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Abstract

The increasing number of demanding consumer video applications, as exemplified by cell phone and other low-

cost digital cameras, has boosted interest in no-reference objective image and video quality assessment (QA)

algorithms. In this paper, we focus on no-reference image and video blur assessment. We consider natural scenes

statistics models combined with multi-resolution decomposition methods to extract reliable features for QA. The

algorithm is composed of three steps. First, a probabilistic support vector machine (SVM) is applied as a rough

image quality evaluator. Then the detail image is used to refine the blur measurements. Finally, the blur

information is pooled to predict the blur quality of images. The algorithm is tested on the LIVE Image Quality

Database and the Real Blur Image Database; the results show that the algorithm has high correlation with human

judgments when assessing blur distortion of images.
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1. Introduction
With the rapid and massive dissemination of digital

images and videos, people live in an era replete with

digitized visual information. Since many of these images

are of low quality, effective systems for automatic image

quality differentiation are needed. Although there are a

variety of effective full-reference (FR) quality assessment

(QA) models, such as the PSNR, the structural similarity

(SSIM) index [1,2], the visual information fidelity index

[3], and the visual signal-to-noise ratio (VSNR) [4],

models for no-reference (NR) QA have not yet achieved

performance that is competitive with top performing FR

QA models. As such, research in the area of blind or

NR QA remains quite vital.

There are many artifacts that may occur in a distorted

image, such as blocking, ringing, noise, and blur. Unlike

FR QA, where a reference is available to test against any

distortion, NR QA approaches generally seek to capture

one or a few distortions. Here we are mainly concerned

with NR blur assessment, which remains an important

problem in many applications. Generally, humans tend

to conclude that images with more detail are of higher

quality. Of course, the question is not so simple, since

blur can be space-variant, may depend on depth-of-field

(hence effect foreground and background objects differ-

ently), and may depend on what is being blurred in the

image.

A number of NR blur indices have been developed,

the majority of which are based on the analyzing lumi-

nance edges. For example, the sharpness measurement

index proposed by Caviedes and Gurbuz [5] is based on

local edge kurtosis. The blur measurement metric pro-

posed by Marziliano et al. [6] is based on analyzing of

the width or spread of edges in an image, while their

other work is based on an analysis of edges and adjacent

regions in an image [7]. Chuang et al. [8] evaluate blur

by fitting the image gradient magnitude to a normal dis-

tribution, while Karam et al. develop a series of blur

metrics based on the different types of analysis applied

to edges [9-13].

Other researchers have studied blur assessment by fre-

quency domain analysis of local DCT coefficients [14],

and of image wavelet coefficients [15-17]. These meth-

ods generally rely on a single feature to accomplish blur

assessment. While some of these algorithms deploy sim-

ple perceptual models in their design [7,9,11,12,17], a

theme that we extend in our approach. Specifically, we

use a model of neural pooling of the responses of corre-

lated neuronal populations in the primary visual cortex
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[18]. The use of multiple features combined using

machine learning methods has also been studied [19,20].

We are also inspired by recent progress on utilizing

natural scene statistics (NSS) to improve image proces-

sing algorithms. Natural images obey specific statistical

laws that, in principle, might be used to distinguish nat-

ural images from artificially distorted images [21]. In

this regard, images that are blurred beyond a norm (e.g.,

more than the band limit provided by the normal

human lens at optical center) may measurably depart

from statistical “naturalness.” By this philosophy, we

may anticipate that NR blur indices can be designed

that analysis image statistics. Indeed, Sheikh et al. suc-

cessfully used NSS for NR QA of JPEG-2000 distorted

images [22]. In their work, specific NSS features drawn

from the gradient histogram were used.

Here we develop a new blur assessment index that

operates in a coarse-to-fine manner. First, a coarse blur

measurement using gradient histogram features is

deployed that relies on training a probabilistic support

vector machine (SVM). A multi-resolution analysis is

then used to improve the blur assessment, deploying a

model of neural pooling in cortical area V1 [18]. The

overall algorithm is shown to agree well with human

subjectivity.

The rest of the paper is organized as follows: Section 2

describes the way in which NSS are used. Section 3

describes the coarse-scale NR blur index. Section 4

extends the metric using multi-resolution analysis. Sec-

tion 5 explains the use of the neural pooling model. The

overall NR blur index is evaluated in Section 6, and con-

cluding remarks are given in Section 7.

