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Abstract

The goal of No-Reference Image Quality Assessment

(NR-IQA) is to estimate the perceptual image quality in ac-

cordance with subjective evaluations, it is a complex and

unsolved problem due to the absence of the pristine refer-

ence image. In this paper, we propose a novel model to ad-

dress the NR-IQA task by leveraging a hybrid approach that

benefits from Convolutional Neural Networks (CNNs) and

self-attention mechanism in Transformers to extract both lo-

cal and non-local features from the input image. We capture

local structure information of the image via CNNs, then to

circumvent the locality bias among the extracted CNNs fea-

tures and obtain a non-local representation of the image,

we utilize Transformers on the extracted features where we

model them as a sequential input to the Transformer model.

Furthermore, to improve the monotonicity correlation be-

tween the subjective and objective scores, we utilize the rel-

ative distance information among the images within each

batch and enforce the relative ranking among them. Last

but not least, we observe that the performance of NR-IQA

models degrades when we apply equivariant transforma-

tions (e.g. horizontal flipping) to the inputs. Therefore,

we propose a method that leverages self-consistency as a

source of self-supervision to improve the robustness of NR-

IQA models. Specifically, we enforce self-consistency be-

tween the outputs of our quality assessment model for each

image and its transformation (horizontally flipped) to utilize

the rich self-supervisory information and reduce the uncer-

tainty of the model. To demonstrate the effectiveness of our

work, we evaluate it on seven standard IQA datasets (both

synthetic and authentic) and show that our model achieves

state-of-the-art results on various datasets. 1

1. Introduction

Being able to predict the perceptual image quality ro-

bustly and accurately without having access to the reference

image is crucial for different computer vision applications
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as well as social and streaming media industries. On a rou-

tine day, on average several billion photos are uploaded and

shared on social media platforms such as Facebook, Insta-

gram, Google, Flicker, etc; low-quality images can serve

as irritants when they convey a negative impression to the

viewing audiences. On the other hand, at one extreme, not

being able to assess the image quality accurately can be life-

threatening (e.g., when low-quality images impede the abil-

ity of autonomous vehicles [1, 2] and traffic controllers [3]

to safely navigate environments).

Objective image quality assessment (IQA) attempts to

use computational models to predict the image quality in a

manner that is consistent with quality ratings provided by

human subjects. Objective quality metrics can be divided

into full-reference (reference available or FR), reduced-

reference (RR), and no-reference (reference not available or

NR) methods based on the availability of a reference image

[4]. The goal of the no-reference image quality assessment

(NR-IQA) or blind image quality assessment (BIQA) meth-

ods is to provide a solution when the reference image is not

available [5, 6, 7, 8].

NR-IQA mainly divides into two groups, distortion-

based and general-purpose methods. A distortion-based ap-

proach aims to predict the quality score for a specific type

of distortion (e.g., blocking, blurring). Distortion-based

approaches have limited applications in real-world scenar-

ios since we cannot always specify distortion types. Thus,

a general-purpose approach is designed to evaluate image

quality without being limited to distortion types. General-

Purpose methods make use of extracted features that are in-

formative for various types of distortions. Therefore, their

performances highly depend on designing elaborate fea-

tures.

Traditionally, general-based NR-IQA methods focused

on quality assessment for synthetically distorted images

(e.g., Blur, JPEG, Gaussian Noise). However, the

main challenges along with existing synthetically distorted

datasets are 1) they contain limited content and distortion

diversity, and 2) they do not capture complex mixtures of

distortions that often occur in real-world images. Recently,

by introducing more in-the-wild datasets such as CLIVE
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[9], KonIQ-10K [10], and LIVEFB [11] we can have a bet-

ter understanding of complex distortions (e.g., poor lighting

conditions, sensor limitations, lens imperfections, amateur

manipulations) that often occur in real-world images. In

contrast to synthetic distortions in which degradation pro-

cesses are precisely specified and can be simulated in lab-

oratory environments, authentic distortions are more com-

plicated because there is no reference-image available, and

it is unclear how the human visual system (HVS) distin-

guishes between the picture quality and picture authenticity.

For instance, while distortion can detract from aesthetics, it

can also contribute to it, as when intentionally adding blur

(bokeh) to achieve photographic effects. Moreover, HVS

perceives image quality differently among various image

contents and quantifies image quality differently for images

with different contents with the same level and type of dis-

tortion [12, 13, 14, 15].

Existing deep learning-based IQA methods mainly rely

only on the subjective human scores (MOS/DMOS) and

modeling the quality prediction task mainly as a regression

or classification task. This causes the models not to be able

to leverage the relative ranking between the images explic-

itly. We propose to take into account the relative distance

information between the images within each batch and en-

force our model to learn the relative ranking between the

images with the highest and lowest quality scores in addi-

tion to the quality assessment task.

