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Abstract— Sharpness is an important determinant in visual
assessment of image quality. The human visual system is able to
effortlessly detect blur and evaluate sharpness of visual images,
but the underlying mechanism is not fully understood. Existing
blur/sharpness evaluation algorithms are mostly based on edge
width, local gradient, or energy reduction of global/local high
frequency content. Here we understand the subject from a
different perspective, where sharpness is identified as strong local
phase coherence (LPC) near distinctive image features evaluated
in the complex wavelet transform domain. Previous LPC compu-
tation is restricted to be applied to complex coefficients spread
in three consecutive dyadic scales in the scale-space. Here we
propose a flexible framework that allows for LPC computation
in arbitrary fractional scales. We then develop a new sharpness
assessment algorithm without referencing the original image.
We use four subject-rated publicly available image databases
to test the proposed algorithm, which demonstrates competitive
performance when compared with state-of-the-art algorithms.1

Index Terms— Complex wavelet transform, image blur, image
quality assessment (IQA), image sharpness, local phase coherence
(LPC), phase congruency.

I. INTRODUCTION

Q
UALITY assessment of visual images is of funda-

mental importance in modern multimedia systems,

where various types of distortions are introduced during acqui-

sition, storage, transmission, processing and display of images.

Since humans are the ultimate consumers in most applications,

the most dependable way to assess visual images is to solicit

opinions from human observers. However, subjective evalu-

ation is extremely costly and time-consuming, and is often

difficult to implement in real applications, especially when

real-time quality control is desired. What are really needed are

efficient objective image quality assessment (IQA) approaches

that can well predict human evaluations of image quality [1].

The most common IQA approaches measure the similar-

ity or fidelity between the distorted image and a reference

image that is assumed to be perfect-quality and distortion-free.
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Examples of such full-reference (FR) IQA algorithms include

peak signal-to-noise-ratio (PSNR), the structural similarity

(SSIM) index [2], and visual information fidelity [3]. Reduced-

reference (RR) IQA provides an alternative approach, where

partial information (in the form of features extracted from the

image) about the reference image is available in evaluating

the quality of the distorted image [1]. However, in a large

number of applications such as image denoising, deblurring

and enhancement, the reference image is unavailable, and thus

FR and RR approaches are not applicable. Therefore, in these

scenarios, no-reference (NR) IQA that does not require any

access to the reference image is highly desirable [1].

In this paper, we are concerned about NR assessment

of image sharpness, which is one of the most determining

factors in human judgement of image quality. Sharpness is

closely associated with blur, which is the most common type

of distortion that impairs visual sharpness. In practice, blur

may occur during image acquisition, e.g., due to atmospheric

turbulence, camera motion, or out-of-focus of the optical

system. It may also be a side effect of certain image processing

operations such as compression and denoising. Interestingly,

the human visual system (HVS) has a remarkable capability

to detect image blur without seeing the original image, but the

underlying mechanisms are not well understood.

In the literature, several types of computational models have

been proposed to account for the perception of blur. The first

type of models examine the power spectrum of an image

in global/local frequency transformations such as the Fourier

transform [4]. This is motivated by the fact that blur is often

created through low pass filtering, which smooths images and

reduces their high frequency energy. As a result, the power

spectrum of a blurred image falls faster than the original sharp

natural image, whose power spectrum falloff often obeys a

power law [4]. Following the framework, a sharpness/blur

measure may be implemented by evaluating high-frequency

energy [5], by computing an HVS-weighted summation of

normalized power spectrum [6], by counting near-zero high

frequency discrete cosine transform (DCT) coefficients [7],

or by calculating the ratio between high and low frequency

energy [8].

The second class of models focus on edges and associate

blur with edge width. Edge detection algorithms are first

employed to find edges and edge widths are estimated along

either horizontal/vertical [9] or local gradient direction [10],

followed by a blur measure computed as the average edge

width over all edges detected [9]. In [11], the edge detection

and edge width approaches were incorporated with a novel

concept of just noticeable blur (JNB), which is a perceptual
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model indicating the probability of detecting a blur distortion

by human eyes. It was shown that the JNB value is a function

of local contrast and psychophysical experiments were carried

out to calibrate the model [12]. The JNB method was further

refined in a cumulative probability of blur detection (CPBD)

measure [13], which is based on a probabilistic framework on

the sensitivity of human blur perception at different contrasts.

