistemic
models could reproduce the predictions of quantum theory.
Ref. [9] then showed that under an assumption to do with
the independence of separately prepared systems, they can-
not. The assumption is that when two quantum systems are
prepared independently, they can be assigned separate on-
tic statesλ1 andλ2, and that the joint distribution satisfies
µψ⊗φ(λ1, λ2) = µψ(λ1)×µφ(λ2). Various works since have
explored the possibilities for ontological models for single
systems, i.e., without this assumption. Ref. [11] shows that
ψ-epistemic models exist for quantum systems of arbitrary
dimension. Ref. [15] goes further, demonstrating that for a
quantum system of arbitrary dimension, aψ-epistemic model
exists with the additional property thatωC(µψ, µφ) > 0 for
every pair of non-orthogonal states|ψ〉 and |φ〉. Refs. [14,
15, 18] show thatψ-epistemic models do not exist, given var-
ious additional assumptions. In Refs. [12, 13], the question
is raised whetherψ-epistemic models can reproduce quantum
predictions given an assumption about the extent to which the
epistemic states overlap.

Refs. [12, 13] are the most direct precursors to this work,
since here we are also concerned with the extent to which
the distributionsµψ andµφ can overlap in models which re-
cover the predictions of quantum theory. An advantage of the
present work is that we use distance measures that are robust
under small variations, hence our results are noise tolerant and
subject to experimental test.

The following is an easy theorem, previously noted in
Ref. [19].

Theorem 2. In any ontological model that recovers the pre-
dictions of quantum theory,

ωC(µψ, µφ) ≤ ωQ(ψ, φ) ∀ψ, φ . (8)

Proof. Consider the optimal measurement for distinguish-
ing two quantum states. Success occurs with probability
PQ := 1 − ωQ(ψ, φ)/2. Given the ontic stateλ, the max-
imum probability to correctly guess which preparation was
performed is given byPC := 1 − ωC(µψ , µφ)/2. But in an
ontological model the output of the quantum measuring de-
vice depends only on the ontic stateλ, thusPQ ≤ PC since
PQ cannot be larger than what one would get by optimally
using the information encoded inλ. �

Definition 3. An ontological model ismaximallyψ-epistemic
if and only if for all pairs of states,ωC(µψ , µφ) = ωQ(ψ, φ).
[20]

The motivation for this terminology is that, as we have
already argued, the impossibility of discriminating non-
orthogonal quantum states would be explained in a natural
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way if the two quantum states sometimes correspond to the
same state of reality. But this explanation would not be sat-
isfying if the quantum and classical overlaps were not equal.
For then, the two classical distributions could in principle be
better discriminated by a device with access toλ, and some
additional explanation must be adduced as to why the two
quantum states are hard to distinguish. In a maximallyψ-
epistemic model, on the other hand, the difficulty of discrimi-
nating non-orthogonalquantum states is completely and quan-
titatively explained by the difficulty of discriminating the cor-
responding epistemic states.

Ruling out maximallyψ-epistemic models.Our results rule
out maximallyψ-epistemic models for quantum systems of
dimensiond ≥ 3, and are noise-tolerant. Ford = 2, an onto-
logical model due to Kochen and Specker [21] can be shown
to be maximallyψ-epistemic [22].

The case of three-dimensional systems, and an analysis de-
signed to account for experimental noise, will follow below.
First, consider systems of dimensiond ≥ 4.

Theorem 4. Suppose that an ontological model reproduces
the quantum predictions for a system of dimensiond ≥ 4, and
that

ωC(µψ, µφ) ≥ k ωQ(ψ, φ) ∀ψ, φ,

for some constantk. Thenk < 4/(d−1). If d is power prime,
thenk < 2/d.

Proof. Using terminology introduced by Caves, Fuchs and
Schack [23], three pure states|a〉, |b〉 and |c〉, are PP-
incompatibleif there exists an orthonormal basis{|fi〉}3i=1 for
the subspace spanned by|a〉, |b〉 and|c〉 such that〈f1|a〉 = 0,
〈f2|b〉 = 0, and〈f3|c〉 = 0. Ref. [23] shows the following.
Let x1 := |〈a|b〉|2, x2 := |〈b|c〉|2 andx3 := |〈c|a〉|2. Then
|a〉, |b〉 and|c〉 are PP-incompatible if and only if [24]

x1 + x2 + x3 < 1

(x1 + x2 + x3 − 1)2 ≥ 4 x1x2x3 . (9)

Recall that a pair of bases{|ai〉}i and{|bj〉}j is mutually
unbiasedif |〈ai|bj〉|2 = 1/d for all i, j, whered is the Hilbert-
space dimension. Ifd is power prime, then there existd + 1
mutually unbiased bases [25]. Let|c〉 be an element of one
such basis, and fori, γ ∈ {1, . . . , d}, let thed remaining bases
be{|eγi 〉}i, whereγ ranges over the distinct bases, andi over
the elements within a basis. Forα 6= β andd ≥ 4, the set
{|eαi 〉 , |eβj 〉 , |c〉} is PP-incompatible by Eq. (9).

