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Abstract—We propose a natural scene statistic (NSS)-based
distortion-generic blind/no-reference (NR) image quality assess-
ment (IQA) model which operates in the spatial domain. The
new model, dubbed Blind/Referenceless Image Spatial QUality
Evaluator (BRISQUE) does not compute distortion specific fea-
tures such as ringing, blur or blocking, but instead uses scene
statistics of locally normalized luminance coefficients to quantify
possible losses of ‘naturalness’ in the image due to the presence
of distortions, thereby leading to a holistic measure of quality.

The underlying features used derive from the empirical
distribution of locally normalized luminances and products of
locally normalized luminances under a spatial natural scene
statistic model. No transformation to another coordinate frame
(DCT, wavelet, etc) is required, distinguishing it from prior no
reference IQA approaches. Despite its simplicity, we are able to
show that BRISQUE is statistically better than the full-reference
peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) and highly competitive with respect to all
present-day distortion-generic NR IQA algorithms. BRISQUE
has very low computational complexity, making it well suited
for real time applications. BRISQUE features may be used for
distortion-identification as well. To illustrate a new practical
application of BRISQUE, we describe how a non-blind image
denoising algorithm can be augmented with BRISQUE in order
to perform blind image denoising. Results show that BRISQUE
augmentation leads to performance improvements over the state-
of-the-art. A software release of BRISQUE is available online:
http://live.ece.utexas.edu/research/quality/BRISQUE release.zip
for public use and evaluation.

Index Terms—No reference image quality assessment, blind
quality assessment, spatial domain, natural scene statistics, de-
noising

I. INTRODUCTION

With the launch of networked handheld devices which can

capture, store, compress, send and display a variety of audio-

visual stimuli; high definition television (HDTV); streaming

Internet protocol TV (IPTV) and websites such as Youtube,

Facebook and Flickr etc., an enormous amount of visual data

of visual data is making its way to consumers. Because of

this, considerable time and resources are being expanded to

ensure that the end user is presented with with a satisfac-

tory quality of experience (QoE) [1]. While traditional QoE

methods have focused on optimizing delivery networks with

respect to throughput, buffer-lengths and capacity, perceptually

optimized delivery of multimedia services is also fast gaining

importance. This is especially timely given the explosive
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growth in (especially wireless) video traffic and expected

shortfalls in bandwidth. These perceptual approaches attempt

to deliver an optimized QoE to the end-user by utilizing

objective measures of visual quality.

Objective blind or No-reference (NR) image quality as-

sessment (IQA) refers to automatic quality assessment of an

image using the algorithm that only receives the distorted

image before it makes a prediction on quality. On the other

end of the spectrum lie full-reference (FR) algorithms that

require as input not only the distorted image, but also a

‘clean’, pristine reference image with respect to which the

quality of the distorted image is assessed. Somewhere between

these two extremes lie reduced-reference (RR) approaches that

possess some information regarding the reference image (eg.,

a watermark), but not the actual reference image itself, apart

from the distorted image [1], [2], [3].

Our approach to NR IQA is based on the principle that

natural images1 possess certain regular statistical properties

that are measurably modified by the presence of distortions.

Figure 1(a) and (b) shows examples of natural and artificial

images from the TID database [4] respectively. The normalized

luminance coefficients (explained later) of the natural image

closely follow Gaussian-like distribution, as shown in Fig. 1(c)

while the same doesnot hold for the empirical distribution of

the artificial image shown in Fig. 1(d).

Deviations from the regularity of natural statistics, when

quantified appropriately, enable the design of algorithms ca-

pable of assessing the perceptual quality of an image without

the need for any reference image. By quantifying natural

image statistics and refraining from an explicit characterization

of distortions, our approach to quality assessment is not

limited by the type of distortions that afflict the image. Such

approaches to NR IQA are significant since most current

approaches are distortion-specific [5], [6], [7], [8], [9], [10],

[11], i.e., they are capable of performing blind IQA only if the

distortion that afflicts the image is known beforehand, e.g., blur

or noise or compression and so on (see below). Previously, we

have proposed other NSS-based distortion-generic approaches

to NR IQA that statistically model images in the wavelet

domain [12] and in the DCT-domain [13]. Our contribution

here is a new NR IQA model that is purely spatial; that relies

on a spatial NSS model which does not require a mapping

1‘Natural’ images are not necessarily images of natural environments such
as trees or skies. Any natural light image that is captured by an optical camera
and is not subjected to artificial processing on a computer is regarded as a
natural image. Of course, image sensors may capture natural radiation other
than visible light, but the images formed may obey different NSS than those
considered here.
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Fig. 1. Underlying Gaussianity of natural images. (a) and (b) show examples of natural and artificial images from the TID database [4] respectively. (c)
shows that normalized luminance coefficients follow a nearly Gaussian distribution for the natural image (a). This property does not hold true for the empirical
distribution of the artificial image (b).

to a different co-ordinate domain (wavelet, DCT, etc.) and so

is ‘transform-free’; that demonstrates better ability to predict

human judgments of quality than other popular FR and NR

IQA models; that is highly efficient; and that is useful for

perceptually optimizing image processing algorithms such as

denoising.

While the presence of a reference image or information

regarding the reference simplifies the problem of quality

assessment, practical applications of such algorithms are lim-

ited in real-world scenarios where reference information is

generally unavailable at nodes where quality computation is

undertaken. Further, it can be argued that FR and to a large-

extent RR approaches are not quality measures in the true

sense, since these approaches measure fidelity relative to a

reference image. Moreover, the assumption of a pristine nature

of any reference is questionable, since all images are ostensibly

distorted [14].

