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Abstract

Background: Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in

logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one

supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between

these extensive simulation studies.

Methods: The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence

intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a

modified estimation procedure, known as Firth’s correction, are compared.

Results: The results show that besides EPV, the problems associated with low EPV depend on other factors such as

the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data

sets for which the prediction of the outcome by the covariates is perfect (‘separation’). We reveal that different

approaches for identifying and handling separation leads to substantially different simulation results. We further show

that Firth’s correction can be used to improve the accuracy of regression coefficients and alleviate the problems

associated with separation.

Conclusions: The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings,

there is an urgent need for new research to provide guidance for supporting sample size considerations for binary

logistic regression analysis.
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Background

The number of subjects in the smaller of two outcome

groups (‘number of events’) relative to the number of

regression coefficients estimated (excluding intercept) has

been identified as a key factor in the performance of

binary logistic regression models [1–3]. This ratio is

known as Events Per Variable (EPV). Earlier studies have

demonstrated that the associations between covariates

and the outcome estimated by logistic regression are often

imprecise and biased in the direction of more extreme

values when EPV is low [4–6]. Similarly, prediction mod-

els built using logistic regression in small data sets lead

to poor predictions that are too extreme and uncertain
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[1, 3, 7, 8]. Ten EPV is a widely adopted minimal guideline

criterion for performing binary logistic regression analysis

[9–11].

Despite the wide acceptance of the minimal 10 EPV

rule in medical literature, the results of three well-known

simulation studies examining the minimal EPV criterion

for binary logistic regression models are highly discordant

[12–14]. These large differences in simulation results have

in turn led to conflicting minimal EPV recommendations

in these papers. Of these three studies, only Peduzzi et al.

[12] supports the 10 EPV rule, after concluding that ‘no

major problem occurred’ if EPV exceeds 10. In contrast,

Vittinghoff and McCulloch [13] have argued that an EPV

of 10 as a minimal guideline criterion is too conservative,

showing that severe problemsmainly occur in the EPV= 2

to EPV = 4 range. Conversely, Courvoisier et al. [14]

showed that substantial problems may still occur ‘even if
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the number of EPV exceeds 10’. They showed that the per-

formance of the logistic model may depend on various

factors other than EPV, including the strength of associa-

tions between covariates and outcome and the correlation

between covariates.

In this paper we offer explanations for the large dif-

ferences between minimal EPV recommendations from

previous simulation studies [12–14]. We focus on the

accuracy of logistic regression coefficients (i.e., logit coef-

ficients) in low EPV settings. Two issues are known to

complicate the interpretation of logit coefficients in this

setting. First, the estimation of logit coefficients by max-

imum likelihood is sometimes inaccurate when EPV is

low. Second, ‘separation’ is likely to occur in low EPV set-

tings. When separation occurs, the maximum likelihood

estimation fails. We first briefly discuss each of these two

issues.

Accuracy of logit coefficients in small samples

In a typical binary logistic regression analysis, the strength

of associations between covariates and outcome are

quantified by the logit coefficients, which are estimated

by maximum likelihood. While these estimators of the

(adjusted) log-odds ratio have attractive asymptotic prop-

erties (e.g., unbiasedness and normality), these properties

do not to apply in small samples. For example, the logit

coefficients suffer from small sample bias [4, 5], lead-

ing to systematically overestimated associations. Also,

asymptotic confidence intervals often do not have nomi-

nal coverage rates in studies with small data sets [12, 15].

Both problems are expected to become less likely with

increasing sample size and increasing EPV.

The inaccuracies in the coefficients and corresponding

confidence intervals lead to inaccurate inferences about

the true covariate-outcome associations. Hereafter we

refer to these problems as ‘inaccuracy in logit coefficients’.

Separation

Another source of difficulty occurs when a single covari-

ate or a linear combination of multiple covariates per-

fectly separates all events from all non-events [16, 17].