The CPBD measure achieves state-of-the-art performance

when tested with multiple image databases [13].

The third category of blur prediction models are based on

statistics on the distribution of pixel intensities or transform

coefficients. Pixel intensity statistical methods are based on

the hypothesis that sharper images have larger variance or

higher entropy in their intensity values [14], [15]. Kurtosis

of 2D DCT coefficient distribution has also been found to

be a useful measure to characterize image sharpness [16].

In [16], such a kurtosis measure is combined with an edge

profile based method, leading to an effective image sharpness

measure. Total variation (TV) between adjacent pixel values

in an image region has been employed as a measure of local

sharpness in a probabilistic framework [17].

The fourth type of models employ local gradient measures

based on the observation that the strength of local gradient is

sensitive to image blur. In [18], singular value decomposition

is applied to groups of gradient vectors computed within

local patches. The two resulting singular values provide useful

measures of gradient strength along the dominant direction and

its perpendicular direction, respectively. A sharpness measure

H is then defined by making use of the dominant singular

value as well as prior knowledge about the noise variance.

In [19], a normalized form that accounts for the relative

gradient strength between the dominant and its perpendicular

directions was proposed. This results in an improved sharp-

ness measure Q that was employed for automatic parameter

selection of image denoising algorithms.

All aforementioned four types of blur/sharpness models are

well-motivated and are shown to be effective in capturing cer-

tain aspects about the impact of blur on perceived sharpness,

and they have achieved notable success when tested using a

number of subject-rated databases. On the other hand, these

methods are often limited by the complication of the large

variations between real-world images in terms of information

content and complexity. For example, it was pointed out that

individual images show significant variability in their ampli-

tude spectra both in shape and in the speed of falloff [20]. For

another example, the overall gradient strength of an image not

only depends on the degree of blur, but is also largely affected

by the amount of sharp detail presented in the original source

image. A useful idea is to combine the merits of different

blur/sharpness models. For example, the recently proposed

S3 algorithm [21] combines TV-based spatial sharpness mea-

sure and block-wise power spectral falloff features and

achieves significantly improved performance.

In this paper, we examine image sharpness/blur from a

different and complementary perspective. The idea is origi-

nated from the notion of local phase coherence (LPC) [22],

which reveals that the phases of complex wavelet coefficients

constitute a highly predictable pattern in the scale space in

the vicinity of sharp image features. LPC may be considered

as a generalization of the phase congruency concept [23],

which describes the phase alignment across scales at the exact

location of distinctive image features. Detailed discussions

regarding the differences between LPC and phase congruency

are given in Section II. It was shown that the LPC structure is

disrupted by image blur [22], which motivates us to develop

an LPC strength measure and use it as an image sharpness

estimator.

The main contributions of this paper are as follows. First, we

introduce a novel framework to compute LPC using samples

arbitrarily extracted from the scale-space. This has significant

advantages over previous methods [22], [24], where LPC

computation was limited to three dyadic scales only. The

proposed computation framework is more flexible, and more

importantly, can be made more space- and scale-localized, and

thus reduces interference from nearby image features. Second,

we propose an efficient LPC evaluation algorithm that largely

simplifies the LPC computation, making it easily applicable in

practical applications. Third, based on the relationship between

LPC and perceptual blur/sharpness, we develop a sharpness

estimator and test it using four publicly-available subject-rated

image databases. Competitive performance in comparison with

state-of-the-art algorithms is achieved with low computational

cost.

II. LOCAL PHASE COHERENCE

The concept of LPC was first introduced in [22], which

describes the alignment of local phase patterns in the scale-

space in the vicinity of distinctive sharp image features.

It may be interpreted as an extension of the phase congruency

relationship [23], which stands for the phase alignment of

global/local phases across scales at the exact location of

distinctive image features. Given a signal f (x) created from a

feature signal f0(x) but located near position x0, i.e. f (x) =
f0(x − x0), a general family of complex wavelet transform

may be written as

F(s, p) =
∫ ∞

−∞
f (x)w∗

s,p(x)dx

=
[

f (x) ∗ 1√
s

g
( x

s

)
ejωcx/s

]

x=p

(1)

where s ∈ R+ is the scale factor, p ∈ R is the translation

factor, and the family of wavelets ws,p(x) are derived from a

scaled and shifted mother wavelet w(x) = g(x)e jωcx by

ws,p(x) = 1√
s

w

(
x − p

s

)