2. Natural image statistics
Recent research on natural image statistics have shown

that natural scenes belong to a small set in the space of

all possible image signals [23]. One example of a natural

scene property is the greater prevalence of strong image

gradients along the cardinal (horizontal and vertical)

orientations, in images projected from both indoor and

outdoor scenes. A number of researchers have devel-

oped statistical models that describe generic natural

images [19] (including images of man-made scenes).

Although images of real-world scenes vary greatly in

their absolute color distributions, image gradients gener-

ally have heavy tailed distributions [24]. Natural image

gradient magnitudes are mostly small, yet take large

values significantly more often than a Gaussian distribu-

tion. This corresponds to the intuition that images often

contain large sections of smoothly varying intensities,

interrupted by occasional abrupt changes at edges or

occlusive boundaries. Blurred images do not have sharp

edges, so the gradient magnitude distribution should

have greater relative mass at small or zero values. By

example, Figure 1 shows a sharp and a blurred image.

Figure 2 shows the distribution of their respective

gradients.

Liu et al. [25] and Levin [26] have demonstrated that

measurements on the heavy tailed distributions of gradi-

ents can be used for blur detection. Liu et al. used the

gradient histogram span as a feature in their classifica-

tion model. Levin fits the observed gradient histogram

using a mixture model.

3. Probabilistic SVM For blur assessment
Based on our discussion of NSS, we seek to evaluate the

distance between the gradient statistics of an (ostensibly

distorted) image and a statistical model of natural

scenes. This distance can then be used for image QA.

A classification method is used to measure the dis-

tance. We classify the images into two groups. One is

tagged as “sharp” and the other as “blurred.” Using the

probabilistic SVM classification model, confidence values

are computed that represent the distance between the

test image and the training set. A higher confidence value

implies a higher certainty of the classification result. In

this case, this means that the test sample is closer to the

assigned class center, i.e., the statistic of the test image is

closer to that of “sharp” or “blurred” images.

We chose to use a SVM [27] as our classification model.

The main reason for using SVM is that it works well for

classifying a few classes with few training samples. This is

highly suitable for our application having only two classes.

Moreover, SVM allows substitution of kernels to achieve

better classification results. Although here we only use the

default kernel, the possibility of modifying the kernel

leaves room for performance improvement.

Due to the limited scope of the coarse evaluation of

the image, we use the entire gradient histogram as a fea-

ture, rather than simple measured parameter such as the

mean or the slope of the histogram [25,26]. While this

implies a fairly large number of features, it is not very

large, and the small number of classes ensures reason-

able computation. We describe the training procedure

and the dataset used in Section 6.

After applying probabilistic SVM classification on an

image, a label that indicates its class and a confidence

score that indicates the degree of confidence in the deci-

sion are obtained. Then the coarse quality score of the

image is defined simply as:

QS − SVM(x) =

{

50 + 50 · confidence, if x is classified as sharp

50 · (1 - confidence), if x is classified as blurred
(1)

4. Multi-resolution NR QA of blur
As in most other areas of image processing and analysis,

multi-resolution methods have afforded improved
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performance relative to single-resolution methods for

image QA [2,4]. In the following, we modify QS-SVM

using information derived from a multi-resolution

decomposition.

Applying a wavelet decomposition on an image is a

natural way to examine local spatio-spectral properties

that may reveal whether the image has been modified.

For example, Figure 3 shows a sharp natural image

decomposed by a two-level wavelet, while Figure 4

shows the decomposed blurred image. The sharp

image is a high-quality image from the LIVE database.

The blurred image was modified by a Gaussian low-

pass filter. We used the 2D analysis filter bank devel-

oped in [28] to analyze the image. From Figures 3 and

4, it is apparent that the sharp image contains signifi-

cant horizontal and vertical energy in the high bands,

while the blurred image does not. As a simple measure

of sharpness, we sum the horizontal and vertical

responses in the high band to produce a detail map.

Figure 5 shows the detail map derived from the sharp

image in Figure 3.

A quality (or sharpness) score that combines QS-SVM

with multi-resolution analysis follows:

Blur quality score = (QS - SVM)r0

N
∏

i=1

(DSi)
ri (2)

where N is the number of layers in the wavelet

decomposition, and QS-SVM is the score obtained by

analyzing the original image using the probabilistic SVM

model described in the preceding. Further, DSi is the

detail score obtained from the detail map of layer i. The

detail score at wavelet level i is defined:

DSi =

Wi
∑

m=1

Hi
∑

n=1

∇i(m, n)

Wi · Hi

(3)

where Wi and Hi are the pixel dimensions of the sub-

band image that DSi is defined on, and ∇i(m, n) is the

gradient magnitude value of the subband image at coor-

dinate (m, n).