Now, consider an ontological model for systems of dimen-
siond ≥ 4 with d power prime. From the PP-incompatibility
of {|eαi 〉 , |eβj 〉 , |c〉}, it follows that there exists a measurement
M with outcomesfi, i = 1, . . . , 4 such that

∫

Λ

ξM (f1|λ)µeαi (λ) dλ = |〈f1|eαi 〉|2 = 0, (10)

∫

Λ

ξM (f2|λ)µeβj (λ) dλ =

∫

Λ

ξM (f3|λ)µc(λ) dλ = 0. (11)

and the outcomef4 is a projector onto the orthogonal sub-
space and has zero probability on each of the three states.

Assume for contradiction that there is a subsetΛ∗ ⊆ Λ of
non-zero measure such thatµeαi (λ), µeβj

(λ), µc(λ) > 0 for all

λ ∈ Λ∗. Eq. (10) and Eq. (11) then imply that for someλ,
ξM (f1|λ) = ξM (f2|λ) = ξM (f3|λ) = 0. But this, along
with the fact thatf4 has probability zero on all three states,
contradicts Eq. (2). For quantum state|ψ〉, letΛψ denote the
support of the distributionµψ . It follows that for anyα 6= β,
and for anyi, j, Λeαi ∩ Λeβj

∩ Λc is a set of measure zero.

Now, for any pair of distributionsµψ andµφ,

∫

Λφ

µψ(λ) dλ ≥ ωC(µψ, µφ) . (12)

Assume that the ontological model satisfiesωC(µψ, µφ) ≥
k ωQ(ψ, φ) for all pairs of states. Then for anyγ, i,

∫

Λ
e
γ
i

µc(λ) dλ ≥ k
(

1−
√

1− 1/d
)

. (13)

For i 6= j the vectors|eγi 〉 and|eγj 〉 are orthogonal, and can
be distinguished by a single shot measurement. It follows that
Λeγi ∩ Λeγj is a set of measure zero. Hence

∫

⋃

i

Λ
e
γ
i

µc(λ) dλ ≥ d k
(

1−
√

1− 1/d
)

. (14)

Using the fact thatΛeα
i
∩ Λeβj

∩ Λc is a set of measure zero,

∫

⋃

γ

⋃

i

Λ
e
γ
i

µc(λ) dλ ≥ d2 k
(

1−
√

1− 1/d
)

. (15)

This gives

k ≤ 1

d

(

1 +
√

1− 1/d
)

<
2

d
. (16)

The result for a system of arbitrary dimensiond ≥ 4 now
follows immediately. Consider ad′-dimensional subspace,
where d′ ≤ d and d′ is power prime. The theorem ap-
plies to ontological models that recover the quantum predic-
tions for preparations and measurements within this subspace.
Hence any ontological model for thed-dimensional system
must havek < 2/d′. Bertrand’s Postulate states that for ev-
ery natural numbern ≥ 2, there is a prime betweenn and2n
[26]. Choosingn = ⌊d/2⌋ yieldsk < 4/(d− 1).

Corollary 5. No maximally epistemic ontological model can
reproduce the quantum predictions for a system of dimension
d ≥ 4.

Proof. For a maximally epistemic ontological model, the an-
tecedent of Theorem 4 holds withk = 1. But then we con-
clude thatk < 1, reaching a contradiction.
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Moreover, the upper bound onk asymptotically tends to
zero, meaning that asd → ∞, every ontological model will
assign a ratio between the classical and quantum overlaps
tending to zero for at least some pairs of quantum states.

Note.Examination of the proof shows that it is possible to
state a stronger result (which we have left out of Theorem 4
for simplicity). Suppose thatk(ψ, φ) is defined so that for
each pair of states,ωC(µψ, µφ) = k(ψ, φ)ωQ(ψ, φ). Then, a
bound can be derived on the value ofk(ψ, φ), averaged over
the states used in the proof:

∑

α,i

k(c, eαi )

d2
<

4

d− 1
, (17)

where|c〉, |eαi 〉 all lie within a power prime-dimensional sub-
space. Since|c〉 can be chosen to be an arbitrary state (by
applying the same unitary to|c〉 and all the other states in the
proof, thus maintaining their overlaps), this implies thatfor
every quantum state ind ≥ 4, there exists a finite set of states
such that the average ratio of classical and quantum overlaps
is bounded as above.