Moreover, as shown in Fig. 1, despite using common

augmentation techniques during the training, the perfor-

mance of IQA methods degrade when we apply a simple

equivariant transformation (e.g., horizontal filliping) to the

input image. This contradicts the way that humans perceive

the quality of images. In other words, subjective percep-

tual quality scores remain the same for specific equivari-

ant transformations that can appear very often during real-

life applications. To alleviate this issue we propose a self-

consistency approach that enforces our model to have con-

sistent predictions for an image and its transformed version.

The contributions of this work are summarized as follows:

• We introduce an end-to-end deep learning approach for

NR-IQA. Our proposed model utilizes local and non-

local information of an image by leveraging CNNs

and self-attention mechanism of Transformers. Partic-

ularly, in addition to local features that are generated

via CNNs, we take advantage of the sequence model-

ing and self-attention mechanism of Transformers to

learn a non-local representation of the image from the

multi-scale features that are extracted from different

layers of CNNs. The non-local features are then fused

with the local features to predict the final image quality

score (Sec. 3.1, 3.2, and 3.3).

• We propose a relative ranking loss that explicitly en-

Figure 1. Illustration of the sensitivity of NR-IQA models to hor-

izontal flipping. On the right side of each image, we provide the

subjective quality score (MOS/DMOS) and the predicted quality

score; the red numbers in the parentheses show the absolute dif-

ference between the predictions when the image is flipped.

forces the relative ranking among the samples. We

propose to use a triplet loss with an adaptive mar-

gin based on the human subjective scores to make the

distance between the image with the highest (lowest)

quality score closer to the one with the second-highest

(second-lowest) quality score and further away from

the image with the lowest (highest) score (Sec. 3.4).

• Lastly, we propose to use an equivariant transforma-

tion of the input image as a source of self-supervisory

to improve the robustness of our proposed model. Dur-

ing the training, we use self-consistency between the

output for each image and its transformation to uti-

lize the rich self-supervisory information and reduce

the sensitivity of the network (Sec. 3.5).

• Extensive experiments on seven benchmark datasets

(for both authentic and synthetic distortions) confirm

that our proposed method performs well across differ-

ent datasets.

2. Related Work

Before the raise of deep learning, early version of

general-purpose NR-IQA methods mainly divide into natu-

ral scene statistics (NSS) based metrics [16, 17, 6, 5, 18, 19,

8, 20, 21] and learning-based metrics [22, 23, 24, 25, 26,

27]. The underlying assumption for hand-crafted feature-

based approaches is that the natural scene statistics (NSS)

extracted from natural images are highly regular [28] and

different distortions will break such statistical regularities.

Variations of NSS features in different domains such as



spatial [6, 18, 8], gradient [8], discrete cosine transform

(DCT) [5], and wavelet [17], showed impressive perfor-

mances for synthetically distorted images. Learning-based

approaches utilize machine learning techniques such as dic-

tionary learning to map the learned features to the human

subjective scores. Ye et al. [23] used a dictionary learn-

ing method to encode the raw image patches to features

and to predict subjective quality scores by support vector

regression (SVR) model. Zhang et al. [26] combined the

semantic-level features with local features for quality esti-

mation. Although early versions of hand-crafted and fea-

ture learning methods perform well on small synthetically

distorted datasets, they suffer from not being able to model

real-world distortions.

Deep learning for NR-IQA. By success of deep learn-

ing [29, 30] in many computer vision tasks, different ap-

proaches utilize deep learning for NR-IQA [31, 32, 33, 34,

35, 36, 37, 38, 39, 36, 40, 41, 42, 43, 10, 44]. Early version

of deep learning NR-IQA methods [31, 45, 46, 34, 46, 35]

leveraged deep features from CNNs [29, 30] while pre-

trained on large classification dataset ImageNet [47]. [48,

49] addressed NR-IQA in a multi-task manner where they

leverage subjective quality score as well as distortion type

simultaneously during the training. Ma et al. [38] pro-

posed a multi-task network where two sub-networks train

in two stages for distortion identification and quality pre-

diction. [50, 51, 52, 36] used some sort of the reference im-

ages during their training to predicted the quality score in a

blind manner. Hallucinated-IQA [36] proposed an NR-IQA

method based on generative adversarial models, where they

first generated a hallucinated reference image to compen-

sate for the absence of the true reference and then paired the

information of hallucinated reference with the distorted im-

age to estimate the quality score. Talebi et al. [37] proposed

a CNN-based model to predict the perceptual distribution of

subjective quality scores (instead of the mean value). Zhu et

al. [43] proposed a model to leverage meta-learning to learn

the prior knowledge that is shared among different distor-

tion types. Su et al. [42] proposed a model that extracts

content features from the deep model in different scales and

pools them to predict image quality.