Blur quality score is the final blur evaluation result,

which is the weighted (by exponents) product of the

full-resolution score QS-SVM and the values of DS

from each layer. The parameters ri are normalized expo-

nents:
∑N

i=0
ri = 1 .

5. Decoding the neural responses
Perceptual models have played an important role in the

development of image QA algorithms. These have

included image masking models [29], cortical decompo-

sitions [30], extra-cortical motion processing [31], and

foveation [29,32-34], among others.

The visual model we will use is based on foveal (non-

peripheral) processing of visual information. The central

two degrees of high-resolution imagery that is projected

onto the human fovea subtends roughly equivalent twice

the width of a thumbnail at arm’s length [35]. In [9], a

viewing model is used to derive the use of 64 × 64

blocks to approximate the size of image patches pro-

jected from display onto the fovea (see Figure 6). In this

Figure 1 Exemplar images. Left: blurred image A. Right: Bottom: Sharp image B.

Figure 2 Gradient distributions of images. (a) Solid line and (b)

dashed line in Figure 1.
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viewing model, a subject is assumed to be sitting in

front of a 24” × 18” LCD screen with a resolution of

1680 × 1050 pixels. The width of foveal vision at arm’s

length is assumed to be about 1.2”, while the viewing

distance is assumed to fall in the range 36-54”

(approximately 2-3 times the screen height). The arm

length of the viewer is assumed to be 33 in.. Then, the

width of span of foveal vision on the screen falls

between 76 (1050/18 × 1.31) and 116 (1050/18 × 2)

pixels.

Figure 3 Wavelet decomposition of natural image. Top left: low band response. Top right: horizontal high band response. Bottom left:

vertical high band response. Bottom right: high band response.

Figure 4 Wavelet decomposition of blurred image. Top left: low band response. Top right: horizontal high band response. Bottom left:

vertical high band response. Bottom right: high band response.
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Since a block size of 2n along each dimension facilitates

optimization and allows better memory management

(aligned memory allocation), the choice of a 64 × 64 block

size is a decent approximation. We then apply the blur QA

method described in Section 4 on each of these blocks.

When a human observer studies an image, thus arriv-

ing at a sense of its quality, she/he engages in a process

of eye movement, where visual saccades place fixations at

discrete points on the image. Image quality is largely

decided by information that is collected from these foveal

regions, with perhaps, additional information drawn from

extra-foveal information. The overall perception of qual-

ity drawn from these fixated regions might be described

as “attentional pooling,” by analogy with the aggregation

of information from spatially distributed neurons. We

utilize the results of a study conducted by Chen et al.

[18] to formulate such an attentional pooling strategy. In

this study, the authors examined the efficacy of different

patch pooling strategies in a primate undergoing a visual

(Gabor) target detection task.

The authors of [18] used voltage sensitive dyed images to

measure the population responses in primary visual cortex

of monkeys performing a demanding visual target detection

task. Then, they evaluated the effects of different decoding

strategies in predicting the target pattern from measured

neural responses in primary visual cortex. The pooling pro-

cess they considered used a linear summation model:

Xpooled =

n
∑

i=1

wixi (4)

where wi is the weight applied to the neuronal ampli-

tude response xi.

The pooling rules they studied are as follows:

1. Maximum average amplitude: wi ≠ 0 only for the

patch having maximum average neuronal response

amplitude.

Figure 5 Detail map computed from image in Figure 3.

Figure 6 The setting of the viewing model.
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2. Maximum d’: wi ≠ 0 only for the patch having

maximum d’

3. Maximum amplitude: wi ≠ 0 only for the site with

maximum amplitude in a given trial

4. Mean amplitude: wi = 1/n

5. Weighted average amplitude: wi is proportional to

the average amplitude response of xi
6. Weighted d’: wi is proportional to d’

7. Optimal

where d’ is the SNR of the neuronal responses across

trials:

d
′ = |ES − EN|

/

√

σS
2 + σN

2

2
(5)

where ES is the mean response amplitude in target

present trials (signal trials), EN is the mean amplitude of

the response in target-absent trials (noise trials) and sS

and sN are the corresponding standard deviations. The

“optimal” pooling 7 is obtained under the assumption

that the neuronal response at each site is Gaussian dis-

tributed and independent across trials (although not

across space and time within a trial). The optimal set of

weights is defined as the product of the inverse of the

response covariance matrix the vector of mean differ-

ences in response between the signal and noise trials.