The noisy case.In a real experiment, observed relative
frequencies will not exactly match the quantum predictions,
hence if the experiment is to rule out a class of ontologi-
cal models, it is necessary to consider models that only ap-
proximately reproduce quantum predictions. Suppose that an
experiment is carried out in which quantum systems are re-
peatedly prepared and then measured. Each time, the prepa-
ration is (intended to be) of a pure state chosen at random
from the set of mutually unbiased bases employed in the
proof of Theorem 4. The measurement is (intended to be)
either a projective measurement onto one of these bases, or
a projective measurementM with outcomesf1, . . . , f4, cho-
sen so that〈f1|eαi 〉 = 〈f2|eβj 〉 = 〈f3|c〉 = 0 for some triple

(|eαi 〉, |eβj 〉, |c〉), with f4 corresponding to a projector onto the
orthogonal subspace.

Let R[g|ψ] be the relative frequency with which outcome
g is observed when the preparation isψ. Quantum theory
predicts, for example, that if〈f1|eαi 〉 = 0, and the experi-
ment is carried out perfectly, thenR[f1|eαi ] will be zero, while
noise will ensure thatR[f1|eαi ] is typically greater than zero.
The following analysis is designed to take this noise into ac-
count. For simplicity, we assume that the measurement is per-
fectly aligned in the three-dimensional subspace spanned by
(|eαi 〉, |eβj 〉, |c〉), ignoring the possibility that the outcomef4
occurs. We also ignore the related issue of detector ineffi-
ciency.

For each triple define the average

ǫ(c, eαi , e
β
j ) :=

1

3

(

R[f1|eαi ] +R[f2|eβj ] +R[f3|c]
)

. (18)

For each pair of states, chosen from the same basis,eαi andeαj
(i 6= j), consider a measurement onto that basis, and define
the average

ǫ(eαi , e
β
j ) :=

1

2

(

R[eαj |eαi ] +R[eαi |eβj ]
)

. (19)

Now consider an ontological model that predicts probabili-
ties that coincide with the observed data. This means that for
each preparationψ and outcomeg, the probability predicted
by the model satisfies

P (g|ψ) :=
∫

Λ

ξM (g|λ)µψ(λ)dλ = R[g|ψ] . (20)

For simplicity, the following assumes that the dimensiond is
power prime. It is shown in Appendix 1 that in this case,

kd2

(

1−
√

1− 1

d

)

≤

1 + 3
∑

α<β
i,j

ǫ(c, eαi , e
β
j ) + 2

∑

α
i<j

ǫ(eαi , e
α
j ) . (21)

If we average the noise terms over all possible choices of
measurement used in the experiment, defining

ǫ1 :=

∑

α<β,i,j ǫ(c, e
α
i , e

β
j )

d3(d− 1)/2
, ǫ2 :=

∑

α,i<j ǫ(e
α
i , e

α
j )

d2(d− 1)/2
,

(22)
then

kd2
(

1−
√

1− 1/d
)

≤ 1 +
3

2
d3(d− 1)ǫ1

+ d2(d− 1)ǫ2 . (23)

Hence

k ≤ 1

d

(

1 + d2(d− 1)

(

3

2
dǫ1 + ǫ2

))

(

1 +
√

1− 1/d
)

<
2

d
+ d2 (3dǫ1 + 2ǫ2) . (24)

For any value ofd ≥ 4 there exist small but non-zero values
of ǫ1 andǫ2 for which the experimentally determined bound
k < 1 can be achieved. The result is therefore robust against
small amounts of experimental noise and does not admit a fi-
nite precision loophole. In particular, a value ofk < 1 is
possible if the noise is bounded by:

3dǫ1 + 2ǫ2 <
2

d− 1

(

1−
√

1− 1/d− 1

d2

)

. (25)

Assumingǫ = ǫ1 = ǫ2, this requires an error ofǫ < 0.0034
for d = 4 and even lower for higher dimensions. A high-
precision measurement is required to achieve this, but it is
one that is within the reach of the current state of the art us-
ing, for example, ion trap [28, 29] or magnetic resonance [30]
technology.