This phenomenon is referred to as ‘separation’ or ‘mono-

tone likelihood’ (illustrated in Fig. 1). Estimating a logistic

regression model by maximum likelihood on a ‘separated

data set’ leads to non-unique point estimates and standard

errors of coefficients near the extremes of parameter space

Fig. 1 Graphical representation of separation (complete and quasi-complete) adapted from Albert and Anderson [16]. Sample points for two

variables X1 and X2 by outcome (Y): open and filled circles represent different levels of the outcome (Y = 0 or 1). (i) No separation; (ii) complete

separation by variable X2 ; (iii) complete separation by variables X1 and X2 ; (iv) quasi-complete separation by variable X1 and X2
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[18]. On separated data, convergence of the iterative max-

imum likelihood estimation procedure may sometimes

not be achieved as the upper bound on the number of

iterations is reached (‘non-convergence’). Or, the solution

may converge to a point that is not the maximum likeli-

hood [16]. Because convergence criteria will often differ

between software programs, estimates can vary consid-

erably between software programs when fitting a logistic

model on separated data.

The probability of separation occurring increases with

decreasing sample size and increasing number of covari-

ates. Hence, separation is likely to occur in low EPV data

sets. In simulation studies, including those that examined

the minimal EPV criterion for binary logistic regression,

the occurrence of separated data sets has typically been

treated as a nuisance. Researchers remove the simulation

data set when separation is detected. Doing so, however, a

non-random subset of simulated data sets is missing when

analyzing the simulation results: particularly those data

sets with strong associations between the covariates and

the outcome [19]. The approaches to identify and han-

dle separated data may therefore strongly affect the results

and inferences of simulation studies.

Outline of the paper

In simulation studies involving small samples and low

EPV, some degree of inaccuracy in logit coefficients and

separation is likely to coexist. Simulation results will

therefore reflect the net effect of inaccurate estimation

and handling of separated data sets. To gain insight into

both problems separately, we will first investigate the fac-

tors driving the accuracy of logit coefficients by examining

scenarios in which drawing separated data sets is highly

unlikely (part I). Next, we examine a range of scenarios in

which the probability of drawing a separated data set is

substantially larger than zero (part II). In part II, we mon-

itor the variations in simulation results due to different

approaches of detecting and handling separated data sets.

In both parts we will expore whether a simple-to-apply

penalized estimation procedure suggested by Firth [17, 20]

in combination with profile likelihood based confidence

intervals can effectively improve the accuracy of logit

coefficients in small samples. In the discussion, we will

return to the differences in results of the previous minimal

EPV simulation studies [12–14] using the findings from

our simulations.

Methods

General

For each simulated data set, N covariate vectors

X1, . . . ,XP were drawn from either an independent mul-

tivariate normal distribution (in part I and part II) or an

independent Bernoulli distribution (in part II). The out-

come variable (Y ) for each covariate vector was generated

from a Bernoulli distribution with a covariate vector spe-

cific probability derived by applying the logistic function

using the true values of the data generating model on the

simulated covariate data. The data generating models only

included first order covariate (main) effects, thus were of

the form: logit(Y ) = β0 + β1X1 + . . . + βPXP.

On each generated data set we fitted the logistic regres-

sion model by maximum likelihood that had the same

form as the data generating model (i.e., fitting the cor-

rectly specified logistic regressionmodel).We also applied

the modified score equations procedure suggested by

Firth [20] that removes a portion of the small sample bias

that can be anticipated in the maximum likelihood esti-

mates, by introducing a penalty on the likelihood. The

penalty function is a Jeffries invariant prior [20]. Another

advantage of Firth’s correction is that its coefficients,

β̂F
1 , . . . , β̂

F
P , are finite even when estimated on a data set

that is separated.