Transformers for NR-IQA. Currently, CNNs are the

main backbone for features extraction among the state-of-

the-art NR-IQA models. Although CNNs capture the lo-

cal structure of the image, they are well known for missing

to capture non-local information and having strong locality

bias. Furthermore, CNNs demonstrated a bias towards spa-

tial invariance through shared weights across all positions

which makes them ineffective if a more complex combina-

tion of features is needed. Since IQA highly depends on

both local and non-local features, we propose to use Trans-

formers and CNNs together. Inspired by NLP which widely

employs Transformers block to model long-range depen-

dencies in language sequence, we utilize a Transformer-

based network to compute the dependencies among the

CNN extracted features from multi-scales and model the

non-local dependency among the extracted features.

Transformers were introduced by Vaswani et al. [53] as

a new attention-based building block for machine transla-

tion. Attention mechanisms [54] are neural network lay-

ers that aggregate information from the entire input se-

quence. Due to the success of Transformer-based models

in the NLP field, we start to see different attempts to ex-

plore the benefits of Transformer for computer vision tasks

[55, 56, 56, 57, 58, 59]. The application of Transformer

for NR-IQA is not explored yet. Concurrently with our

work, [60] used Transformers for NR-IQA, where the fea-

tures from the last layer of CNNs were sent to Transform-

ers for the quality prediction task. Different from [60] that

use Transformers as an additional feature extraction block

at the end of CNNs, we use it to model the non-local depen-

dency between the extracted multi-scale features. Notably,

we leverage the temporal sequence modeling properties of

Transformers to compute a non-local representation of the

image from the multi-scale features (Sec. 3.2).

Learning to rank for NR-IQA. These approaches [61,

62, 38, 39] address NR-IQA as a learning-to-rank prob-

lem, where the relative ranking information is used during

the training. Zhang et al. [39] leveraged discrete ranking

information from images of the same content and distor-

tion but at different levels (degree of distortion) for quality

prediction. [63] used continuous ranking information from

MOSs and variances between the subjective scores. [38, 64]

extracted binary ranking information via FR-IQA methods

during the training. However, due to the use of reference

images, their method is only applicable to synthetic distor-

tions. Existing ranking-based algorithms use a fixed mar-

gin (which is selected empirically) to minimize their losses.

Also, most of the aforementioned approaches (except [63])

fails to perform well on the authentic datasets mainly due

to the requirement of using referee images during the train-

ing stage. In our proposed method, we also leverage the

MOS/DMOS information for relative ranking. However, in

contrast to the existing methods, we propose to minimize

the relative distance among the samples via a triplet loss

with an adaptive margin which does not need the empirical

margin selection.

Poor generalization in deep neural networks is a well-

known problem and an active area of research. In IQA tasks

poor generalization is mostly considered as when the model

performs well on the dataset that it is trained on but poorly

on another dataset with the same type of artifacts. Rea-

sons such as various contents, domain shift, or scale shift in

the subjective scores mainly cause the poor generalization

of IQA models. In our experiments, in addition to cross

dataset evaluation, we also notice that the performance of



Figure 2. Flowchart of our proposed NR-IQA algorithm.

deep-learning based IQA models degrades when we apply

horizontal flipping or rotation to the inputs. Common ap-

proaches such as dropout [65], ensembling [66], cross-task

consistency [67], and augmentation proposed to increase

the generalization in deep models. However, making pre-

dictions using a whole ensemble of models is cumbersome

and too computationally expensive due to large models’

sizes. Data augmentation has been successful in increas-

ing the generalization of CNNs. However, as shown in Fig.

1, a model can still suffer from poor generalization for a

simple transformation. [68, 69] show that although using

different augmentation methods improve the generalization

of CNNs, they are still sensitive to equivariant perturbations

in data.

As shown in Fig. 1, NR-IQA models that used image

flipping as an augmentation during training still fail to have

a robust quality prediction for an image and its flipped ver-

sion. This kind of high variance in the quality prediction

can affect the robustness of computer vision applications

directly. In this work, we improve the consistency of our

model via the simple observation that the results of the NR-

IQA model should not change under transformations such

as horizontal flipping.

3. Proposed Method

In this section, we detail our proposed model, which is

an NR-IQA method based on Transformers, Relative rank-

ing, and Self consistency, namely TReS. Fig. 2 shows an

overview of our proposed method.

3.1. Feature Extraction

Given an input image I ∈ R
3×m×n, where m and n de-

note width and height, our goal is to estimate its perceptual

quality score (q). Let fϕ represent a CNN with learnable

parameters φ, and Fi ∈ R
b×ci×mi×ni denotes the features

from the ith block of CNN, where i ∈ {1, 2, 3, 4}, b de-

notes the batch size, and ci,mi, and ni denote the chan-

nel size, width, and height of the ith feature, respectively.