Ruling out maximally epistemic models ford = 3. The
proof of Theorem 4 does not apply to thed = 3 case, since
mutually unbiased bases supply PP-incompatible triples only
if d ≥ 4. It is, nonetheless, possible to rule out maximally
epistemic models. The analysis of the noisy case turns out to
be useful, because ind = 3 one can construct a proof that
makes use of triples of quantum states that are close to, rather
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than exactly, PP-incompatible. One can then apply an inequal-
ity analogous to Eq. (21). The details of this argument are
given in Appendix 2. We obtaink ≤ 0.95.

Conclusion. We have considered ontological models for
quantum systems, wherein a quantum state corresponds to a
probability distribution over some set of ontic states. Such
a model might be viewed as a schematic account of an un-
derlying theory, more fundamental than quantum theory, but
might equally be thought of as a classical simulation of quan-
tum theory. Either way, it is interesting to investigate thecon-
straints on such models, given that they reproduce quantum
predictions. From an analysis of preparations and measure-
ments on a single system, we have derived an upper bound
on the extent to which probability distributions corresponding
to distinct quantum states can overlap. An experimental chal-
lenge is to perform an experiment with sufficient precision
that maximallyψ-epistemic models are ruled out. Finally, in
prior work, Montina has established interesting connections
between ontological models and communication complexity
problems [31]. It would be interesting to determine the rela-
tionship between our results and communication complexity.

Acknowledgements. We would like to thank Andrew
Briggs, Matthew Leifer, Stephanie Simmons and Christopher
Timpson for helpful discussions during the development of
this work. EGC received support from an Australian Research
Council grant DE120100559. OJEM, RL are supported by the
John Templeton Foundation. This work is supported by the
CHIST-ERA DIQIP project, and an FQXi Large Grant “Time
and the Structure of Quantum Theory”.

[1] J. S. Bell, Physics,1, 195 (1964).
[2] A. K. Ekert, Phys. Rev. Lett.,67, 661 (1991).
[3] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett.,95, 010503

(2005).
[4] E. G. Cavalcanti and H. M. Wiseman, Foundations of Physics,

42, 1329 (2012), ISSN 0015-9018.
[5] S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Mat-

sukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning, and C. Monroe, Nature,464, 1021 (2010).

[6] R. W. Spekkens, Physical Review A,75, 032110+ (2005), ISSN
1050-2947, arXiv:quant-ph/0401052.

[7] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, “Reconstruc-
tion of gaussian quantum mechanics from liouville mechanics
with an epistemic restriction,” (2011), arXiv:1111.5057.

[8] C. A. Fuchs and R. Schack, “Quantum-bayesian coherence:
The no-nonsense version,” (2013), arXiv:1301.3274.

[9] M. F. Pusey, J. Barrett, and T. Rudolph, Nat. Phys.,8, 476
(2012).

[10] N. Harrigan and R. Spekkens, Found. Phys.,40, 125 (2010).
[11] P. G. Lewis, D. Jennings, J. Barrett, and T. Rudolph, Phys. Rev.

Lett.,109, 150404 (2012).
[12] O. J. E. Maroney, “How statistical are quantum states?”

(2012), arXiv:1207.6906.
[13] M. S. Leifer and O. J. E. Maroney, Phys. Rev. Lett.,110,

120401+ (2013).
[14] M. K. Patra, S. Pironio, and S. Massar, Phys. Rev. Lett.,111,

090402 (2013).
[15] S. Aaronson, A. Bouland, L. Chua, and G. Lowther,

“Psi-Epistemic Theories: The Role of Symmetry,” (2013),
arXiv:1303.2834.

[16] The terminology derives from the idea that ifµψ andµφ do
not overlap for any pair of distinct quantum states, then distinct
quantum states always refer to distinct states of reality. In this
case, the quantum state itself can be regarded as a part of real-
ity (hence it isontic). In the context of ontological models, it
must be the case thatµψ andµφ typically overlap if it is to be
maintained that the quantum state represents only information
about reality (hence isepistemic). (As it stands, the definition
of ψ-epistemic is very weak because it is only required that the
distributions overlap for one pair of quantum states. This serves
to make results that rule outψ-epistemic models stronger.).

[17] L. Hardy, private communication (2005).
[18] L. Hardy, “Are quantum states real?” (2012),

arXiv:1205.1439.
[19] D. Nigg, T. Monz, P. Schindler, E. A. Martinez, M. Chwalla,

M. Hennrich, R. Blatt, M. F. Pusey, T. Rudolph, and
J. Barrett, “Can different quantum state vectors correspond
to the same physical state? an experimental test,” (2012),
arXiv:1211.0942 [quant-ph].