The performance of any IQA model is best gauged by

its correlation with human subjective judgements of qual-

ity, since the human is the ultimate receiver of the visual

signal. Such human opinions of visual quality are generally

obtained by conducting large-scale human studies, referred

to as subjective quality assessment, where human observers

rate a large number of distorted (and possibly reference)

signals. When the individual opinions are averaged across the

subjects, a mean opinion score (MOS) or differential mean

opinion score (DMOS) is obtained for each of the visual

signals in the study, where the MOS/DMOS is representative

of the perceptual quality of the visual signal. The goal of

an objective quality assessment (QA) algorithm is to predict

quality scores for these signals such that the scores produced

by the algorithm correlate well with human opinions of signal

quality (MOS/DMOS). Practical application of QA algorithms

requires that these algorithms compute perceptual quality

efficiently.

The regularity of natural scene statistics (NSS) has been

well established in the visual science literature, where regu-

larity has been demonstrated in the spatial domain [15], and

in the wavelet domain [16]. For example, it is well known

that the power spectrum of natural images is a function of

frequency and takes the form 1/fγ , where γ is an exponent

that varies over a small range across natural images.

The product of our research is the Blind/Referenceless

Image Spatial QUality Evaluator (BRISQUE) which utilizes

an NSS model framework of locally normalized luminance

coefficients and quantifies ‘naturalness’ using the parame-

ters of the model. BRISQUE introduces a new model of

the statistics of pair-wise products of neighboring (locally

normalized) luminance values. The parameters of this model

further quantify the naturalness of the image. Our claim is

that characterizing locally normalized luminance coefficients

in this way is sufficient not only to quantify naturalness, but

also to quantify quality in the presence of distortion.

In this article, we detail the statistical model of locally

normalized luminance coefficients in the spatial domain, as

well as the model for pairwise products of these coefficients.

We describe the statistical features that are used from the

model and demonstrate that these features correlate well with

human judgements of quality. We then describe how we learn

a mapping from features to quality space to produce an
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automatic blind measure of perceptual quality. We thoroughly

evaluate the performance of BRISQUE, and statistically com-

pare BRISQUE performance to state-of-the-art FR and NR

IQA approaches. We demonstrate that BRISQUE is highly

competitive to these NR IQA approaches, and also statistically

better than the popular full-reference peak signal-to-noise-

ratio (PSNR) and structural similarity index (SSIM). We

show that BRISQUE performs well on independent databases,

analyze its complexity and compare it with other NR IQA

approaches. Finally, to further illustrate the practical relevance

of BRISQUE, we describe how a non-blind image denoising

algorithm can be augmented with BRISQUE in order to

improve blind image denoising. Results show that BRISQUE

augmentation leads to significant performance improvements

over the state-of-the-art. Before we describe BRISQUE in

detail, we first briefly review relevant prior work in the area

of blind IQA.

II. PREVIOUS WORK

Most existing blind IQA models proposed in the past

assume that the image whose quality is being assessed is

afflicted by a particular kind of distortion [17], [10], [11], [9],

[7], [5], [6], [8]. These approaches extract distortion-specific

features that relate to loss of visual quality, such as edge-

strength at block-boundaries. However, a few general purpose

approaches for NR IQA have been proposed recently.

Li devised a set of heuristic measures to characterize visual

quality in terms of edge sharpness, random noise and structural

noise [18] while Gabarda and Cristobal, modeled anisotropies

in images using Renyi entropy [19]. The authors in [20]

use gabor filter based local appearance descriptors to form

a visual codebook, and learn DMOS score vector, associating

each word with a quality score. However, in the process of

visual codebook formation, each feature vector associated with

an image patch is labeled by DMOS asigned to the entire

image. This is questionable as each image patch can present a

different level of quality depending on the distortion process

the image is afflicted with. In particular, local distortions

such as packet loss might afflict only a few image patches.

Also, the approach is computationally expensive limiting its

applicability in real time applications.

Tang et al. [21] proposed an approach which learns an

ensemble of regressors trained on three different groups of

features - natural image statistics, distortion texture statistics

and blur/noise statistics. Another approach [22] is based on a

hybrid of curvelet, wavelet and cosine transforms. Although

these approaches work on a variety of distortions, each set of

features (in the first approach) and transforms (in the second)

caters only to certain kinds of distortion processes. This limits

the applicability of their framework to new distortions.

We have also developed previous NR QA models in the

past, following our philosophy, first fully developed in [23],

that NSS models provide powerful tools for probing human

judgements of visual distortions. Our work on NSS based FR

QA algorithms [24], [23], [9], more recent RR models [3] and

very recent work on NSS based NR QA [25], [12], [13] have

led us to the conclusion that visual features derived from NSS

lead to particularly potent and simple QA models [26].

Our recently proposed NSS based NR IQA model, dubbed

the Distortion Identification-based Image INtegrity and Ver-

ity Evaluation (DIIVINE) index, deploys summary statistics

derived from an NSS wavelet coefficient model, using a two

stage framework for QA: distortion-identification followed by

distortion-specific QA [12]. The DIIVINE index performs

quite well on the LIVE IQA database [27], achieving statistical

parity with the full-reference structural similarity (SSIM)

index [28].

A complementary approach developed at the same time,

named BLind Image Notator using DCT Statistics (BLIINDS-

II index) is a pragmatic approach to NR IQA that operates

in the DCT domain, where a small number of features are

computed from an NSS model of block DCT coefficients [13].

Efficient NSS features are calculated and fed to a regression

function that delivers accurate QA predictions. BLIINDS-II is

a single-stage algorithm that also delivers highly competitive

QA prediction power. Although BLIINDS-II index is multi-

scale, the small number of feature types (4) allow for efficient

computation of visual quality and hence the index is attractive

for practical applications.

While both DIIVINE and BLIINDS-II deliver top NR IQA

performance (to date), each of them has certain limitations.

The large number of features that DIIVINE computes implies

that it may be difficult to compute in real time. Although

BLIINDS-II is more efficient than DIIVINE, it requires non-

linear sorting of block based NSS features, which slows it

considerably.

In our continued search for fast and efficient high perfor-

mance NSS based NR QA indices, we have recently stud-

ied the possibility of developing transform-free models that

operate directly on the spatial pixel data. Our inspiration for

thinking we may succeed is the pioneering work by Ruderman

[15] on spatial natural scene modeling, and the success of the

spatial multi-scale SSIM index [29], which competes well with

transform domain IQA models.