Let F4 ∈ R
b×c4×m4×n4 represent the high-level semantic

features from the last layer in the 4th block of CNN. We

use the last layers of each block to extract the multi-scale

features from the input image. Since the extracted features

from different layers have different ranges, statistics, and

dimensions, we first send them to normalization, pooling,

and dropout layers. For normalization and pooling we use

Euclidean norm which is defined by Fi =
Fi

max(∥Fi∥2
,ϵ) fol-

lowed by a l2 pooling layer [70, 71] which has been used to

demonstrate the behavior of complex cells in primary visual

cortex [72, 73]. The l2 pooling layer defines by:

P (x) =
√

g ∗ (x⊙ x), (1)

where ⊙ denotes point-wise product, and the blurring ker-

nel g(.) is implemented via a Hamming window that ap-

proximately applies the Nyquist criterion [71]. Let F̄i ∈
R

b×ci×m4×n4 denote the output feature after sending Fi to

the normalization, pooling, and dropout layers. Next, we

concatenate F̄i, where i ∈ {1, 2, 3, 4}, and denote the out-

put by F̃ ∈ R
b×

∑
i
ci×m4×n4 .

3.2. AttentionBased Feature Computation

CNNs exploit the structure of images via local interac-

tions through convolution with small kernel sizes. Different

layers of a network can have different semantic informa-

tion that is captured through the local interactions, and as

we move from lower layers to the higher layers, the com-

puted features carry more semantic about the content of the

image [74]. IQA depends on both low- and high-level fea-

tures. A model that does not take into account both low- and

high-level features can mistake a plain sky as a low-quality

image [15]. Moreover, due to the architecture of CNNs they

mainly capture the local spatial structure of the image and

are unable to model the relation among the non-local fea-

tures.

Transformers have shown impressive results in modeling

the dependencies among the sequential data. Therefore, we

use the encoder part of the Transformer, which is composed

of a multi-head self-attention layer and a feed-forward neu-

ral network [75, 53, 59] to perform attention operations



Figure 3. Illustration of multi-head multi-layer self-attention

module of the Transformer Encoder layer. N is a hyperparame-

ter that denotes the number of encoder layers In the Transformer

which stack together.

over the multi-scale extracted features from different lay-

ers and model the dependencies among them. We follow

the encoder architecture of [59] (see Fig. 3). We model

the features from different layers of CNN as a sequence

of information (F̃ ) and send them to the Transformer en-

coder. Since the self-attention mechanism is a non-local

operation, we use it to compute a non-local representation

of the image. In other words, we use Transformers to com-

pute information for each element of extracted features with

respect to the others (not only the local neighbor features).

Transformer architecture contains no built-in inductive prior

to the locality of interactions and, is free to learn complex

relationships across the features. We also add positional

encoding (in a similar way as [76, 77]) to the input of the

attention layers to deal with the permutation-invariant prop-

erty of Transformers. The positional encoding will also let

our model be aware of the position of the features that con-

tribute the most to the IQA task.

In detail, given an input (F̃ ) and the number of heads

(h), the input is first transformed into three different groups

of vectors, the query group, the key group and the value

group. Given a multi-head attention module with h heads

and dimension of d, each of the aforementioned groups

will have dimension of d
′

= d
h

. Then, features derived

from different inputs are packed together into three different

groups of matrices Q′,K ′, and V ′, where Q′ = {Qi}
h
i=1 =

Concat(Q1, ..., Qh) and the same definition applies to K ′

and V ′. Next, the process of multi-head attention is com-

puted as follows:

MultiHead(Q′,K ′, V ′) = Concat(head1, ..., headh)W1 (2)

where W1 is the linear projection matrix and has di-

mension of d × d, headi = Attention(Qi,Ki, Vi), and

Attention(Q,K, V ) = softmax(QKT

√
d′

) ⊙ V . For the

first Transformer encoder layer, the query, key, and value

matrices (Q, K, and V ) are all the same. Following the

encoder architecture design in [53], to strengthen the flow

of information and improve the performance, a residual

connection followed by a layer normalization is added in

each sub-layer in the encoder. Next, a feed-forward net-

work (FNN) is applied after the self-attention layers [53].

FNN is consist of two linear transformation layers and a

ReLU activation function within them, which can be de-

noted as FFN(X) = W3σ(W2X + b′2) + b′3, where W2

and W3 are the two parameter matrices, and b′2 and b′3 are

the biases. σ represents the ReLU activation function. Let

F̂ ∈ R
b×

∑
4

i
ci×m4×n4 represent the output features from

the final Transformer encoder layer.

3.3. Feature Fusion and Quality Prediction

To benefit from the extracted features from both local

(convolution) and non-local (self-attention) operators we

use fully connected (FC) layers as fusion layers to map the

aforementioned features and predict the perceptual quality

of the image (see Fig. 2). For each batch of images, B, we

minimize the regression loss to train our network.

LQuality,B = 1
N

∑N

i ∥qi − si∥ , (3)

where qi is the predicted quality score for ith image and si
is its corresponding ground truth (subjective quality score).

3.4. Relative Ranking

Although the regression loss (Eq. 3) is effective for the

quality prediction task, it does not explicitly take into ac-

count ranking and correlation among images. Here, our

goal is to consider the relative ranking relation between the

samples within each batch. It is computationally expen-

sive to consider all the samples’ relative ranking informa-

tion; therefore, we only enforce it for the extreme cases.