We examined the empirical distribution of the estimator

of one of the regression coefficients, arbitrarily taking the

coefficient for the first covariate (hereafter referred to as

the primary coefficient), β̂1. Based on guidance by Burton

et al. [21], we calculated the following quantities: i) bias

in the primary coefficient, defined by:
¯̂
β1 − β1, where

¯̂
β is

the arithmetic mean of β̂ML
1 or β̂F

1 over all simulated data

sets; ii) relative bias in the primary coefficient, defined by

(
¯̂
β1 − β1)/β1, iii) coverage of the 90% confidence inter-

val by calculating for each data set the Wald confidence

interval by β̂ML
1 ± 1.645 × SE(β̂ML

1 ), where SE(β̂ML
1 ) is

the estimated (ML) standard error for β̂ML
1 . For β̂F

1 we

estimated the profile likelihood 90% confidence interval

[18]; iv) average 90% confidence interval width, defined

by average of the difference between the upper and lower

bounds of the 90% confidence intervals; v) mean square

error (MSE): (
¯̂
β1 − β1)

2 + (SD(β̂1))
2, where SD(β̂1) is

the standard deviation of β̂ML
1 or β̂F

1 over the simulation

data sets.

Simulation procedures

In total, 465 different simulation scenarios were examined.

For each of these scenarios, 10,000 data sets were gen-

erated using R software version 3.1.1 [22]. For each data

set, sampling was continued until the prespecified criteria

for sample size and the number of events were met, keep-

ing the first events and non-events generated up to the

required number of each. This procedure ensured a fixed

sample size (N) and number of events (EPV) in each data

set. This approach, which is equivalent to the approach

used by Vittinghoff and McCulloch [13], takes advantage

of the properties of the logistic model where only the

intercept is affected by this sampling procedure.

The logistic regression models fitted by maximum like-

lihood and Firth’s correction were implemented using
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the glm function in the stats library (version: 3.1.1)

and the logistf function in the logistf library (ver-

sion: 1.21), respectively. To identify separation of simu-

lation data sets the maximum likelihood standard errors

of parameters were monitored through a re-estimation

process [23]. This procedure is explained in detail in

the Appendix. Unless otherwise specified: the default soft-

ware criteria for convergence were used, calculation of

the regression coefficient accuracy measures were based

only on converged simulation results and maximum like-

lihood estimates for data sets that exhibited separation

were excluded from the calculation of simulation results.

Part I: Accuracy of logit coefficients

A series of scenarios were set-up to identify the factors

that are driving the accuracy of the logit coefficient. In

this first part we limited ourselves to scenarios in which

the probability of drawing a separated data set was close

to zero (maximum percentage separated data sets in a sin-

gle simulation scenario of 0.3%; zero separated data sets

in 98% of scenarios). To keep the probability of drawing a

separated data set low, covariate data were sampled only

from continuous (multivariate normal) distributions. Part

I was further subdivided into four small-scale factorial

simulation studies (Ia to Id). In study Ia, the role of EPV

and the true value of β1 on accuracy of logit coefficients

was studied for the case of a single continuous covariate.

The role of the number of covariates (P) was evaluated in

study Ib. In study Ic, the role of the sample size was exam-

ined, reflecting the effect of increasing the number in the

largest group (non-events). The role of covariate correla-

tions was studied in study Id. Details of these four studies

are summarized in Table 1.

Part II: Detection and handling of separated data sets

In part II we evaluated the impact of different approaches

for the detection and handling of separated data sets on

simulation results and inferences. Two different simula-

tion studies were conducted, which are explained below.

IIa. Binary single covariate

In study IIa, we investigated the extent to which simula-

tion results differ between using all simulated data sets

(a naive approach, using the software output regardless

of convergence status) versus removing all separated data

sets for quantifying the accuracy of logit coefficients. We

also explored how the simulation results in terms of bias

are affected by replacing the results of separated data sets

by the highest estimated coefficient on non-separated data

(an ad-hoc approach). Data were sampled for a single

binary covariate with probability of sampling either obser-

vation of .5. The manipulated factors were: EPV and the

true value of β1. We considered EPV values between 6 and

30, at incremental steps of size 2 and the values of the

primary coefficient (β1) were chosen as log(1), log(2) and

log(4).