III. BLIND SPATIAL IMAGE QUALITY ASSESSMENT

Much recent work has focused on modeling the statistics

of responses of natural images using multiscale transforms

(eg., Gabor filters, wavelets etc.) [16]. Given that neuronal

responses in area V1 of visual cortex perform scale-space-

orientation decompositions of visual data, transform domain

models seem like natural approaches, particularly in view of

the energy compaction (sparsity) and decorrelating properties

of these transforms when combined with divisive normal-

ization strategies [30], [26]. However, successful models of

spatial luminance statistics have also received attention from

vision researchers [15].

A. Natural Scene Statistics in the Spatial Domain

The spatial approach to NR IQA that we have developed

can be summarized as follows. Given a (possibly distorted)

image, first compute locally normalized luminances via local

mean subtraction and divisive normalization [15]. Ruderman

observed that applying a local non-linear operation to log-

contrast luminances to remove local mean displacements from
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zero log-contrast and to normalize the local variance of the log

contrast has a decorrelating effect [15]. Such an operation may

be applied to a given intensity image I(i, j) to produce:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(1)

where, i ∈ 1, 2 . . .M , j ∈ 1, 2 . . . N are spatial indices, M,N
are the image height and width respectively, C = 1 is a

constant that prevents instabilities from occurring when the

denominator tends to zero (eg., in the case of an image patch

corresponding to the plain sky) and

µ(i, j) =
K∑

k=−K

L∑

l=−L

wk,lIk,l(i, j) (2)

σ(i, j) =

√√√√
K∑

k=−K

L∑

l=−L

wk,l(Ik,l(i, j)− µ(i, j))2 (3)

where w = {wk,l|k = −K, . . . ,K, l = −L, . . . L} is a 2D

circularly-symmetric Gaussian weighting function sampled out

to 3 standard deviations and rescaled to unit volume. In our

implementation, K = L = 3. We show how performance

varies with changes in the window size in the performance

evaluation section.

Ruderman also observed that these normalized luminance

values strongly tend towards a unit normal Gaussian charac-

teristic [15] for natural images. Such an operation can be used

to model the contrast-gain masking process in early human

vision [31], [30]. We utilize the pre-processing model (1)

in our QA model development and refer to the transformed

luminances Î(i, j) as mean subtracted contrast normalized

(MSCN) coefficients. As illustrated in the left column of

Fig. 2, there is high correlation between surrounding pixels

because image functions are generally piecewise smooth aside

from sparse edge discontinuities. Hence we observe a diagonal

kind of structure in the plots shown in the left column.

The normalization procedure greatly reduces dependencies

between neighboring coefficients as is apparent in the plots

shown in the right column.

In order to help the reader visualize what the non-linear

transformationˆdoes to an image, Figure 3 plots an image from

the LIVE IQA database [27], its local mean field µ(i, j) and

local variance field, σ(i, j) and the MSCN field. The variance

field highlights object boundaries and other local high contrast

phenomenon. The MSCN field, while clearly not entirely

decorrelated, exhibits a largely homogeneous appearance with

a few low-energy residual object boundaries.

Our hypothesis is that the MSCN coefficients have charac-

teristic statistical properties that are changed by the presence

of distortion, and that quantifying these changes will make it

possible to predict the type of distortion affecting an image

as well as its perceptual quality. In order to visualize how

the MSCN coefficient distributions vary as a function of

distortion, Fig. 4 plots a histogram of MSCN coefficients for

a natural undistorted image and for various distorted versions

of it. Notice how the reference image exhibits a Gaussian-

like appearance, as observed by Ruderman [15], while each

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

MSCN

N
u
m

b
e
r 

o
f 
c
o
e
ff
ic

ie
n
ts

(N
o
rm

a
liz

e
d
)

 

 

org
jp2k
jpeg
wn
blur
ff

Fig. 4. Histogram of MSCN coefficients for a natural undistorted image
and its various distorted versions. Distortions from the LIVE IQA database
[27] – JPEG2000 (jp2k) and JPEG compression (jpeg), Additive white
Gaussian noise (WN), Gaussian blur (blur), and a Rayleigh fast-fading channel
simulation (ff).

distortion modifies the statistics in its own characteristic way.

For example, blur creates a more Laplacian appearance, while

white-noise distortion appears to reduce the weight of the tail

of the histogram. We have found that a generalized Gaussian

distribution (GGD) can be used to effectively capture a broader

spectrum of distorted image statistics, which often exhibit

changes in the tail behaviour (i.e. kurtosis) of the empirical

coefficient distributions [32] where the GGD with zero mean

is given by:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−

(
|x|

β

)α)
(4)

where

β = σ

√
Γ(1/α)

Γ(3/α)
(5)

and Γ(·) is the Gamma function:

Γ(a) =

∫ ∞

0

ta−1e−tdt a > 0 (6)

The shape parameter α controls the ‘shape’ of the distribu-

tion while σ2 control the variance. We choose the zero mean

distribution, since (generally) MSCN coefficient distributions

are symmetric. The parameters of the GGD (α, σ2), are esti-

mated using the moment-matching based approach proposed

in [32].

We deploy this parametric model to fit the MSCN empirical

distributions from distorted images as well as undistorted ones.

For each image, we estimate 2 parameters (α, σ2) from a

GGD fit of the MSCN coefficients. These form the first set

of features that will be used to capture image distortion. To

show that pristine and distorted images are well separated

in GGD parameter space, we took a set of pristine images

from the Berkeley image segmentation database [33]. Similar

kinds of distortions as present in the LIVE IQA database

[27] - JPEG 2000, JPEG, white noise, Gaussian blur, and

fast fading channel errors were introduced in each image at
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Fig. 2. Scatter plot between neighboring values of: Original luminance coefficients (Left Column) and MSCN coefficients (Right Column). Rows: horizontal,
vertical, main diagonal and secondary diagonal neighbors. Notice a high correlation between surrounding pixels with a diagonal kind of structure in the plots
shown in the left column. The normalization procedure greatly reduces these dependencies as is apparent in the plots shown in the right column.

varying degrees of severity to form the distorted image set.