[20] The termmaximallyψ-epistemicwas also used in Refs. [12]
and [13]. In the latter, it has a slightly different definition.

[21] S. Kochen and E. Specker, Journal of Mathematics and Me-
chanics,17, 59 (1967).

[22] P. Lewis, private communication (2012).
[23] C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A,66,

062111+ (2002).
[24] There is a typographical error in Ref. [23]: the second inequal-

ity was there written as a strict inequality, but the non-strict
inequality is correct.
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APPENDIX 1

We derive the inequality in Eq. (21) as follows.

The measure space

For an ontic state spaceΛ, let us define the set
Γ := Λ× R

+. A positive functionf(λ) ≥ 0 that is integrable
onΛ (i.e.

∫

Λ
f(λ) dλ < ∞) defines a regionF of Γ (i.e. the

area underf ), where:

F := {(λ, x) | 0 ≤ x ≤ f(λ)} (A.26)

The union and intersection of two such regions are

F ∪G = {(λ, x) | 0 ≤ x ≤ max(f(λ), g(λ))}
F ∩G = {(λ, x) | 0 ≤ x ≤ min(f(λ), g(λ))}

The volume measure on the space isdγ = dλ× dx, where
dx is the Lebesgue measure. This gives

ν(F ) =

∫

F

dγ =

∫

Λ

dλ

∫ f(λ)

0

dx =

∫

Λ

f(λ) dλ

and

ν(F ∪G) =
∫

max(f(λ), g(λ)) dλ

ν(F ∩G) =
∫

min(f(λ), g(λ)) dλ (A.27)

For quantum states, a regionΦ is defined by the correspond-
ing epistemic statesµφ. Eq. (A.26) becomes:

Φ = {(λ, x) | 0 ≤ x ≤ µφ(λ)}. (A.28)

Bonferroni Inequality

Now, using the first Bonferroni inequality [32], on any mea-
sure space with measureν we have:

ν

(

⋃

k

Ak

)

≥
∑

k

ν (Ak) −
∑

k<k′

ν (Ak ∩ Ak′) (A.29)

Consider a family of states{|eαi 〉}i,α, such thatα labels a ba-
sis, andi a basis element. Using Eq. (A.28) each such state
defines a regionEαi . Let |c〉 be a fixed state, with regionC.
We shall use Eq. (A.29) withAk = Aα,i = C ∩ Eαi , i.e. we
replace the indexk with the pair of indices(α, i).

ν





⋃

α,i

C ∩Eαi



 ≥
∑

α,i

ν (C ∩ Eαi )

−
∑

α<β
i,j

ν
(

C ∩ Eαi ∩ Eβj
)

−
∑

α=β
i<j

ν
(

C ∩ Eαi ∩ Eβj
)

(A.30)

Note that from the normalization ofµc we have

ν





⋃

α,i

C ∩ Eαi



 ≤ ν(C) = 1 (A.31)

Eq. (A.30) then becomes:

∑

α,i

ν (C ∩Eαi ) ≤ 1 +
∑

α<β
i,j

ν
(

C ∩Eαi ∩ Eβj
)

+
∑

α=β
i<j

ν
(

C ∩ Eαi ∩ Eβj
)

(A.32)

It will be useful to substitute:

ν
(

C ∩ Eαi ∩Eβj
)

≤ ν
(

Eαi ∩ Eβj
)

(A.33)

for the cases whereα = β. Using Eq. (A.27), we then have:

∑

α,i

∫

Λ

min
(

µc(λ), µeα
i
(λ)
)

dλ ≤

1 +
∑

α<β
i,j

∫

Λ

min
(

µc(λ), µeαi (λ), µeβj
(λ)
)

dλ

+
∑

α
i<j

∫

Λ

min
(

µeαi (λ), µeαj (λ)
)

dλ (A.34)

Noise

Consider a set ofn quantum states{ψ1, . . . , ψn} and a
measurementM with outcomes{f1, . . . , fn}. In an ontolog-
ical model, the experimentally observed frequenciesR[fi|ψj ]
are obtained by using the corresponding response functions
ξM (fi|λ) and epistemic statesµψj

:
∫

Λ

ξM (fi|λ)µψj
(λ) dλ = R[fi|ψj ]. (A.35)

Now, since∀i, minj
(

µψj
(λ)
)

≤ µψi
(λ),

∫

Λ

ξM (fi|λ)min
j

(

µψj
(λ)
)

dλ ≤ R[fi|ψi] . (A.36)