Their experimental result is shown in Figure 7.

From Figure 7, we can see that the maximal average

pooling rules (Rules 1 and 2) perform better than the

trial maximum (Rule 3), average pooling rules (Rule 4)

and weighted pooling rules (Rules 5 and 6). When

applying analogous pooling rules to the image blur

assessment problem, we observe that since distinct sig-

nal and noise trials do not exist in our case (and in any

case the Gaussian assumption is questionable), so we

cannot apply the optimal pooling rule (Rule 7). Further,

the SNR d’ is not available as required by Rules 2 and 6.

Hence, we choose the maximum average amplitude as

our pooling rule. The slight difference here is that with

a single (algorithmic) “trial” an average amplitude value

is not available, while the maximum amplitude (Rule 3)

is unreliable. Instead, we use the average of the maxi-

mum p% of responses as a pooling strategy. The pooling

strategy was applied only on activated neurons; hence

we applied the pooling only on activated blocks, where a

block was taken to be activated if the mean of the lumi-

nance values in the block is higher than 20. Therefore,

the final blur quality score is calculated as

Blur quality score = (QS − SVM)r0 ∗

N
∏

i=1

(

Pool(DSi)
)ri

(6)

where

Pool(DSi) =
∑n

k=1
wkiDSki (7)

where DSki is the detail response of block k from layer

i, and wki = 1/p if the detail responses of block k in

layer i belong to the largest 10% of detail responses of

all activated blocks in the layer; otherwise wki = 0. Here,

p is nominally set to 10. The blocking analysis and pool-

ing are only applied on the multi-resolution part, since

the NSS mentioned in Section 2 are based on the statis-

tics of whole images.

6. Experiments and results
The LIVE image quality database [36] and the real blur

image Database [37] were used to evaluate the perfor-

mance of our algorithm. The experiments in Sections

6.1-6.3 were conducted on the LIVE database to gain

insights into the performance of algorithms that com-

bine different blur assessment factors. The performances

are also compared to the performance of multi-scale

SSIM (or MS-SSIM, a popular and effect FR QA

method).

Then in Section 6.4, the Real blur database (586

Images) is used as a challenging test by which we com-

pare our results with other NR QA blur metrics. The

LIVE image database includes DMOS subjective scores

for each image and several types of distortions. The

experiment was performed only on the blur images (174

images). All of the images in the LIVE database are

blurred globally. Samples of these images are shown in

Figure 8. A total of 760 images were used for testing.

6.1. Performance of SVM Classification

To train the coarse SVM classifier, we used 240 training

samples which were marked as “sharp” or “blurred.” The

Figure 7 Comparison of detection sensitivity of candidate

pooling rules. Asterisks indicate rules with performance

significantly different from the optimal (bootstrap test, p < 0.05).
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training samples were randomly chosen and some of

them are out-of-focus images. Due to the unbalanced

quality of the natural training samples (there were more

sharp images than naturally blurred images), we applied

a gaussian blur to some of the sharp samples to gener-

ate additional blurred samples. The final training set

included 125 sharp samples and 115 blurred samples.

The training and test sets do not share content.

When tagging samples, if an original image’s quality

was mediocre, the image was duplicated; one copy

marked as “blurred” and the other marked as “sharp,”

with both images used for training. This procedure pre-

vents misclassifications arising from marking mediocre

image as “sharp” or “blurred.” This duplication was

applied to lower the confidence when classifying med-

iocre samples.

Note that DMOS scores of these images we are not

required to train the SVM. Images were simply tagged

as “blurred” or “sharp” to train the SVM. Likewise, the

output of the probabilistic SVM model is a class type

("blurred” or “sharp”) and a confidence level. The class

type and confidence level are used to predict the image

quality score.

The algorithm was evaluated against the LIVE DMOS

scores using the Spearman rank order correlation coeffi-

cient (SROCC). The results are shown in Table 1.

In Table 1, QS-SVM means blind blur QA using

probabilistic SVM, PSNR means peak signal to noise

ratio, and MS-SSIM means multi-scale structure similar-

ity index. To obtain an objective evaluation result, we

compared our method to FR methods tested on the

same database as in [4,38].

As can be seen, the coarse algorithm QS-SVM deliv-

ered lower SROCC scores than the FR indices, although

the results are promising. Of course, QS-SVM is not

trained on DMOS scores, hence does not fully capture

the perceptual elements of blur assessment.