= 1√
s

g

(
x − p

s

)
ejωc(x−p)/s (2)

where ωc is the center frequency of the modulated band-

pass filter, and g(x) is a slowly varying, non-negative and

symmetric envelop function. For example, when g(x) has the

shape of a Gaussian, ws,p(x) constitutes a family of Gabor

wavelets. However, the derivation below also applies to other

options of g(x).
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Fig. 1. Local phase coherence structure near (a) sharp step edge and (b) blurred step edge, where the equal-phase contours in the scale space are shown.
The phase congruency relationship corresponds to the central vertical contours at position x0 in both (a) and (b), but does not describe the phase structures
in the vicinity of x0. (c) Positions of discrete sampling across three consecutive dyadic scales in the scale space.

Using the convolution theorem, and the shifting and scaling

properties of the Fourier transform, we can derive:

F(s, p) = 1

2π
√

s

∫ ∞

−∞
F0

(ω

s

)
G(ω − ωc) e jω(p−x0)/sdω

(3)

where F(ω), F0(ω) and G(ω) are the Fourier transforms of

f (x), f0(x) and g(x), respectively. The phase of F(s, p)

depends on the nature of F0(ω). If F0(ω) is scale invariant,

meaning that

F0(ω/s) = K (s)F0(ω) (4)

where K (s) is a real function of only s, but independent of

ω, then

F(s, p) = K (s)

2π
√

s

∫ ∞

−∞
F0 (ω) G(ω−ωc) e jω(p−x0)/sdω. (5)

This suggests a predictable structure of F(s, p) from F(1, p)

given by

F(s, p) = K (s)

K (1)
√

s
F

(
1, x0 + p − x0

s

)
. (6)

Since both K (s) and s are real, we obtain the following phase

relationship of F(s, p) :

�(F(s, p)) = �

(
F

(
1, x0 + p − x0

s

))
. (7)

This result indicates that there is a strong phase coherence rela-

tionship across scale and space, where equal phase contours

in the (s, p) plane form straight lines that converge exactly at

the location of the feature x0, as illustrated in Fig. 1(a). These

straight lines are defined by x0 + (p − x0)/s = D, where D

is a constant. The phase congruency relationship constitutes a

subset of LPC by predicting the phases in the same way for the

center vertical line (p = x0) only. Note that the derivation of

the LPC phase pattern is based on the assumption that f0 is a

scale invariant signal, which turns out to be true for distinctive

sharp features (such as an isolated impulse or a step edge in

a 1D signal, or an edge, a line, or an isolated impulse in a 2D

image). This gives another property that distinguishes the LPC

relationship with phase congruency, which does not require the

scale-invariance feature and holds for other types of features

also (e.g., a blurred edge). This is illustrated in Fig. 1(b), where

blur does not change the central vertical contour (p = x0), but

distorts the general LPC patten away from the center.

It has been shown that if the LPC relationship is satisfied at

a spatial location, then the phase of a wavelet coefficient can

be predicted using the phases of its neighboring coefficients

in the scale-space [22]. An example is shown in Fig. 1(c),

where the finest scale coefficients ci for i = 1, 2, 3, 4 can be

predicted from their coarser scale neighbors a, b1 and b2. For

example,

�̂(c1) = −2�(a) + 3�(b1) (8)

where �̂(c1) denotes the prediction of the true phase �(c1).

Conversely, the prediction accuracy (i.e., the closeness

between �(c1) and �̂(c1)) can be used as a local measure

of the strength of the LPC relationship. In our previous

work [24]–[26], a method was proposed to compute a spatial

LPC map in the complex wavelet transform domain based

on the complex version of the steerable pyramid decompo-

sition [27]. Following a 3-scale, multi-orientation steerable

pyramid transform, the phases of the finest scale coefficients

are predicted using their corresponding parent and grandparent

coefficients using an LPC-based phase predictor (such as (8)).

At each spatial location, an LPC strength measure is then

defined as

Pi =
∑

j

∣∣ci j

∣∣ cos
(
�
({

ci j

})
− �̂

({
ci j

}))
∑

j

∣∣ci j

∣∣ (9)

where �
({

ci j

})
and �̂

({
ci j

})
are the true and predicted

phases of the i -th coefficient in the j -th orientation, respec-

tively. This measure achieves the maximal value of unity when

the phase prediction (and thus LPC relationship) is perfect.