Among images within the batch B, let qmax, q
′
max, qmin,

and q′min denote the predicted quality for images with

highest, second highest, lowest, and second lowest subjec-

tive quality scores, respectively, i.e., sqmax
> sq′

max
>

sq′
min

> sqmin
, where sqmax

denotes the subjective quality

score corresponding to the image with the predicted qual-

ity score qmax, and a similar notation rule applies to the

rest. Our goal is to have d(qmax, q
′
max) + margin1 ≤

d(qmax, qmin), here we define, d(x, y) as the absolute

value between x and y, d(x, y) = |x− y|. We utilize

triplet loss to address the above inequality, where we mini-

mize max{0, d(qmax, q
′
max)−d(qmax, qmin)+margin1}.

In a similar way, we also want to have d(qmin, q
′
min) +

margin2 ≤ d(qmax, qmin). The margin values can be

selected empirically based on each dataset, but that is cum-

bersome since each dataset have different distributions and



ranges for the quality scores. For a perfect prediction

where the estimated quality scores are the same as sub-

jective scores we will have margin1 +
∣

∣sqmax
− sq′

max

∣

∣ ≤
∣

∣sqmax
− sqmin

∣

∣ → margin1+(sqmax
−sq′

max
) ≤ (sqmax

−
sqmin

) → margin1 ≤ sq′
max

− sqmin
. Therefore, we can

consider sq′
max

− sqmin
to be an upper-bound for margin1

during the training, and set margin1 = sq′
max

− sqmin
in

Eq. 4. Similarly, we define margin2 = sqmax
− s′qmin

.

Finally, our relative ranking loss is defined as:
LRelative−Ranking,B =

Ltriplet(qmax, q
′
max, qmin) + Ltriplet(qmin, q

′
min, qmax)

= max{0, d(qmax, q
′
max)− d(qmax, qmin) +margin1}

+max{0, d(q′min, qmin)− d(qmax, qmin) +margin2}.
(4)

3.5. SelfConsistency

Last but not least, we propose to utilize the model’s un-

certainty for the input image and its equivariant transforma-

tion during the training process. We exploit self-consistency

via the self-supervisory signal between each image and its

equivariant transformation to increase the robustness of the

model. Let for an input I , fϕ,conv(I) and fθ,atten(I) de-

note the output logits belonging to outputs of the convo-

lution and Transformer layers, respectively, where fϕ,conv
and fθ,atten represent the CNN and Transformer with learn-

able parameters φ and θ, respectively. In our model, we

use the outputs of fϕ,conv and fθ,atten to predict the im-

age quality and since the human subjective scores stay the

same for the horizontal filliping version of the input im-

age, we thus expect to have fϕ,conv(I) = fϕ,conv(τ(I)) and

fθ,atten(I) = fθ,atten(τ(I)), where τ represents the hori-

zontal filliping transformation. In this way, by applying our

consistency loss, the network learns to reinforce representa-

tion learning of itself without additional labels and external

supervision. We minimize the self-consistency loss that is

defined as follows:

LSelf−Consistency =
∥

∥fϕ,conv(I)− fϕ,conv(τ(I))
∥

∥+
∥

∥fθ,atten(I)− fθ,atten(τ(I))
∥

∥+

λ1

∥

∥

∥
LRelative−Ranking,B − LRelative−Ranking,τ(B)

∥

∥

∥
,

(5)

where τ(B) denote when the equivariant transformation ap-

plies on batch B.

3.6. Losses

Our model trains in an end-to-end manner and minimizes

the aforementioned losses together simultaneously. The to-

tal loss for our model is defined as:

Ltotal = LQuality + λ2LRelative−Ranking+
λ3LSelf−Consistency,

(6)

where λ1, λ2, λ3 are balancing coefficients.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluate the performance of our proposed model ex-

tensively on seven publicly available IQA datasets (four

synthetically distorted and three authentically distorted).

For synthetically distorted datasets, we use LIVE [78],

CSIQ [79], TID2013 [80], and KADID-10K [81], where

among them KADID has the most number of distortion

typesand distorted images. For authentically distorted

datasets, we use CLIVE [9], KonIQ-10k [10], and LIVE-FB

[11], where among them LIVE-FB has the most number of

unique contents. Table 1 shows the summary of the datasets

that are used in our experiments.

Table 1. Summary of IQA datasets.

Databases
# of Dist. # of Dist. Distortions

Images Types Type

LIVE 799 5 synthetic

CSIQ 866 6 synthetic

TID2013 3,000 24 synthetic

KADID 10,125 25 synthetic

CLIVE 1,162 - authentic

KonIQ 10,073 - authentic

LIVEFB 39,810 - authentic

For performance evaluation, we employ two commonly

used criteria, namely Spearman’s rank-order correlation co-

efficient (SROCC) and Pearson’s linear correlation coeffi-

cient (PLCC). Both SROCC and PLCC range from 0 to 1,

and a higher value indicates a better performance. Follow-

ing Video Quality Expert Group (VQEG) [84], for PLCC,

logistic regression is first applied to remove nonlinear rating

caused by human visual observation.