6.2. Performance with multi-resolution decomposition

We began by estimating which layers of the wavelet

decomposition achieve the best QA result on the LIVE

database. We found the correlations between the DS

Figure 8 Sample images from the LIVE image quality database. From top-left to bottom-right, increasing Gaussian blur is applied.

Table 1 Comparison of the performance of VQA

algorithms

Prediction model SROCC

QS-SVM 0.6136

PSNR (FR) 0.7729

VSNR (FR) 0.932

MS-SSIM (FR) 0.9425
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scores and human subjectivity for each layer. The per-

formance numbers are shown in Table 2.

In Table 2, DS0 is the detail score computed from the

original image. The experiment shows the SROCC score

of DS1 to be significantly higher than for the other

layers. The detail map at this middle scale appears to

deliver a high correlation with human impression of

image quality.

Next we combined the QA measurement in different

layers, omitting level 3 because of its poor performance.

Table 3 shows the results of several combinations of

algorithms. The parameters ri of each combination were

determined by regression on the training samples.

Table 3 shows that, except for combination with QS-

SVM, all other combinations with DS1 did not achieve

higher performance than using only DS1. This result is

consistent with our other work in FR QA, where we

have found that mid-band QA scores tend to score

higher than low-band or high-band scores. Adding more

layers did not improve performance here. The highest

performance occurs by combining DS1 with QS-SVM

(r0 = 0.610, r1 = 0.390), yielding an impressive SROCC

score of 0.9105. Combination QS-SVM with DS2 (r0 =

0.683, r2 = 0.317) also improved performance relative to

DS2, suggesting that QS-SVM and the DS scores offer

complementary measurements.

6.3. Performance with pooling strategy

We studied the performance of different pooling rules in

our system. The system is described by (6), using maxi-

mum p% pooling, average pooling (Rule 4 in Section 5),

and weighted pooling (Rule 5 in Section 5), applied to

QS-SVM·DS1. Using tenfold cross-validation with fixed

parameters r0 = 0.610 and r1 = 0.390, the performance

attained is given in Table 4. Table 4 shows that the

performance of using different pooling rules in our sys-

tem is consistent with the results found in [18]. The

maximum p% pooling method improves the perfor-

mance (the SROCC score is increased from 0.9004 to

0.9248).

All parameters in our system were kept fixed (p = 10,

r0 = 0.610 and r1 = 0.390) to enable fair comparisons

with other algorithms. The number p came from cross-

validation across two databases. Table 5 illustrates the

final performance of our algorithm as compared to

other NR and FR blur metrics. The performance of our

algorithm is better than PSNR and very close to CPBD

[10] and to FR QA models when conducted on the

blurred image portion of the LIVE Image Quality Data-

base The plot of predicted objective quality (following

logistic regression) against DMOS scores from the LIVE

Image Quality Database is shown in Figure 9.

6.4. Challenging blur database

Our foregoing experiments on the LIVE database were

by way of algorithm design and tuning, and not perfor-

mance verification. To verify the performance of our

algorithm, we conducted an experiment on a real

blurred image database. The database contains 585

images with resolutions ranging from 1280 × 960 to

2272 × 1704 pixels.

The images in this database were taken by consumer

cameras and are classified into five classes as

“Unblurred” (204 images), “Out-of-focus” (142 images),

“Simple Motion” (57 images), “Complex Motion” (63

images) and “Other” (119 images). The images in the

Table 2 QA performance using different layers

Prediction model SROCC

QS-SVM 0.6136

DS0 0.6583

DS1 0.8884

DS2 0.7733

DS3 0.5587

Table 3 QA performance using different combinations of

layers

Prediction model SROCC

DS0·DS1 0.8884

DS1·DS2 0.8884

QS-SVM·DS1 0.9105

QS-SVM·DS1·DS2 0.9105

QS-SVM·DS2 0.8428

Table 4 QA performance numbers by tenfold cross-

validation

Pooling rule SROCC

Maximum p% 0.9248

Average 0.9004

Weighted 0.9080

Different pooling rules were applied on the blurred image portion of the LIVE

Image Quality Database

Table 5 Summary of QA performance of different

algorithms on the blurred image portion of the LIVE

Image Quality Database

Prediction model SROCC

QS-SVM 0.6136

PSNR (FR) 0.7729

QS-SVM·DS1 0.9105

QS-SVM·Pool(DS1) 0.9352

VSNR (FR) 0.932

MS-SSIM (FR) 0.9425

CPBD 0.9430
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“Out-of-focus” (142 images), “Simple Motion” (57

images), “Complex Motion” (63 images) and “Other”

(119 images). The images in the “Out-of-focus” class are

global out-of-focus images. The “Simple Motion” class

has images that are blurred because of close-to-linear

camera movements and the “Complex Motion” class has

images which are blurred because of the more complex

motion paths. Finally, the “Other” class includes any

other types of degradation. It may include any combina-

tion of the main classes. For instance, the image with

localized out-of-focus blur (mixed “Unblurred” and

“Out-of-focus”) was classified into the “Other” class.