This is expected to occur in the vicinity of distinctive sharp

image features. The measure is weighted by the magnitudes
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of the coefficients over orientations, so that the orientations

that contain more energy are given higher weights. Such an

LPC measure had been employed in image registration [25],

fusion [26], and sharpness assessment [24] applications.

III. PROPOSED METHODS

Since the LPC relationship holds at sharp image features

only, it was conjectured that the visual perception of blur

may be interpreted as a loss of LPC and the conjecture

is partially supported by local phase statistics of sharp and

blurred natural images [22]. This is in clear contrast when

compared with traditional views about image blur, which was

often understood as the reduction of high frequency energy,

the reduction of contrast, or the expansion of edge width. If the

conjecture about the relationship between LPC and perceptual

image sharpness/blur holds, then the strength of LPC may be

used as a measure of image sharpness. This idea has been

exploited in our preliminary study [24] with some level of

success. However, the method to compute LPC in all previous

studies has strong limitations. Specifically, the computation

is applicable to three spatially neighboring complex wavelet

coefficients spread in three consecutive dyadic scales only,

where the widths of the wavelet filters expand by factors

of 1, 2, and 4, respectively, from the finest to the coarsest

scales. In practice, such a large expansion of the coarsest scale

filter is often problematic because nearby image features may

interfere with the responses of these coefficients (but may or

may not affect the finer scale coefficients). As a result, the

LPC relationship is often corrupted even if the local image

feature is sharp. Consequently, it is highly desirable to develop

more flexible (preferably more space- and scale-localized)

LPC computation methods.

A. Local Phase Patterns at Sharp Features

To develop a new method to compute LPC, we would need

to closely examine the phase patterns at sharp features. Like

in [22], we analyze the LPC relationship in 1D and the results

can be directly extended to 2D. In 1D, the most common sharp

features are impulses and ideal step edges. In the case of an

impulse f0(x) = Aδ(x), where A is a non-zero constant and

δ(x) is the impulse function. The Fourier transform of f0(x)

is F0(ω) = A for all ω, and thus F0(ω/s) = A and K (s)

in (4) equals unity. Substitute this into (5), we have

F(s, p) = 1

2π
√

s

∫ ∞

−∞
A G(ω − ωc) e jω(p−x0)/sdω

= A√
s

g

(
p − x0

s

)
ejωc

p−x0
s . (10)

The derivation above is based on the fact that the RHS of

the first row constitutes the inverse Fourier transform of
A√
s
G(ω − ωc) evaluated at (p − x0)/s. The phase of F(s, p)

is then

�(F(s, p)) =
{

ωc(p−x0)
s

whenA > 0
ωc(p−x0)

s
+ π whenA < 0.

(11)

In the case of an ideal step edge, f0(x) = B
[
u(x) − 1

2

]
,

where B is a non-zero constant and u(x) is the step function.

The Fourier transform of f0(x) is F0(ω) = B
jω

and F0

(
ω
s

)
=

Bs
jω

= s F0(ω). Thus K (s) = s in (4). Substitute this into (5),

we have

F(s, p) = B
√

s

2π

∫ ∞

−∞

G(ω − ωc)

jω
e jω(p−x0)/sdω (12)

where the RHS constitutes the inverse Fourier transform of
B

√
sG(ω−ωc)

jω evaluated at (p − x0)/s. Based on the integration

property of Fourier transform, we obtain

F(s, p) = B
√

s

∫ p−x0
s

−∞
g(x) e jωcxdx

= B
√

s

jωc

[
g(x)e jωcx

∣∣∣
p−x0

s

−∞
−
∫ p−x0

s

−∞
g′(x) e jωcx dx

]
.

(13)

Since g(x) is a slowly varying function localized near x = 0,

we have g(−∞) = 0 and g′(x) ≈ 0. Therefore,

F(s, p) ≈ B
√

s

jωc

g

(
p − x0

s

)
e jωc

p−x0
s . (14)

The phase is then computed as

�(F(s, p)) ≈
{

ωc(p−x0)
s

− π
2 when B > 0

ωc(p−x0)
s

+ π
2

when B < 0.
(15)

Combining (11) and (15), we obtain a general LPC relation-

ship given by

�(F(s, p)) ≈ �̂(s, p) ≡ ωc(p − x0)

s
+ kπ

2
(16)

where k is an integer depending on the nature of the sharp

feature. Specifically, it equals 0, 2, −1, and 1 for positive

impulse, negative impulse, ideal ascending step edge, and ideal

descending step edge, respectively.