4.2. Implementation Details

We implemented our model by PyTorch and conducted

training and testing on an NVIDIA RTX 2080 GPU. Fol-

lowing the standard training strategy from existing IQA al-

gorithms, we randomly select multiple sample patches from

each image and horizontally and vertically augment them

randomly. Particularly, we select 50 patches randomly with

the size of 224×224 pixels from each training image. Train-

ing patches inherited quality scores from the source image,

and we minimize Ltotal loss over the training set. We used

Adam [85] optimizer with weight decay 5 × 10−4 to train

our model for at most 5 epochs, with mini-batch size of 53.

The learning rate is first set to 2× 10−5 and reduced by 10
after every epoch. During the testing stage, 50 patches with

224 × 224 pixels from the test image are randomly sam-

pled, and their corresponding prediction scores are average

pooled to get the final quality score. We use ResNet50 [30]

for our CNN backbone unless mentioned otherwise, while

it is initialized with Imagenet weights. We use N = 2 for

number of encoder layers in the Transformer, d = 64, and

set the number of heads h = 16. The hyper parameters



Table 2. Comparison of TReS v.s. state-of-the-art NR-IQA algorithms on synthetically and authentically distorted datasets. Bold entries in

black and blue are the best and second-best performers, respectively. * code were not available publicly.

LIVE CSIQ TID2013 KADID CLIVE KonIQ LIVEFB Weighted Average

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

HFD*[82] 0.971 0.951 0.890 0.842 0.681 0.764 - - - - - - - - - -

PQR*[35] 0.971 0.965 0.901 0.873 0.864 0.849 - - 0.836 0.808 - - - - - -

DIIVINE[5] 0.908 0.892 0.776 0.804 0.567 0.643 0.435 0.413 0.591 0.588 0.558 0.546 0.187 0.092 0.323 0.264

BRISQUE[6] 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528 0.629 0.629 0.685 0.681 0.341 0.303 0.457 0.430

ILNIQE[8] 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534 0.508 0.508 0.537 0.523 0.332 0.294 0.430 0.394

BIECON[83] 0.961 0.958 0.823 0.815 0.762 0.717 0.648 0.623 0.613 0.613 0.654 0.651 0.428 0.407 0.527 0.507

MEON[38] 0.955 0.951 0.864 0.852 0.824 0.808 0.691 0.604 0.710 0.697 0.628 0.611 0.394 0.365 0.514 0.479

WaDIQaM[34] 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739 0.671 0.682 0.807 0.804 0.467 0.455 0.595 0.584

DBCNN[39] 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.869 0.884 0.875 0.551 0.545 0.679 0.671

TIQA[60] 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.850 0.861 0.845 0.903 0.892 0.581 0.541 0.698 0.670

MetaIQA[43] 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.856 0.887 0.507 0.540 0.634 0.656

P2P-BM[11] 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.840 0.842 0.844 0.885 0.872 0.598 0.526 0.705 0.658

HyperIQA[42] 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.715 0.676

TReS (proposed) 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 0.732 0.685

λ1, λ2, λ3 are empirically set to 0.5, 0.05, 1, respectively.

Following the common practice in NR-IQA, all exper-

iments use the same setting, where we first select 10 dif-

ferent seeds, and then use them to split the datasets ran-

domly to train/test (80%/20%), so we have 10 different

splits. Testing data is not being used during the training.

In the case of synthetically distorted datasets, the split is

implemented according to reference images to avoid con-

tent overlapping. For all of the reported results we run the

experiment 10 times with different initialization and report

the median SROCC and PLCC values.

4.3. Performance Evaluation

Table 2 shows the overall performance comparison in

terms of PLCC and SROCC on seven standard image qual-

ity datasets, which cover both synthetically and authenti-

cally distorted images. Furthermore, our model outper-

forms the existing methods by a significant margin on both

LIVEFB and KADID datasets that are currently the largest

datasets for in-the-wild images and synthetically distorted

images, respectively. Our model also achieves competitive

results on the smaller datasets. In the last column, we pro-

vide the weighted average performance across all datasets,

using the dataset sizes as weights for the performances, and

we observe that our proposed method outperforms existing

methods on both PLCC and SROCC.

In Table 3, we conduct cross dataset evaluations and

compare our model to the competing approaches. Train-

ing is performed on one specific dataset, and testing is per-

formed on a different dataset without any finetuning or pa-

rameter adaptation. For synthetic image datasets (LIVE,

CSIQ, TID2013), we select four distortion types (i.e., JPEG,

JPEG2K, WN, and Blur) which all the datasets have in com-

mon. As shown in Table 3, our proposed method outper-

forms other algorithms on four datasets among six, which

indicate the strong generalization power of our approach.