Sample images are shown in Figure 10. The raw MOS

scores of the database are provided. We eliminated 20%

(maximum 10% and minimum 10%) of the grades on

each image as outliers, so that the average (trimmed

mean) of the 80% grades was used as the MOS score of

each image.

We used tenfold cross-validation and report the

SROCC numbers from applying several different pooling

rules. As shown in Table 6, the maximum p% pooling

method yields the best performance (0.5858). Although

the improvement is not significantly large, this method

showed the best performance on both databases.

By examining the experimental results from the LIVE

Image Quality Database and the Real Blur Image Data-

base, we found that there is a significant performance

difference of the models on these two databases. The

LIVE database includes synthetically and globally

blurred sample images. The task of performing QA on a

globally blurred image is less complex and harder to

relate to perceptual models. On LIVE, our proposed

Figure 9 Plot of predicted objective scores versus DMOS from

live image quality database.

Figure 10 Sample images from the real blur database. Top left: Out-of-focus image. Top right: Simple motion blur. Bottom left: Complex

motion blur. Bottom right: Others (partial blur case).
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method of pooling showed significant improvement

(from 0.9 to 0.925). However, on the Real Blur Database,

where the blurs are more complex, possibly nonlinear,

and spatially variant, blur perception is more complex

and probably more correlated with content (e.g., what is

blurred in the image?). By example, in the partially

blurred image shown in Figure 10 (bottom right), the

rating is likely highly affected by image content, object

positioning, probable viewer fixation, and so on.

When comparing the performance of our proposed

algorithm with other blur assessment algorithms, we

refer to the work conducted by Ciancio et al. [20]. In

this work, they provided performance levels several algo-

rithms, including a frequency-domain blur index [14], a

wavelet-based blur index [15], a perceptually motivated

blur index [7], a blur index using a human visual system

(HVS) model [11], a local phase coherence blur metric

[16], and their own Multi-Features Neural Network

Classifier (MFNNC) blur metric [20]. The performance

of CPBD [10] is also included. The performance results

are shown in Table 7.

Table 7 shows that our proposed blur QA model deli-

vers the best performance amongst the algorithms com-

pared. Although the improvement does not achieve

statistical significance as compared with other top-per-

forming models, it consistently shows better perfor-

mance across a large number of images and across

databases. A scatter plot of the scores delivered by our

model (following logistic regression) against the MOS

scores from the Real Blur Database is shown in Figure

11 showing very good general agreement. Many of the

images, such as Figure 12, contain difficult high level

content whose interpretation may depend on the obser-

vers’ preferences regarding composition (and that of the

photographer).

7. Conclusion
The main contributions of this work are as follows.

First, we found that the statistics of the image gradient

histogram and a detail map from the image wavelet

decomposition can be combined to yield good NR blur

QA performance. Second, our results discuss that a per-

ceptually motivated pooling strategy can be used to

improve the NR blur index on assessing the blur images.

Performance was demonstrated on the LIVE Image

Quality Database and the Real Blur Image Database. As

Table 6 Blur QA performance of applying different

pooling rules on real blur database

Pooling rule SROCC

Maximum p% 0.5858

Average 0.5604

Weighted 0.5542

Table 7 Blur QA performance of different algorithms on

real blur database

Algorithm SROCC

Frequency domain metric* 0.494

Wavelet-based metric* 0.524

Perceptual metric* 0.336

HVS based metric* 0.474

Local phase coherence metric* 0.523

MFNNC metric* 0.564

Proposed algorithm 0.586

CPBD 0.501

Algorithms marked by asterisk indicates their performance was reported in

[20]

Figure 11 Plot of predicted objective score versus MOS score

of real blur image database.

Figure 12 Subjects give higher quality to this image MOS is

3.98 (scale from 0 (worst) to 5 (best)), but our algorithm gives

low objective score to this image.
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compared with other NR blur metrics, our method

yields competitive performance with reasonable

complexity.
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human visual system; MFNNC: multi-features neural network classifier.
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