IIb. Single simulation scenario, continuous covariate

In study IIb, we evaluated the impact of using different

methods to detect the presence of separated data sets. In

the first approach we used likelihood non-convergence as

a criterion for removing simulation data sets, as was done

in previous studies [12, 13]. This type of non-convergence

occurs when the tolerance convergence criterion is not

met while the upper bound on the number of itera-

tions is reached. We compare this convergence criterion

to our (computationally intensive) method of separation

detection (see Appendix), and to the method used by

Courvoisier [14]: a simulation data set is removed if for

any parameter j �= 0, |β̂j| >log(50). To evaluate the effect

of changing the likelihood criterion, four additional crite-

ria for convergence tolerance (tol) and maximum number

of Fisher scoring iterations (max-iter) are used: tol: 1e-8,

max-iter: 25 (glm function default), tol: 1e-6, max-iter:

Table 1 Design factorial simulation studies Ia to Id

Study

Factors Ia Ib Ic Id

Sample size

EPV (with steps of) 15 to 150 (5) 15 to 150 (5) 6 to 30 (2) 6 to 30 (2)

Outcome prevalence 1/2 1/2 1/2,1/3,1/4,1/5,1/10 1/4

Range sample size 30 to 300 60 to 1200 24 to 600 60 to 300

Effect size

Value of eβ1 1/4, 1/2, 1, 2, 4 2, 4 2 2

Value of eβj , j > 1 Not applicable β1 = . . . = βP 2 2

Covariates

Number (P) 1 2, 3, 4 2 2

Distribution (Multivariate) standard normal

Correlation Not applicable 0 0 .1, .15, .2, .25
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25 (Type I), tol: 1e-10, max-iter: 25 (Type II), tol: 1e-10,

max-iter: 50 (Type III). Univariate covariate data were

generated from standard normal distribution, the ratio of

events to non-events was kept constant at 1:1. EPV was

fixed at 4 and β1 = log(4).

Results

Part I: Accuracy of logit coefficients

Figure 2 shows the simulation results for study Ia.

With traditional logistic regression (upper left panel), for

true non-zero covariate-outcome associations the primary

logit coefficient (βML
1 ) was biased towards more extreme

values (away from zero). Bias decreased with increasing

EPV through a non-linear function (that can be approx-

imated by: log(|bias(βML
1 )|) = λ0 − λ1log(EPV), where

λ0 > 0 and λ1 > 0, for which the values depend

on the simulation setting). Bias in the logit coefficient

did not reduce strictly to zero even for EPV as large as

150. Bias depended on the true effect size of the coeffi-

cient with bias increasing in case of stronger associations.
The figure further illustrates that bias is symmetric but
in opposite directions for the conditions with the same
true effect size (the effect of recoding the outcome vari-
able: such that β = log(2) becomes β = log(1/2) and
β = log(4) becomes β = log(1/4), or vice versa). Bias
in Firth’s estimator (βF

1 , upper right panel) was close

Fig. 2 Results of simulation study Ia. Accuracy as a function of EPV and true value of the log-odds ratio (β1). Left panel: maximum likelihood logistic

regression, right panel: Firth’s correction
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to zero for all studied EPV values and across all true
effect sizes.

The middle left panel in Fig. 2 shows slight over-

coverage of the 90% Wald-confidence interval for EPV
<30. The profile likelihood confidence interval for Firth’s
estimator, however, was close to the nominal level for all
studied conditions. The mean square error of βML

1 and βF
1

decreased with true effect size and EPV. The mean square

error for βF
1 was systematically lower than for βML

1 .

The empirical sampling distributions of β̂ML
1 and β̂F

1 at

EPV = 20 (study Ia) are presented in Fig. 3. The sam-

pling distributions show severe non-normality when the

covariate-outcome associations are non-zero. The degree

of non-normality increased with true effect size. The

effect of Firth’s correction is illustrated by comparing the

distribution of β̂F
1 estimates to the β̂ML

1 distribution: the

β̂F
1 estimates were shrunken towards zero; the magnitude

of shrinkage was proportional to the estimated effect size.

The arithmetic mean of the β̂F
1 distribution for a non-zero

true association was closer to zero and the long tail (tail in

the direction of stronger effect size) was smaller.