From the normalization constraint
∑n

i=1 ξM (fi|λ) = 1, we
then have:

∫

Λ

min
j

(

µψj
(λ)
)

dλ ≤
n
∑

i=1

R[fi|ψi]. (A.37)

Using this, along with Eqs. (18), (19) and (20) in
Eq. (A.34), we obtain

∑

α,i

∫

Λ

min
(

µc(λ), µeα
i
(λ)
)

dλ ≤

1 + 3
∑

α<β
i,j

ǫ(c, eαi , e
β
j ) + 2

∑

α
i<j

ǫ(eαi , e
α
j ) . (A.38)
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Then suppose, as in Theorem 4, that the ontological model
satisfiesωC(µψ , µφ) ≥ k ωQ(ψ, φ) for all pairs of states of a
system of dimensiond ≥ 4, for some constantk. This implies
that

∫

Λ

min
(

µc(λ), µeα
i
(λ)
)

dλ ≥ k

(

1−
√

1− 1

d

)

. (A.39)

If d is power prime, thend+1 mutually unbiased bases can be
found, as in the proof of Theorem 4. In this case, substituting
Eq. (A.39) in Eq. (A.38) yields Eq. (21) as required.

APPENDIX 2

In the cased = 3, there exist four mutually unbiased bases.
However, if three vectors are chosen, each from a different
basis in the mutually unbiased set, then Eq. (9) of the main text
shows that the resulting triple is not PP-incompatible. This
means that the argument employed in the proof of Theorem 4
does not go through ifd = 3. It is still possible, however,
to rule out maximallyψ-epistemic models, by adapting the
results derived in Appendix 1 for the noisy case to the case
in which triples of vectors are used that are approximately but
not quite PP-incompatible.

Consider the following three mutually unbiased bases in
d = 3:

|e11〉 =





1
0
0



 , |e12〉 =





0
1
0



 , |e13〉 =





0
0
1



 ,

|e21〉 =
1√
3





1
1
ω2



 , |e22〉 =
1√
3





1
ω2

1



 , |e23〉 =
1√
3





1
ω
ω



 ,

and

|e31〉 =
1√
3





1
ω
ω2



 , |e32〉 =
1√
3





1
1
1



 , |e33〉 =
1√
3





1
ω2

ω



 ,

whereω = e2πi/3. Define the fixed normalised state:

|c〉 =





−0.374− 0.236i
0.778− 0.071i
0.018− 0.441i



 .

For a triple |c〉 , |eαi 〉 , |eβj 〉, and a measurement basis
{f1, f2, f3}, let

ǫ(c, eαi , e
β
j ) =

1

3

(

P (f1|eαi ) + P (f2|eβj ) + P (f3|c)
)

.

This is similar to Eq. (18) in the main text, except that the
quantities on the right hand side are the probabilities pre-
dicted by quantum theory for ad = 3 system, rather than
observed frequencies in a noisy experiment. Suppose that an

ontological model recovers the quantum predictions for the
d = 3 system. Then the derivation of the following inequal-
ity goes through exactly as that of Eq. (A.38) in Appendix 1,
except that experimental frequenciesR[·|·] are replaced with
quantum probabilitiesP (·|·), and the quantityǫ(eαi , e

α
j ) cor-

responds toP (eαi |eαj ), which is0 for i 6= j:

∑

α,i

∫

Λ

min
(

µc(λ), µeα
i
(λ)
)

dλ ≤

1 + 3
∑

α<β
i,j

ǫ(c, eαi , e
β
j ) . (A.40)

If the triple |c〉 , |eαi 〉 , |eβj 〉 is not PP-incompatible, then

the quantityǫ(c, eαi , e
β
j ) is non-zero for any choice of basis

{f1, f2, f3}. For each triple|c〉 , |eαi 〉 , |eβj 〉, we found numeri-

cally the basis{f1, f2, f3} such thatǫ(c, eαi , e
β
j ) is minimized.

These are shown in Tables I, II and III, in which we display
the optimal bases forα = 1, β = 2, α = 1, β = 3, and
α = 2, β = 3 respectively.

Reading from the last column of Table I we have:

3
∑

i,j

ǫ(c, e1i , e
2
j) = 0.2257 .