We evaluate the latent features learned by our model in

Fig. 4, where we use the latent features from the last layer of

Table 3. SROCC evaluations on cross datasets, where bold entries

indicate the best performers.
Train on LIVEFB CLIVE KonIQ LIVE

Test on KonIQ CLIVE KonIQ CLIVE CSIQ TID2013

WaDIQaM[34] 0.708 0.699 0.711 0.682 0.704 0.462

DBCNN[39] 0.716 0.724 0.754 0.755 0.758 0.524

P2P-BM[11] 0.755 0.738 0.740 0.770 0.712 0.488

HyperIQA[42] 0.758 0.735 0.772 0.785 0.744 0.551

TReS (Proposed) 0.713 0.740 0.733 0.786 0.761 0.562

the network for query images and collect the top three near-

est neighbor results for the corresponding query. As shown

in Fig. 4, although we do not explicitly model the content or

distortion types in our model, the nearest neighbor samples

have similar content or artifacts in terms of perceptual qual-

ity and have close subjective scores to each other, which

represent the effectiveness of our model in terms of fea-

ture representation. Specifically, in the first row, our model

selects images with the same motion blur artifacts as the

nearest neighbor samples. In the second row, our model se-

lects images with low lighting condition which follow sim-

ilar quality conditions as the query image.

Moreover, in Fig. 5, we show the spatial quality map

generated from the layer with the highest activation in our

model. The bright regions represent the poor quality regions

in the input images.

4.4. Ablation Study

In Table 4, we provide ablation experiments to illustrate

the effect of each component of our proposed method by

comparing the results on KADID and KonIQ datasets. Fur-

thermore, in Table 5, we evaluate the performance sensi-

tivity of our model for smaller backbones. For a fair com-

parison to existing algorithms, we chose Resnet50 for all of

the experiments in this paper. However, as shown in Table

5, for smaller backbones, our model still achieves compa-

rable results. As shown in Table 5, for large datasets (e.g.,

LIVEFB or KonIQ), the performance of our model does not

drop significantly and is still competitive when we use a



Figure 4. Nearest neighbor retrieval results. In each row, the left-

most image is a query image, and the rest are the top 3 nearest

neighbors, using the latent features learned by our proposed mod-

els. The nearest neighbor retrieval process is done on the test por-

tion of the datasets. Images in the first and second rows are taken

from the LIVEFB dataset.

Figure 5. Spatial quality maps generated using the our proposed

model. Left: Original Images. Right: Quality maps blended with

the originals using viridis color.

Table 4. Ablation experiments on the effects of different compo-

nents for our proposed model.

Resnet50 Transformer
Psitional Relative Self KADID KonIQ

Encoding Ranking Consistency PLCC SROCC PLCC SROCC

✓ 0.809 0.802 0.873 0.851

✓ ✓ ✓ 0.822 0.820 0.896 0.884

✓ ✓ 0.833 0.820 0.886 0.872

✓ ✓ ✓ 0.840 0.832 0.902 0.0.895

✓ ✓ ✓ ✓ 0.851 0.850 0.918 0.911

✓ ✓ ✓ ✓ ✓ 0.858 0.859 0.928 0.915

smaller backbone, which demonstrates the learning capac-

ity of our proposed model.

4.5. Failure Cases and Discussion

In Fig. 6, we show examples where our method fails

to predict the image quality in agreement with the human

subjective scores. All images in Fig. 6 have close ground

truth scores, and our model predicted different scores for

each image. From the modeling aspect, we think one rea-

Table 5. Ablation experiments on the performance of our proposed

model via different backbones.
Dataset Backbone PLCC SROCC Dataset Backbone PLCC SROCC

CLIVE

Resnet-50 0.877 0.846

CSIQ

Resnet-50 0.942 0.922

Resnet-34 0.855 0.830 Resnet-34 0.924 0.920

Resnet-18 0.859 0.822 Resnet-18 0.911 0.914

KonIQ

Resnet-50 0.928 0.915

TID2013

Resnet-50 0.883 0.863

Resnet-34 0.922 0.909 Resnet-34 0.847 0.813

Resnet-18 0.909 0.898 Resnet-18 0.843 0.810

LIVEFB

Resnet-50 0.625 0.560

KADID

Resnet-50 0.858 0.859

Resnet-34 0.619 0.554 Resnet-34 0.851 0.855

Resnet-18 0.611 0.550 Resnet-18 0.840 0.848

son for such a failure is that IQA models have to address the

IQA task as either a regression and/or classification prob-

lem (simply because the existing datasets provide only the

quality score(s) for each image). Recently, LIVEFB [11]

provides patch-wise quality scores for local patches of each

image and shows that incorporating patch scores leads to

better performance. As a future direction, we think what

is missing from the existing IQA datasets is a description

of the reasoning process from the subjects to explain the

reason behind their selected quality score; this can help the

future models be able to model the HVS and reasoning be-

hind the assigned quality scores in a better way for a more

precise perceptual quality assessment. On the other hand,

from the subjective scores perspective, the subjects may be

less forgiving of the blur artifact and grayscale images, so

those artifacts have drawn their attentions similarly. How-

ever, our model differentiates between different perceptual

cues (color, sharpness, blurriness), which can explain the

differences in the scores.