Figure 4 shows the relative bias under varying num-

ber of covariates (study Ib), sample size (study Ic) and

covariate correlation settings (study Id). The maximum

likelihood estimates were always biased away from zero.

Bias decreased with the addition of more covariates and

was affected by the size of the true effect (Fig. 4, upper

panel) and the total sample size (Fig. 4, middle panel).

There was no apparent effect on bias by varying the cor-

relation between covariates in the model (Fig. 4, lower

panel). In each study and each simulation condition, βF
1

was a close to unbiased estimator.

Table 2 summarizes the results for the four factorial

simulation studies. Average bias and average mean square

error decreased with increasing EPV in case of maximum

likelihood estimates. Average coverage for the maximum

likelihood Wald confidence interval based and Firth’s cor-

rection profile likelihood confidence intervals were close

to nominal (90%) in most situations, with a small over-

coverage in lower EPV settings (though not exceeding

93%). The average width of the confidence intervals and

mean squared error were systematically smaller after

applying Firth’s correction.

Part II: Detection and handling of separated data sets

The results for study IIa are given in Table 3 and Fig. 5.

In Table 3 the simulation results were calculated twice,

once by removing the separated data sets from analy-

sis and once by leaving the separated data sets in, using

the estimates at the point at which the model had con-

verged (in case of covergence) or the estimate at the point

that is the maximum number of iterations (in case of

non-convergence). Between these approaches the calcu-

lated bias and MSE for EPV values between 4 and 18

were noticeably different. Average coverage in those EPV

ranges was not markedly different, while average width of

the confidence interval differed strongly depending on the

handling of separated data sets. For EPV values between

55 and 150, separation was detected just eight times.

In these simulations, only the calculated average width

of the confidence interval and, to a lesser extent, mean

square error were different between the two approaches

of handling the separated data sets.

In the lower panel of Fig. 5 it can clearly be seen that

separation of the simulation data sets was rare for EPV

values of 18 or higher. For these scenarios, bias in themax-

imum likelihood estimates (upper panel) for the non-zero

true associations decreased with increasing EPV. For an

EPV values of 16 and lower, separation occurred more fre-

quently. The likelihood of drawing separated data sets also

increases with true effect size of the coefficient. When

removing those data sets from the analysis (upper panel,

solid line), for the non-null associations the bias is under-

estimated, and even becomes negative at EPV values of 6

and 8. When replacing the results for the separated data

sets by the highest estimated effect sizes (dashed lines,

upper panel), the simulation outcomes are more in line

with the patterns we observed in Part I. Finally, using

Firth’s correction (Fig. 5, middle panel) all data sets were

analyzed and the relative bias was near zero across the

whole range of EPV.

The results for study IIb are shown in Table 4. In this

single scenario study, the prevalence of separated data sets

was 5.8% (as detected through the preferred re-estimation

process, see Appendix). The differences in the calculated

simulation results between the six methods of separa-

tion detection and estimation were large. Differences were

noticeable especially in the calculated (relative) bias, mean

square error and width of confidence intervals. Cover-

age was not significantly affected across the 6 approaches

to detect separation. The success rate of using conver-

gence as a criterion to detect separation depended on the

convergence criteria. Relying on the Type III convergence

criterion (only .09% non-convergence) makes the simula-

tion results non-interpretable. The use of |β̂ML
j | >log(50)

as a separation criterion in this scenario shows very dif-

ferent results compared to our preferred re-estimation

method to detect separation.

Discussion

This paper offers explanations for the large differences

between minimal EPV recommendations from previous

simulation studies [12–14]. EPV, which is thought to be

a key determinant of the performance of logistic regres-

sion models, is frequently used in sample size consider-

ations and as a methodological quality item for critically

appraising published studies [9–11]. To explain the differ-

ences inminimal EPV recommendations we distinguished
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Fig. 3 Density of estimated coefficients in simulation at EPV = 20 (study Ia) for different true values of the log-odds ratio. Vertical dashed line is true

value of the regression coefficient. Solid line: maximum likelihood logistic regression; dashed line: Firth’s correction

between two small sample issues that coexist in the ear-

lier studies, namely: biased estimation of logit coefficients

and the problem of separation. While biased estimation

of coefficients is often of primary interest, separated data

sets are an important nuisance. The approach to detect

and handle separation has a strong impact on the results.