As shown in Fig. 5(a), pristine and distorted images occupy

different regions in this parameter space. White noise is very

clearly separated from the pristine image set making it one

of the easiest to gauge the quality of. JPEG2000 and fast

fading have a high degree of overlap as fast fading images

in LIVE database are actually multidistorted, first compressed

into a bitstream using a JPEG2000 codec, then passed through

a Rayleigh fast fading channel to simulate packet loss [27].

We also model the statistical relationships between neigh-

boring pixels. While MSCN coefficients are definitely more

homogenous for pristine images, the signs of adjacent coef-

ficients also exhibit a regular structure, which gets disturbed

in the presence of distortion. We model this structure using

the empirical distributions of pairwise products of neighbor-

ing MSCN coefficients along four orientations – horizontal

(H), vertical (V ), main-diagonal (D1) and secondary-diagonal

(D2), as illustrated in Fig. 6. Specifically,

H(i, j) = Î(i, j)Î(i, j + 1) (7)

V (i, j) = Î(i, j)Î(i+ 1, j) (8)

D1(i, j) = Î(i, j)Î(i+ 1, j + 1) (9)
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(a)

(b) (c)

(d) (e)

Fig. 3. Effect of the normalization procedure. (a) Original Image I , (b) Local mean field µ, (c) I −µ, (d) Local variance field σ and (e) MSCN coefficients
((I − µ)/σ)

i,jCentral pixel i,j+1 Horizontal neighbour

i+1,j

Vertical neighbour

i-1,j+1Off Diagonal neighbour i+1,j+1 On Diagonal neighbour

Fig. 6. Various paired products computed in order to quantify neigh-
boring statistical relationships. Pairwise products are computed along four
orientations – horizontal, vertical, main-diagonal and secondary-diagonal at a
distance of 1 pixel.

D2(i, j) = Î(i, j)Î(i+ 1, j − 1) (10)

for i ∈ {1, 2 . . .M} and j ∈ {1, 2 . . . N}.

Under the Gaussian coefficient model, and assuming the

MSCN coeffficients are zero mean and unit variance, these

products obey the following distribution in the absence of

distortion [34]:

f(x, ρ) =
exp

(
|x|ρ
1−ρ2

)
K0

(
|x|

1−ρ2

)

π
√

(1− ρ2)
(11)

where f is an asymmetric probability density function, ρ
denotes the correlation coefficient of adjacent coefficents, and

K0 is the modified bessel function of the second kind. While

we have found that this density function is a good model of

the empirical histograms of products of adjacent normalized

coefficients, it has only a single parameter, and as such,

does not provide a good fit to the empirical histograms of

coefficient products (Fig. 2) from distorted images. Further,

it is not finite at the origin. Hence, as a practical alternative,

we adopt the very general asymmetric generalized Gaussian

distribution (AGGD) model [35]. In order to visualize how

paired products vary in the presence of distortion, in Fig. 7,

we plot histograms of paired products along each of four

orientations, for a reference image and for distorted versions

of it.

The AGGD with zero mode is given by:

f(x; ν, σ2
l , σ

2
r) =





ν

(βl+βr)Γ( 1

ν )
exp

(
−
(

−x
βl

)ν)
x < 0

ν

(βl+βr)Γ( 1

ν )
exp

(
−
(

x
βr

)ν)
x ≥ 0

(12)
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Fig. 5. (a) 2-D scatter plot between shape and scale parameters obtained by fitting GGD to the empiricial distributions of MSCN coefficients of pristine
images of Berkeley image segmentation database [33] and simulated distorted images where similar kinds of distortions as present in the LIVE IQA database
[27]- JPEG 2000, JPEG, White Noise, Gaussian Blur, and Fast fading channel errors were introduced in each image at varying degrees of severity. (b) 3-D
scatter plot between shape, left scale and right scale obtained by fitting AGGD to horizontal paired products using same set of images as (a).

where

βl = σl

√
Γ
(
1
ν

)

Γ
(
3
ν

) (13)

βr = σr

√
Γ
(
1
ν

)

Γ
(
3
ν

) (14)

The shape parameter ν controls the ‘shape’ of the distri-

bution while σ2
l and σ2

r are scale parameters that control the

spread on each side of the mode, respectively. The AGGD fur-

ther generalizes the generalized Gaussian distribution (GGD)

[32] and subsumes it by allowing for asymmetry in the

distribution. The skew of the distribution is a function of the

left and right scale parameters. If σ2
l = σ2

r , then the AGGD

reduces to the GGD. Although the AGGD is infrequently

used, it has been deployed to model skewed heavy-tailed

distributions of image texture [35]. The parameters of the

AGGD (ν, σ2
l , σ

2
r ), are estimated using the moment-matching

based approach proposed in [35]. Figure 5(b) shows the 3-D

scatter plot between (ν, σ2
l , σ

2
r ) for horizontal paired products

using the same set of images as used for showing separation

in GGD parameter space. It can be visualized that different

distortions occupy different parts of the space. Also, we expect

images to have a better separation when modeled in the high

dimensional space of parameters obtained by fitting AGGD

distributions to paired products from different orientations and

scales together. This figure also motives the use of (12) to

better capture the finite empirical density function.

The parameters (η, ν, σ2
l , σ2

r ) of the best AGGD fit are

extracted where η is given by:

η = (βr − βl)
Γ
(
2
ν

)

Γ
(
1
ν

) (15)

Thus for each paired product, 16 parameters (4 parame-

ters/orientation × 4 orientations) are computed, yielding the

next set of features. Table I summarizes the features utilized.