By including the data from Tables II and III we then have

3





∑

i,j

ǫ(c, e1i , e
2
j) +

∑

i,j

ǫ(c, e1i , e
3
j) +

∑

i,j

ǫ(c, e2i , e
3
j)



 =

0.649 . (A.41)

For the states used we obtain
∑

α,i

(

1−
√

1− |〈eαi |c〉|
2

)

=

1.739. Assuming that an ontological model satisfies
ωC(µψ , µφ) ≥ k ωQ(ψ, φ) for all pairs of states, and re-
produces perfectly the quantum predictions, Eq. (A.40) gives
k ≤ 0.95 < 1.
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TABLE I. Minimizing bases{fi}i, for theα = 1, β = 2 family of states

(i, j) f1 f2 f3 ǫ(c, eαi , e
β
j )

0 −0.3439 − 0.6178i −0.6621 − 0.2482i

(1, 1) 0.8171− 0.5765i 0 0 0

0 0.3631 − 0.6068i 0.1161 + 0.6975i

0 0.5317 − 0.5285i 0.5013− 0.4320i

(1, 2) −0.3945 − 0.6556i 0.2415 + 0.3511i −0.2446 − 0.4161i 0

−0.1740 + 0.6199i −0.1069 + 0.4949i 0.1607− 0.5507i

0.05556 + 0.08103i 0.2653 + 0.5440i 0.0222 + 0.7897i

(1, 3) −0.8215 − 0.1098i −0.0186 − 0.4206i −0.0416 + 0.3662i 0.02280

−0.4846 + 0.2620i 0.4961 + 0.4586i −0.1328 − 0.4716i

0.2686 + 0.1752i −0.5579 + 0.0032i −0.7647 − 0.0321i

(2, 1) −0.01766 + 0.06827i 0.7702 − 0.2381i −0.5608 + 0.1751i 0.02046

0.9430 + 0.0539i 0.1924 − 0.0423i 0.2096− 0.1583i

0.8190 + 0.5614i 0.06326 − 0.05514i 0.05078 − 0.06618i

(2, 2) −0.05017 − 0.05876i 0.7839 + 0.1828i −0.0791 − 0.5829i 0.02854

−0.03910 − 0.08064i 0.2974 − 0.5065i 0.7911 + 0.1453i

−0.2272 − 0.8467i 0.2412 + 0.1173i 0.1067− 0.3848i

(2, 3) 0.2018 + 0.0689i 0.7575 + 0.3690i −0.4565 + 0.1902i 0.1119

0.4148− 0.1180i −0.1806 − 0.4306i −0.6536 − 0.4109i

−0.1365 − 0.2454i 0.3174 − 0.7208i −0.5095 − 0.2032i

(3, 1) −0.6944 − 0.6626i −0.0261 + 0.2290i 0.1600 + 0.0126i 0

0 0.5715 + 0.0063i 0.0198 + 0.8203i

0.7135 + 0.6071i 0.1176 + 0.2737i −0.0914 − 0.1587i

(3, 2) −0.0483 − 0.3463i −0.2521 + 0.7572i 0.0999− 0.4804i 0

0 0.4121 + 0.3232i 0.7268 + 0.4443i

0.2274− 0.7062i 0.5788 + 0.0661i 0.3110 + 0.1162i

(3, 3) 0.0076 + 0.6570i 0.5561 − 0.0538i 0.4974− 0.0934i 0.04198

0.11815 + 0.06333i −0.1493 − 0.5711i 0.1659 + 0.7785i



9

TABLE II. Optimal bases forα = 1, β = 3

(i, j) f1 f2 f3 ǫ(c, eαi , e
β
j )