We now discuss separately: i) the drivers of the accuracy

of logit coefficients; ii) the influence of separated data

sets on simulation results; iii) reasons for large differences

between the earlier minimal EPV simulation studies.
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Fig. 4 Relative bias simulation studies Ib, Ic, and Id. Left panel: maximum likelihood logistic regression, right panel: Firth’s correction

Drivers of the accuracy of logit coefficients

Our results show that logit coefficients are typically

overoptimistic estimates of the true associations when

estimated by maximum likelihood in small to moderated-

sized data sets. This over-optimism is commonly referred

to as finite sample bias [24], and is well described in statis-

tics literature [3, 7]. The bias can to a large extent be

attributed to skewed sampling distributions of the esti-

mator in small data. Our simulations show that the finite

sample bias is larger for data sets with small EPV, and may

not reduce strictly to zero even for an EPV of 150. In sim-

ulations where by design separation of data sets occurred

only rarely, we found that bias depends on various fac-

tors besides EPV, notably, the true (multivariable) effect

size of the regression coefficient. This latter finding is to

be expected, based on the analytical work of Cordeiro

and McCullagh [25]. Further, we showed that bias can be

reduced by increasing the total sample size while keeping

EPV constant (i.e., increasing the number of non-events).

Bias at a fixed value of EPV also decreases with the num-

ber of covariates included. For a few conditions, we found

that the Wald confidence interval showed slight over-

coverage at smaller values of the EPV, i.e., for EPV <30

in the case of a single covariate. We could find no evi-

dence to support that the correlation between covariates

in the model affected the accuracy of the coefficients as

previously suggested [14].

Our study further suggests that Firth’s correction [20]

can reduce finite sample bias close to zero and reduce

mean square error. Profile likelihood confidence intervals
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Table 2 Results simulation studies Ia to Id

Study Study Ia* and Ib Study Ic and Id

EPV 15 to 30 35 to 50 55 to 150 6 to10 12 to 18 20 to 30

Estimator βML
1 βF

1 βML
1 βF

1 βML
1 βF

1 βML
1 βF

1 βML
1 βF

1 βML
1 βF

1

Bias

Average bias 0.084 0.002 0.038 0.001 0.016 0.000 0.069 0.002 0.033 0.000 0.020 0.000

max 0.261 0.016 0.091 0.005 0.056 0.006 0.217 0.021 0.075 0.011 0.046 0.005

min 0.025 -0.004 0.013 -0.002 0.004 -0.005 0.023 -0.005 0.016 -0.003 0.009 -0.003

Average relative bias (%) 7.8 0.1 3.6 0.1 1.5 0.0 8.4 0.4 4.8 0 2.9 0

max 18.8 1.2 6.6 0.5 4.0 0.5 31.2 3.0 10.8 1.6 6.5 0.7

min 3.5 -0.5 1.9 -0.3 0.5 -0.7 3.3 -0.7 2.3 -0.5 1.3 -0.0

>+10% relative bias (%) 18.8 0 0 0 0 0 37.5 0 3 0 0 0

Coverage 90% CI

Average coverage (%) 90.4 90.1 90.2 90.2 90.1 90.0 90.4 90.3 90.2 90.2 90.1 90.2

max 92.9 90.8 91.1 90.7 91.0 90.7 92.1 91.2 90.8 90.6 90.9 90.8

min 89.1 89.4 89.3 89.6 89.4 89.2 89.6 89.6 89.7 89.6 89.3 89.6

>± 1% nominal (%) 15.6 0 3.1 0 0.6 0 10 2.5 0 0 0 0

Average width 1.102 1.059 0.752 0.738 0.487 0.483 1.183 1.133 0.828 0.811 0.653 0.646