Images are naturally multiscale, and distortions affect image

structure across scales. Further, as research in quality assess-

ment has demonstrated, incorporating multiscale information

when assessing quality produces QA algorithms that perform

better in terms of correlation with human perception [29],

[13]. Hence, we extract all features listed in Table I at two

scales - the original image scale, and at a reduced resolution

(low pass filtered and downsampled by a factor of 2). We

observed that increasing the number of scales beyond 2 did

not contribute to performance much. Thus, a total of 36
features – 18 at each scale, are used to identify distortions

and to perform distortion-specific quality assessment. In Fig.

8, we plot the Spearman’s rank ordered correlation coefficient

(SROCC) between each of these features and human DMOS

from the LIVE IQA database, for each of the distortions in

the database – JPEG and JPEG2000 compression, additive

white Gaussian noise, Gaussian blur and a Rayleigh fast fading

channel distortion, to ascertain how well the features correlate

with human judgments of quality. Note that no training is

undertaken here, the plot is simply to illustrate that each

feature captures quality information and to show that images

are affected differently by different distortions.

B. Quality Evaluation

A mapping is learned from feature space to quality scores

using a regression module, yielding a measure of image qual-

ity. The framework is generic enough to allow for the use of

any regressor. In our implementation, a support vector machine

(SVM) regressor (SVR) [36] is used. SVR has previously been

applied to image quality assessment problems [12], [37], [38].
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Fig. 7. Histograms of paired-products of MSCN coefficients of a natural undistorted image and various distorted versions of it. (a) Horizontal, (b) Vertical,
(c) Main-diagonal, (d) Secondary-diagonal. Distortions from the LIVE IQA database [27] – JPEG2000 (jp2k) and JPEG compression (jpeg), Additive white
Gaussian noise (WN), Gaussian blur (blur), and a Rayleigh fast-fading channel simulation (FF).

TABLE I
A SUMMARY OF FEATURES EXTRACTED IN ORDER TO CLASSIFY AND QUANTIFY DISTORTIONS.

Feature ID Feature Description Computation Procedure

f1 − f2 Shape and variance Fit GGD [32] to MSCN coefficients
f3 − f6 Shape, mean, left variance, right variance Fit AGGD [35] to H pairwise products
f7 − f10 Shape, mean, left variance, right variance Fit AGGD [35] to V pairwise products
f11 − f14 Shape, mean, left variance, right variance Fit AGGD [35] to D1 pairwise products
f15 − f18 Shape, mean, left variance, right variance Fit AGGD [35] to D2 pairwise products

For example, a learning driven feature pooling approach using

SVR was proposed in [38]. Wavelet-domain NSS and singular

value decomposition features have been used to map quality

to human ratings via SVR in [12] and [37] respectively. SVR

is generally noted for being able to handle high dimensional

data [39]. We utilize the LIBSVM package [40] to implement

the SVR with a radial basis function (RBF) kernel.

IV. PERFORMANCE EVALUATION

A. Correlation with Human Opinions

We used the LIVE IQA database [27] to test the perfor-

mance of BRISQUE, which consists of 29 reference images

with 779 distorted images spanning five different distortion

categories – JPEG2000 (JP2K) and JPEG compression, ad-

ditive white Gaussian noise (WN), Gaussian blur (Blur), and

a Rayleigh fast-fading channel simulation (FF). Each of the

distorted images has an associated difference mean opinion

score (DMOS) which represents the subjective quality of the

image.

Since the BRISQUE approach requires a training procedure

to calibrate the regressor module, we divide the LIVE database

into two randomly chosen subsets – 80% training and 20%

testing – such that no overlap between train and test content

occurs. We do this to ensure that the reported results do

not depend on features extracted from known spatial content,

which can artifically improve performance. Further, we repeat

this random train-test procedure 1000 times and report the

median of the performance across these 1000 iterations, in

order to eliminate performance bias.

The Spearman’s rank ordered correlation coefficient
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Fig. 8. Correlation of features with human judgments of quality (DMOS)
for different distortions

(SROCC) and Pearson’s (linear) correlation coefficient (LCC)

between the predicted score from the algorithm and DMOS

were used to access QA performance. Before computing LCC,

the algorithm scores were passed through a logistic non-

linearity as described in [27]. A value close to 1 for SROCC

and LCC indicate good performance in terms of correlation

with human opinion. These performance indices are tabulated

in Tables II and III respectively2.

We also tabulated the performance of three full-reference

indices: peak-signal-to-noise ratio (PSNR), structural similar-

ity index (SSIM) [28] and multi-scale structural similarity

index (MS-SSIM) [29]. Although PSNR is a poor measure

of perceptual quality, it is often used to benchmark for QA

algorithms [41], [42]. The SSIM and MS-SSIM indices are

popular owing to their performance and simplicity. We also

include the performance of the previously summarized general

purpose no-reference algorithms - CBIQ [20], LBIQ [21],

BLIINDS-II [13] and DIIVINE index [12]. We requested

quality scores from authors for CBIQ [20] and LBIQ [21].

Implementations of other indices are available online [43],

[44], [45], [46]. We also reported the correlations obtained

by modeling empirical distributions of MSCN coefficients

(pointwise) alone and pairwise products alone to compare their

relative importance.

B. Variation with window size

As observed from the Table IV, the performance of

BRISQUE remains relatively stable with respect to variation in

the window size used to compute the local mean and variances.

However, the performance starts to decrease when it becomes

fairly large as the computations become non-local.

2Further, note that due to randomness of the 1000 trials, there may be a
slight discrepancy between results reported here and elsewhere, however, these
differences in correlations are not statistically significant, and are simply an
artifact of the random train-test sampling

TABLE II
MEDIAN SPEARMAN RANK ORDERED CORRELATION COEFFICIENT

(SROCC) ACROSS 1000 TRAIN-TEST COMBINATIONS ON THE LIVE IQA
DATABASE. Italics INDICATE NO-REFERENCE ALGORITHMS.