0 0.6374 − 0.3061i −0.7064 − 0.0324i

(1, 1) −0.7439 + 0.6683i 0 0 0

0 0.5838 + 0.3990i 0.3251 + 0.6279i

−0.005857 − 0.001555i 0.3537 − 0.5332i 0.0495− 0.7668i

(1, 2) 0.1079− 0.4250i −0.0440 + 0.6884i −0.2572 − 0.5155i 0.0001107

−0.6994 − 0.5644i −0.2999 − 0.1573i 0.2785− 0.0045i

0.08300 + 0.06424i 0.5014 − 0.3472i 0.1033− 0.7787i

(1, 3) −0.5131 − 0.2961i 0.0173 + 0.6084i −0.3589 − 0.3869i 0.02699

−0.5763 + 0.5531i −0.4724 − 0.1854i 0.2506− 0.2041i

0.5057− 0.8375i 0.10296 + 0.07596i −0.1545 − 0.0510i

(2, 1) 0.02134 + 0.06721i 0.1922 − 0.7829i −0.4138 − 0.4170i 0.02046

0.0046− 0.1945i −0.4809 − 0.3202i 0.7088− 0.3550i

0.01974 − 0.01750i −0.1549 − 0.5597i −0.4182 − 0.6980i

(2, 2) 0.09781 + 0.04938i 0.4684 + 0.6598i −0.4498 − 0.3619i 0.04659

0.9804− 0.1617i −0.08905 − 0.01351i 0.06312 + 0.02456i

0.3240− 0.1034i −0.3572 + 0.3563i −0.7926 − 0.0401i

(2, 3) −0.1937 − 0.0011i −0.5076 − 0.6591i −0.1714 + 0.4909i 0.09913

0.2916 + 0.8728i 0.2304 − 0.0156i −0.1203 + 0.2923i

0.5078 + 0.6160i 0.1906 + 0.4559i −0.3061 − 0.1575i

(3, 1) −0.2341 + 0.5549i 0.4183 − 0.5042i 0.0031 + 0.4563i 0

0 −0.5270 − 0.2212i −0.7834 + 0.2440i

0.0329− 0.6609i −0.2892 + 0.4989i −0.1802 + 0.4439i

(3, 2) 0.7188− 0.2129i 0.4983 + 0.0983i 0.4239 + 0.0159i 0.00006005

0.002024 − 0.003977i −0.2098 − 0.6045i 0.3559 + 0.6811i

0.1364 + 0.5608i 0.5771 + 0.3010i −0.4290 − 0.2435i

(3, 3) 0.0167− 0.8130i 0.3595 + 0.2569i −0.2174 − 0.3103i 0.01415

−0.07506 + 0.01027i 0.6086 + 0.1037i 0.7462 + 0.2374i
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TABLE III. Optimal bases forα = 2, β = 3

(i, j) f1 f2 f3 ǫ(c, eαi , e
β
j )

0.5526 − 0.5319i 0.3382 + 0.1860i −0.4930− 0.1402i

(1, 1) −0.5183 + 0.2811i 0.6172 + 0.3289i −0.2454− 0.3212i 0

0.2344 − 0.0957i 0.6014 + 0.0158i 0.7443 + 0.1414i

−0.2839 + 0.4207i −0.11852 − 0.00351i −0.1025 + 0.8472i

(1, 2) −0.3820− 0.3959i 0.7436 + 0.1541i 0.2789 + 0.2070i 0.0001284

−0.3617− 0.5557i −0.6194 − 0.1599i 0.3721 + 0.1124i

0.6414 + 0.2288i 0.2473 + 0.4718i −0.4496− 0.2245i

(1, 3) −0.6346− 0.3339i 0.2927 + 0.5058i −0.2340− 0.2992i 0.02836

0.0596 + 0.1361i 0.3784 + 0.4812i 0.6818 + 0.3720i

0.6128 − 0.4277i −0.4496 − 0.2071i 0.4062 + 0.1773i

(2, 1) 0.6001 + 0.2710i 0.1370 + 0.5915i 0.0270 − 0.4439i 0

−0.07809 + 0.04348i 0.5353 − 0.3158i 0.7219 − 0.2907i

0.6699 + 0.1325i −0.2021 − 0.5916i 0.3611 + 0.1114i

(2, 2) 0.2754 + 0.6738i −0.3359 + 0.4221i −0.1302− 0.4027i 0

0.05128 − 0.03404i 0.5380 + 0.1695i 0.6515 − 0.5036i

0.2226 − 0.0614i 0.5312 − 0.4491i 0.1305 − 0.6677i

(2, 3) −0.6241 + 0.1562i 0.1084 + 0.4556i −0.3309− 0.5073i 0.01016

−0.2877 + 0.6708i −0.3835 − 0.3871i 0.3932 − 0.1256i

0.5453 − 0.1345i 0.2223 − 0.1133i −0.7708− 0.1677i

(3, 1) −0.4957− 0.4368i 0.3686 + 0.5809i −0.2060− 0.2186i 0.04370

0.4810 − 0.1291i 0.6644 + 0.1519i 0.4802 + 0.2385i

0.3333 + 0.4625i 0.1472 − 0.7084i −0.0102− 0.3891i

(3, 2) 0.1160 + 0.4700i −0.1432 + 0.6284i −0.2557− 0.5337i 0.02959

0.5308 − 0.3986i 0.1481 + 0.1977i 0.6191 − 0.3393i

0.3768 − 0.2046i −0.0433 − 0.5177i 0.2192 + 0.7058i

(3, 3) −0.6513− 0.2318i 0.5348 − 0.4735i 0.08950 − 0.06175i 0.1035

0.5662 + 0.1325i 0.3389 − 0.3242i 0.3229 − 0.5811i