Mean Square Error

Average MSE 0.160 0.118 0.063 0.055 0.025 0.024 0.169 0.125 0.070 0.062 0.042 0.039

Separated data sets

Total (%) 0.006 0 0 0.001 0 0

*only for β1 ≥ log(1)

Table 3 Results simulation study IIa, maximum likelihood logistic regression only

EPV 15 to 30 35 to 50 55 to 150

Separated data removed Yes No Yes No Yes No

Bias

Average bias -0.097 2.255 0.083 0.161 0.051 0.053

max 0.091 7.074 0.127 0.439 0.084 0.096

min -0.556 0.234 0.050 0.056 0.048 0.022

Average relative bias (%) -0.087 2.110 0.079 0.145 0.048 0.049

max 0.091 5.103 0.095 0.317 0.061 0.069

min -0.401 0.338 0.069 0.081 0.032 0.032

Coverage 90% CI

Average coverage (%) 92.7 93.4 89.1 89.1 90.4 90.4

max 98.3 98.8 90.6 90.6 91.8 91.8

min 89.7 89.8 87.9 87.9 89.2 89.2

>± 1% nominal (%) 75 75 50 37.5 25 25

Average width 4.087 4437.2 2.656 49.2 2.005 2.645

Mean Square Error

Average MSE 1.251 64.571 0.709 2.243 0.397 0.422

Separated data sets

Total (%) 13.2 4.2 0.006
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Fig. 5 Simulation study IIb results. Upper panel, solid line: data sets

removed from analysis; Upper panel, dashed line: data sets replaced by

maximum non-separated effect size.Middle panel: Firth correction.

Lower panel: percentage of separated data sets by true effect size

for the Firth’s corrected estimates showed close to nom-

inal behavior, and on average have smaller width than

the traditional Wald confidence interval for the maxi-

mum likelihood estimates. Firth’s correction is one of

several methods for increasing the efficiency of the esti-

mators in logistic regression with small samples [11, 15].

In particular, these alternatives seem beneficial for ana-

lyzing data sets with sample sizes in the order of a few

hundreds. Procedures implementing Firth’s correction for

logistic regression (and Cox regression) are available in

many statistical software packages (such as SAS, Stata

and R).

The impact of separated data sets on simulation results

The traditional (maximum likelihood) logistic regression

analysis of a dataset in which the included covariates per-

fectly separate the binary outcome variable cannot be

trusted. In such cases, typically, very low or very high

parameter estimates with large maximum likelihood stan-

dard errors are returned by the statistical software pro-

gram. The estimated values, however, are rather arbitrary

and depending on software settings such as likelihood

convergence criteria. In the context of simulation studies

these ‘extreme’ values can have a large influence.

Methods to detect separation in simulation studies can

be computationally intensive [23, 26] and likely there-

fore not routinely applied in most simulation studies. We

also showed that convergence as a criterion for separation

detection often fails. Separated data sets may therefore

often remain undetected.

If separation is detected, the common approach is to

remove the results based on separated data sets from

the analysis. Steyerberg et al. [19] recognized that this

causes informative missingness of simulation results. Our

simulations confirm that even when the proportion of

separated data sets is relatively small (∼5%), removing

separated data sets from analysis has a large impact on

(apparent) bias, mean square error and width of the con-

fidence intervals. Alternatively, replacing these results, for

example by the ‘largest’ non-separated simulated effects,

may be a more realistic approach. It must be recognized

that the choice of the replacing value (or mechanism)

is again rather arbitrary and may heavily influence the

simulation results.

Separation of the outcome by covariates not only occurs

in the setting of the binary logistic model. For exam-

ple, separation can also occur with logistic regression for

more than two outcomes and Cox’s proportional hazards

regression [27, 28]. Reporting on the proportion of sepa-

rated simulation data sets is, however, highly uncommon

in simulation studies.