JP2K JPEG WN Blur FF All

PSNR 0.8646 0.8831 0.9410 0.7515 0.8736 0.8636

SSIM 0.9389 0.9466 0.9635 0.9046 0.9393 0.9129

MS-SSIM 0.9627 0.9785 0.9773 0.9542 0.9386 0.9535

CBIQ 0.8935 0.9418 0.9582 0.9324 0.8727 0.8954

LBIQ 0.9040 0.9291 0.9702 0.8983 0.8222 0.9063

BLIINDS-II 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124

DIIVINE 0.9123 0.9208 0.9818 0.9373 0.8694 0.9250

Pointwise 0.7957 0.8593 0.9608 0.0.8759 0.7773 0.8297

Pairwise 0.9007 0.9510 0.9773 0.9502 0.8741 0.9302

BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395

TABLE III
MEDIAN LINEAR CORRELATION COEFFICIENT ACROSS 1000 TRAIN-TEST

COMBINATIONS ON THE LIVE IQA DATABASE. Italics INDICATE

NO-REFERENCE ALGORITHMS.

JP2K JPEG WN Blur FF All

PSNR 0.8762 0.9029 0.9173 0.7801 0.8795 0.8592

SSIM 0.9405 0.9462 0.9824 0.9004 0.9514 0.9066

MS-SSIM 0.9746 0.9793 0.9883 0.9645 0.9488 0.9511

CBIQ 0.8898 0.9454 0.9533 0.9338 0.8951 0.8955

LBIQ 0.9103 0.9345 0.9761 0.9104 0.8382 0.9087

BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8790 0.9164

DIIVINE 0.9233 0.9347 0.9867 0.9370 0.8916 0.9270

Pointwise 0.7947 0.8447 0.9711 0.0.8670 0.8151 0.8258

Pairwise 0.8968 0.9571 0.9830 0.9438 0.8952 0.9309

BRISQUE 0.9229 0.9734 0.9851 0.9506 0.9030 0.9424

C. Statistical Significance and Hypothesis Testing

Figure 9 plots the mean SROCC across the 1000 trials and

the standard deviations of performance across these 1000 trials

for each of the algorithms considered here.

Although there exist differences in the median correlations

between the different algorithms (see Table II), these differ-

ences may not be statistically relevant. Hence, to evaluate

the statistical significance of performance of each of the

algorithms considered, we performed hypothesis testing based

on the t-test [47] on the SROCC values obtained from the

1000 train-test trials, and we tabulated the results in Table V.

The null hypothesis is that the mean correlation for the

(row) algorithm is equal to mean correlation for the (column)

algorithm with a confidence of 95%. The alternate hypothesis

is that the mean correlation of row is greater than or lesser

than the mean correlation of the column. A value of ‘1’ in the

table indicates that the row algorithm is statically superior to

the column algorithm, whereas a ‘-1’ indicates that the row is

statistically worse than the column. A value of ‘0’ indicates

that the row and column are statistically indistinguishable (or

equivalent), i.e., we could not reject the null hypothesis at the

95% confidence level.

TABLE IV
MEDIAN SPEARMAN RANK ORDERED CORRELATION COEFFICIENT

(SROCC) ACROSS 1000 TRAIN-TEST COMBINATIONS ON THE LIVE IQA
DATABASE FOR DIFFERENT WINDOW SIZES. Italics INDICATE

NO-REFERENCE ALGORITHMS.

K,L JPEG2000 JPEG White noise Gaussian Blur Fast fading Overall

4 0.9120 0.9581 0.9764 0.9535 0.8839 0.9388

5 0.9083 0.9510 0.9742 0.9497 0.8790 0.9360

6 0.9043 0.9483 0.9706 0.9417 0.8725 0.9309

7 0.9040 0.9482 0.9700 0.9407 0.8720 0.9305

8 0.8950 0.9405 0.9631 0.9321 0.8683 0.9208
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Fig. 9. Mean SROCC and standard error bars for various algorithms across
the 1000 train-test trials on LIVE IQA database.

TABLE V
RESULTS OF ONE SIDED T-TEST PERFORMED BETWEEN SROCC VALUES

OF VARIOUS IQA ALGORITHMS. A VALUE OF ‘1’ INDICATES THAT THE

ROW ALGORITHM IS STATICALLY SUPERIOR TO THE COLUMN

ALGORITHM; ‘-1’ INDICATES THAT THE ROW IS WORSE THAN THE

COLUMN; A VALUE OF ‘0’ GIVES INDICATES THAT THE TWO ALGORITHMS

ARE STATISTICALLY INDISTINGUISHABLE. Italics INDICATE

NO-REFERENCE ALGORITHMS.

PSNR SSIM MSSSIM CBIQ LBIQ BLIINDS-II DIIVINE BRISQUE

PSNR 0 -1 -1 -1 -1 1 -1 -1

SSIM 1 0 -1 1 1 1 -1 -1

MSSSIM 1 1 0 1 1 1 1 1

CBIQ 1 -1 -1 0 -1 1 -1 -1

LBIQ 1 -1 -1 1 0 1 -1 -1

BLIINDS-II 1 -1 -1 1 1 0 -1 -1

DIIVINE 1 1 -1 1 1 1 0 -1

BRISQUE 1 1 -1 1 1 1 1 0

From Table V we conclude that BRISQUE is highly com-

petitive with all no reference algorithms tested and statistically

better than the full reference algorithms PSNR and SSIM.

Given that these measures require additional information in

the form of the reference image, this is by no means a small

achievement. This result suggests that to the extent distortions

can be trained on, one can replace full reference algorithms

such as SSIM with the proposed BRISQUE without any loss of

performance. We note that BRISQUE remains slightly inferior

to the FR MS-SSIM, indicating that there may still be some

room for improvement in performance.

D. Classification Accuracy

In order to demonstrate that BRISQUE features can also

be used for explicit distortion-identification [48], we report

the median classification accuracy of the classifier for each

of the distortions in the LIVE database, as well as across all

distortions in Table VI.