Figure 6. Failure cases, where the predictions are different from

the subjective scores (MOS).

5. Conclusion

In this work, we present an NR-IQA algorithm that

works based on a hybrid combination of CNNs and Trans-

formers features to utilize both local and non-local feature

representation of the input image. We further propose a rel-

ative ranking loss that takes into account the relative ranking

information among the images. Finally, we exploit an ad-

ditional self-consistency loss to improve the robustness of

our proposed method. Our experiments show that our pro-

posed method performs well on several IQA datasets cover-

ing synthetically and authentically distorted images.
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Fig. 7 shows the scatter plots of our model’s predictions

v.s. subjective ratings (MOS/DMOS) for all seven datasets.

As shown in Fig. 7, the recently proposed FBLIVE dataset

is the most challenging one. Although we achieve state-

of-the-art on FBLIVE dataset comparing to existing algo-

rithms, there is still a long way to go for understanding how

the human vision system evaluates the quality of images in-

the-wild.

A fair question is why not using other types of trans-

formation instead of horizontal flipping and how they will

affect the performance if we use them for self-consistency.

In Table 6, we provide an ablation study where we consider

other types of transformations to enforce self-consistency.

Table 6. SROCC results for ablation study for different equivariant

transformations for the self-consistency loss.
Components KADID KonIQ

Baseline 0.850 0.911

Horizontal Flipping 0.859 0.915

Vertical Flipping 0.852 0.882

Rotation 90 Degree 0.851 0.891

Random Translation 16-20 pixels 0.854 0.913

Random Crop 0.832 0.872

Horizontal Flipping + Translation 0.860 0.916

Based on our experiments, for synthetically distorted

datasets horizontal and vertical flipping, rotation, and trans-

lation can also improve the performance. For authentically

distorted datasets we observe that only horizontal flipping

and translation yield performance improvement. These ex-

periments can explain that for synthetic datasets the arti-

facts play an important role and different transformations

can help the model captures the artifacts better and become

independent of the content information. However, for au-

thentic quality assessment, the quality score is a combina-

tion of different factors and therefore some of the transfor-

mations can hurt the performance instead of helping. For

example, to a viewer, a rotated version of the image will not

have the same authentic quality score as the original one,

therefore, enforcing the self-consistency would not be ben-

eficial.

Also, we would like to emphasize that although our self-

consistency will not add any computation to the interface

time, it will require more GPU memory during the training,

therefore it will be computationally expensive to apply mul-

tiple transformations at the same time. Nonetheless, in the

last row of Table 6, we show that a combination of horizon-

tal flipping and translation can further improve the results.

As future work, we would like to consider improving the

computational complexity of our self-consistency idea.

Last but not least, we claim in the paper that the features

generated from CNNs and Transformers represent two dif-

ferent aspects of an image. In Fig. 7, we visualize the fea-

tures of the last layer of our CNN model (second column)

and our Transformer model (third column) for images with

the same content but different artifacts. We can observe

that for each image the CNN features and Transformer fea-

tures represent completely different information. Moreover,

we can observe that the features from the CNN (or Trans-

former) layer for different artifacts are also different, which

proves the power of our model in capturing different infor-

mative information for each image.

FQAs

1) What is the difference between self-consistency and

ensembling? and will the self-consistency increase the in-

terface time? In ensampling methods, we need to have

several models (with different initializations) and ensem-

ble the results during the training and testing, but in our

self-consistency model, we enforce one model to have con-

sistent performance for one network during the training

while the network has an input with different transforma-

tions. Our self-consistency model has the same interface

time/parameters in the testing similar to the model without

self-consistency. In other words, we are not adding any new

parameters to the network and it won’t affect the interface.

2) What is the difference between self-consistency and

augmentation? In augmentation, we augment an input and

send it to one network, so although the network will be-

come robust to different augmentation, it will never have

the chance of enforcing the outputs to be the same for dif-

ferent versions of an input at the same time. In our self-

consistency approach, we force the network to have a sim-

ilar output for an image with a different transformation (in

our case horizontal flipping) which leads to more robust per-

formance. Please also note that we still use augmentation

during the training, so our model is benefiting from the ad-

vantages of both augmentation and self-consistency. Also,

please see Fig. 1 in the main paper, where we showed that

models that used augmentation alone are sensitive to simple

transformations.

3) Why does the relative ranking loss apply to the sam-

ples with the highest and lowest quality scores, why not ap-

plying it to all the samples? 1) We did not see a significant

improvement by applying our ranking loss to all the sam-

ples within each batch compared to the case that we just use

extreme cases. 2) Considering more samples lead to more

gradient back-propagation and therefore more computation

during the training which causes slower training.



Figure 7. Visualization of features from the last layer of CNN and Transformer. Our CNN and Transformer models capture different

information for each image as well as across different distortion types.