By applying Firth’s correction, the problems associated

with separation can be avoided.
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Table 4 Results simulation study IIb

Estimator βF
1 βML

1 βML
1 βML

1 βML
1 βML

1 βML
1

Separation detection NA Tracingb Estimatec None None None None

Convergence criteriona Default Default Default Default Type I Type II Type III

Data sets removed (%) 0 8.06 16.64 5.12 0.34 6.29 0.09

Bias 0.012 0.569 0.186 1.672 17.5 0.856 41.3

Coverage 90% CI 0.919 0.949 0.937 0.944 0.947 0.944 0.947

Mean width 90% CI 4.32 4.50 3.64 5018 13620 6.03 1135784

MSE 1.080 2.681 0.904 71.563 11532 319 173726

adefault: tol: 1e-8, max-iter: 25, Type I: tol: 1e-6, max-iter: 25, Type II: tol: 1e-10, max-iter:25, Type III: tol: 1e-10, max-iter:50
bcriterion: re-estimation process, variance of scaled standard errors >20 (see Appendix)
acriterion: if for any parameter j �= 0, |β̂j| >log(50)

Reasons for differences between EPV simulation studies

We identified two major reasons for the differences in

results and recommendations between the preceding sim-

ulation studies [12–14]. First, differences in the design of

the simulation studies may have contributed to variations

in simulation outcomes at the same level of EPV. The pre-

ceding studies [12–14] differ, for example, in their range

of simulated true effect sizes of the regression coefficient,

total sample size and the number of included covariates.

Second, none of these studies have sufficiently addressed

the issue of separated simulation data sets. We illustrated

that separated data sets can lead to misleading simulation

outcomes. As separated data sets occur most frequently in

low EPV settings, these settings are likely most affected.

The probability of drawing separated data in simulations

depends on amultitude of factors, including the total sam-

ple size, the true effect sizes of the coefficients and the

correlation between the covariates [17]. Developing simu-

lation scenarios in realistic contexts where this probability

is close to zero is difficult. For example, it was difficult

to design small sample simulation settings with binary

predictor variables while avoiding separation. Hence, in

the setting of small EPV simulation studies, developing

realistic full factorial simulation designs (i.e., a simulation

design where all possible combinations of simulation fac-

tors are evaluated) in which the probability of drawing

separated data sets in each condition is close to zero does

not appear to be possible.

Steyerberg et al. [19] suggested the use of Firth’s cor-

rection as a method to perform minimal EPV simulation

studies and we have shown that this solves the problem

of separated data sets. However, due to the impact of

Firth’s correction on the estimated coefficients even in

the absence of separation, only little is learned about the

behavior of traditional logistic regression analysis that is

commonly used and is based on the generally well-trusted

principles of maximum likelihood.

Conclusion

We conclude that the evidence underlying the EPV = 10

rule as a minimal sample size criterion for binary logistic

regression analysis is weak. So far, much of this evidence

comes from minimal EPV simulation studies that stud-

ied the performance of estimating the relations between

covariates and outcome. Our simulation study shows that

this performance at low values of EPV can be significantly

improved using Firth’s correction. In this paper we have

not studied the impact of small samples in relation to

number of covariates with respect to the model’s predic-

tive accuracy (e.g. model calibration and discrimination).

The studies by Steyerberg et al. [29] and Ambler et al. [30]

give some insight and guidance. However, we believe that

also in this area larger scale simulation studies are urgently

needed to provide guidance for supporting sample size

considerations for binary logistic regression analysis.

Appendix

To detect separation in a data sets it is sufficient to moni-

tor themaximum likelihood standard errors of parameters

during the estimation process [23]. The logistic regres-

sion model is re-fitted on each simulation data set with

1, 2, . . . , 30 Fisher scoring iterations. The maximum likeli-

hood standard errors for each of the 30 refits are collected.

This approach to identification of separation is similar to

the default method for separation detection in the brglm

package (Version 0.5-9) for R by Ioannis Kosmidis. Sepa-

ration for a parameter is said to occur if the variance of

scaled standard errors (such that standard errors on first

iteration equal 1) over refits was larger than 20. This cut-

off value was chosen based on a small pilot study. Results

not shown.
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