Further, in order to visualize which distortions are ‘con-

fused’ the most, Fig. 10 plots the confusion matrix for each

of the distortions, where the sum of each row in the confusion

TABLE VI
MEDIAN CLASSIFICATION ACCURACY ACROSS 1000 TRAIN-TEST TRIALS.

JP2kK JPEG WN Blur FF All

Classification Accuracy (%) 82.9 88.9 100.0 96.7 83.3 88.6

JP2K
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Fig. 10. Mean confusion matrix for classifier across 1000 trials: which row
(distortion) is confused as which column (distortion). Higher number indicates
greater confusion.

TABLE VII
MEDIAN SPEARMAN RANK ORDERED CORRELATION COEFFICIENT

(SROCC) ACROSS 1000 TRAIN-TEST COMBINATIONS ON THE LIVE IQA
DATABASE. Italics INDICATE NO-REFERENCE ALGORITHMS.

JP2K JPEG WN Blur FF All

BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395

BRISQUE (2-stage) 0.8991 0.9439 0.9849 0.9479 0.8825 0.9315

matrix is 1 and actual values represent the mean confusion

percentage across the 1000 train-test trials. We see from

Fig. 10 that FF and JP2K are most confused with each other

which is not surprising, since FF distortion is a combination of

JP2K followed by packet-loss errors. JP2K and JPEG are also

confused sometimes. WN and Blur are generally not confused

with other distortions.

E. Two-stage Performance

We also investigated the possibility of replacing the one

stage framework, where features are directly mapped to qual-

ity, with a two-stage framework, similar to that proposed in

[48]. In this approach, the same set of features are used to

identify the distortion afflicting the image as are then used

for distortion-specific QA. Such a two-stage approach was

used with recent success for NSS-based blind IQA [12]. In

Table VII, we tabulate the median SROCC value across 1000

trials for the two-stage realization of BRISQUE. We also list

the performances of BRISQUE for comparison purposes. The

slight dip in the performance can be attributed to imperfect

distortion identification in the first stage of the two-stage

framework.

F. Database Independence

Having evaluated BRISQUE on the LIVE IQA database,

we now demonstrate that the performance of BRISQUE is not

bound by the database on which it is tested. To show this, we

trained BRISQUE on the entire LIVE IQA database and then

applied BRISQUE to the TID2008 database [4].

The TID database consists of 25 reference images and 1700

distorted images over 17 distortion categories [4]. Since there

are only 24 natural images, and our algorithm is based on
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TABLE VIII
SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) ON

THE TID2008 DATABASE. Italicized ALGORITHMS ARE NR IQA
ALGORITHMS, OTHERS ARE FR IQA ALGORITHMS.

JP2K JPEG WN Gblur All

PSNR 0.825 0.876 0.918 0.934 0.870

SSIM 0.963 0.935 0.817 0.960 0.902

BRISQUE 0.832 0.924 0.829 0.881 0.896

TABLE IX
INFORMAL COMPLEXITY ANALYSIS OF BRISQUE. TABULATED VALUES

REFLECT THE PERCENTAGE OF TIME DEVOTED TO EACH OF THE STEPS IN

BRISQUE.

Step Percentage of Time

MSCN 50.9

GGD 8.6

Pairwise Products and AGGD 40.6

the statistics of natural images, we test our approach only on

these 24 images. Further, although there exist 17 distortion

categories, we tested BRISQUE only on these distortions

that it is trained for: JPEG, JPEG2000 compression (JP2K),

additive white noise (WN) and Gaussian Blur (blur) – FF

distortion does not exist in the TID database. The results

of applying BRISQUE on TID are tabulated in Table VIII,

where we also list the performance of PSNR and SSIM

for comparison purposes. It should be clear that BRISQUE

performs well in terms of correlation with human perception

of quality and that the performance does not depend on the

database.

G. Computational Complexity

Our description of BRISQUE focused on the relationship

of the statistical features to natural scene statistics and the

effect that distortions have on such statistics. However, given

the small number of features that are extracted (18 per scale)

and the fact that parameter estimation needs to be performed

only 5 times for an entire image, in comparison to parameter

estimation for each block as in BLIINDS-II [13], the reader

will appreciate the fact that BRISQUE is extremely efficient.

Having demonstrated that BRISQUE performs well in terms

of correlation with human perception, we also now show that

BRISQUE has low complexity. In Table IX we list the relative

percentage of time each of the stages of BRISQUE uses as a

percentage of the time taken to compute the quality of an

image (once trained).

We also compare the overall computational complexity of

BRISQUE with the FR PSNR and the NR BLIINDS-II and

DIIVINE, and in Table X, we list the time taken (in seconds)

to compute each quality measure on an image of resolution

512×768 on a 1.8 Ghz single-core PC with 2 GB of RAM. We

use unoptimized MATLAB code for all of these algorithms in

order to ensure a fair comparison. We also list the efficiency as

a fraction of the time taken to compute PSNR, to allow for a

machine-independent comparison across algorithms. As Table

X demonstrates, BRISQUE is quite efficient, outperforming

the DIIVINE index and the BLIINDS-II index by a large

amount. This suggests that the spatial-domain BRISQUE an

ideal candidate for real-time blind assessment of visual quality.

TABLE X
COMPLEXITY ANALYSIS OF BRISQUE: A COMPARISON OF THE AMOUNT

OF TIME TAKEN TO COMPUTE VARIOUS QUALITY MEASURES FOR A

512× 768 IMAGE ON A 1.8 GHZ SINGLE-CORE PC WITH 2 GB OF RAM.

Algorithm Time (seconds)

PSNR 0.05

DIIVINE 149

BLIINDS-II 70

BRISQUE 1

V. APPLICATION TO BLIND IMAGE DENOISING

The computational efficiency and excellent quality predic-

tion performance makes BRISQUE an attractive option for

practical applications. One such application could be using a

quality measure to augment the performance of image repair

algorithms. In this section, we describe one such approach,

where the BRISQUE features are used to transform a non-

blind image denoising algorithm into a blind image denoising

algorithm.

Blind image denoising algorithms seek to reduce the amount

of noise present in corrupted images, without any additional

information such as the noise variance. Although image de-

noising is a well studied problem in image processing [50],

[51], [52], [53], [54], blind image denoising remains relatively

underexplored [54], [49]. The proposed algorithms typically

address parameter estimation in an ad-hoc fashion without

regard to natural scene statistics. Here, we demonstrate a

systematic perception-based parameter estimation approach

that results in better denoising performance. We augment a

state-of-the-art image denoising algorithm by using BRISQUE

feature-based parameter prediction to improve performance.

The work closest in concept to this approach is the one

proposed in [49] where image content measures were used to

predict the noise variance in the image, which was then used

for image denoising; however the approach is computationally

intensive and the measure of content in the image may

not be the ideal measure to predict noise variance. In [49],

the noisy image is denoised multiple times and quality is

estimated using their proposed no-reference content evaluation

algorithm. Amongst the large set of denoised images produced,

the image with the best content-quality is selected as the

denoised image. As an alternative, we propose a learning based

framework where noise parameters are estimated using natural

scene statistics based on BRISQUE features.

The denoising algorithm that we use is the one proposed in

[54], which requires as input the noise variance in the image.

However, our experiments suggest that when the algorithm

is fed the true accurate noise-variance, the performance of

the denoiser is sub-par. The performance of the algorithm

drastically improves, if a (systematically) different parameter

selected based on perceptual quality is fed as input to the

algorithm. In order to demonstrate this, in Fig. 11, we plot an

image denoised using the true noise variance and that arrived at

using the noise variance from our approach (described below).

Notice that our approach produces better visual quality, and

better objective quality, as gauged by the multi-scale structural

similarity index (MS-SSIM) [29].

We design our training framework to account for this
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(a) (b)

(c)

Fig. 11. Accurate noise variance as input to the algorithm in [49] produces poorer quality denoised images: (a) Noisy Image (σ = 0.0158, MS-SSIM =
0.9063 ), (b) Denoised with σ = 0.0158 (MS-SSIM = 0.9176 ) and (c) Denoised with σ = 0.0040 (MS-SSIM = 0.9480)

discrepency and to ensure that the denoised image attains

the highest visual quality. Our approach proceeds as follows.

Given a large set of noisy images afflicted with different

levels of noise, we denoise each image using the denoising

algorithm – BM3D [54] – by providing as input images

distorted with various values of noise variance. The denoised

images so obtained are judged for their quality using MS-

SSIM and the noise parameter corresponding to the image

with the maximum denoised quality is set as the input to the

algorithm. These noise variances are then used in a training

phase, where BRISQUE features are mapped on to the noise-

prediction parameter, using SVM regression as before [40].

Once trained, the automatic parameter prediction approach is

capable of predicting the level of input noise to BM3D, so

that the output denoised image has the highest visual quality.

We note that our training approach resembles that of [49].

Given a new (unseen) test noisy image, the BRISQUE aug-

mented BM3D approach predicts the accurate input to BM3D

and denoises the image with (as we shall soon see) much

higher visual quality than the baseline. Notice that BRISQUE

augmentation is not limited to the BM3D algorithm; and any

non-blind algorithm could be improved by using BRISQUE

natural scene features to produce a blind image denoiser.

To show the effectiveness of our algorithm and to demon-

strate its robustness across a large variety of images and dis-

tortion levels, we created a noisy image dataset from the 300

images present in the Berkeley image segmentation database

[33]. We introduced 10 different levels of Gaussian noise to

each image yielding a total of 3000 noisy images. The noise

variance ranged from 0.001 to 0.5, uniformly sampled on a

logarithmic scale. 1000 images were then used for training and

2000 for testing thereby ensuring no content overlap between

the two sets. The regression model described above was trained

on 1000 training images and then used to predict the input

parameter on the test images.

Once denoised images are obtained, we compare their

quality (using MS-SSIM) using our approach as well for

the default implementation of the BM3D algorithm and in

Fig. 12, we plot the mean quality and the associated standard

errors at each noise level across the 2000 test images for both

these approaches. It is clear that BRISQUE augmented BM3D

produces much higher quality images than the baseline BM3D.

We also analyzed whether the differences observed in the

quality of the denoised images between our approach and the

reference BM3D implementation are statistically significant

using the t-test [55]. Our analysis indicates that for all noise

variances simulated in the present data, our approach is

statistically superior to the reference BM3D implementation in

terms of perceived visual quality at the 95% confidence level,

excepting when the noise variance is a tiny 0.0316 - where

the two approaches become statistically indistinguishable.

VI. CONCLUSION

We proposed a natural scene statistic based distortion-

generic blind/no-reference (NR) quality assessment algorithm

– the Blind/Referenceless Image Spatial QUality Evaluator

(BRISQUE) – which operates in the spatial domain. No

distortion specific features such as ringing, blur or blocking

were modeled in the algorithm. The algorithm only quantifies

the ‘naturalness’ (or lack thereof) in the image due to presence

of distortions.

We detailed the algorithm and the statistical features ex-

tracted, and demonstrated how each of these features corre-

late with human perception. We then undertook a thorough
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Fig. 12. Shows the mean quality and associated errors at each noise
level across 2000 test images for our approach as well as the reference
implementation of BM3D

evaluation of the BRISQUE index in terms of correlation

with human perception and demonstrated that BRISQUE is

statistically better than FR PSNR and SSIM as well as

highly competitive to all NR algorithms compared with. We

demonstrated that BRISQUE performance is independent of

database content and BRISQUE features may be used for

distortion-identification as well. Further, we also showed that

BRISQUE is computationally efficient and that its efficiency

is superior to other distortion-generic approaches to NR IQA,

thus making BRISQUE an attractive option for practical appli-

cations like image denoising. We demonstrated this application

by augmenting non-blind image denoising algorithms using

the BRISQUE features to produce blind image denoising

algorithms.
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