B. LPC Evaluation from Arbitrary Samples in Scale-Space

The general relationship in (16) provides a model of the

phase pattern in the vicinity of a sharp image feature. Given

the phases of N sample coefficients arbitrarily extracted from

F(s, p) near x0 and their corresponding predictions

� =

⎡
⎢⎢⎢⎣

�[F(s1, p1)]
�[F(s2, p2)]

...

�[F(sN , pN )]

⎤
⎥⎥⎥⎦ , �̂x0,k =

⎡
⎢⎢⎢⎣

�̂(s1, p1)

�̂(s2, p2)
...

�̂(sN , pN )

⎤
⎥⎥⎥⎦ (17)

we can quantify the strength of LPC by assessing the closeness

between the true phases of these coefficients and their optimal

model predictions

SLPC = max
{x0,k}

S(�, �̂x0,k) (18)

where S(., .) is a similarity measure between the true and

predicted phase samples given in vector form as in (17).

The most straightforward way to define the similarity func-

tion S is to make it monotonically decreasing with the squared

error between the vectors. For example, we may define

S(�, �̂x0,k) = 1

1 + α ‖� − �̂x0,k‖2
(19)
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where α is a positive constant, and this similarity function is

bounded between 0 and 1. As a result, solving the optimiza-

tion problem in (18) is equivalent to solving a least square

optimization problem. For each given value of k (for k =
−1, 0, 1, 2), the optimal value x0 in (18) can be found in

closed-form, and the overall optimization problem can then

be resolved by picking the value k and its corresponding x0

that lead to the minimal squared error. Although this method

is simple and computationally efficient, the solutions turn out

to be erroneous and unreliable in our experiment. The reason

is because phase variables are not normal scalar quantities

but are angular variables that have the 2π wrap-around effect

(for example, an error of 2π is equivalent to 0 error for an

angular variable but is significant in the linear scale).

To overcome the wrap-around effect as well as the ambi-

guity between different types of features (that correspond to

different k values), we used a different method in [28], which

corresponds to defining a similarity function as

S(�, �̂x0,k) = 1

N

N∑

i=1

cos{4�[F(si , pi )] − 4�̂(si , pi )}. (20)

This similarity function is bounded between −1 and 1. Notice

that the factor 4 here makes the last term in (16) a multiplier

of 2π . This factor, when combined with the use of the

cosine function, eliminates both the wrap-around effect and the

ambiguity between different features. Although this similarity

definition is conceptually elegant, it makes the optimization

problem in (18) difficult to solve, and in general, no closed-

form solution can be found. In practice, we have to resort to

numerical optimization tools, which often lead to extremely

high computational cost (as in [28]), especially when this

approach is applied to 2D images, where the optimization

procedure needs to be carried out at every location in the

image.

C. Efficient LPC Evaluation Algorithm

Given the difficulties in the LPC evaluation methods

described above, our focus below will be on practical algo-

rithms that lead to efficient assessment of LPC. It is worth

noting that the general formulation laid out in (18) allows for

arbitrary selections of samples (in terms of both the number

and positions of the samples) of F(s, p) in the scale-space.

In practice, this is unlikely and unnecessary. Motivated by

the method used in [22], we may pick a set of samples at

specific positions and scales in the scale-space, so that the

LPC computation can be largely simplified. In particular, if

we can find a set of samples �̂, together with a corresponding

set of weights w = [w1, w2, · · · , wN ]T , such that

wT
�̂ = 0 (21)

then we may define a simple measure of LPC strength by

SLPC = cos
(

wT
�

)
. (22)

The value of this LPC measure is bounded between −1 and 1,

and the maximal value is achieved when wT
� = 0, which is

consistent with the phase relationship defined in (21).

To provide an example (that may lead to a practically useful

LPC measure), let us assume that we extract N samples in the

scale-space that are aligned at the same position p (which may

not be aligned with the feature position x0) but at different

scales. Substitute (16) into (21), we obtain

ωc(p − x0)

(
N∑

i=1

wi

si

)
+ kπ

2

(
N∑

i=1

wi

)
= 0. (23)

In order for this to be true for all possible values of ωc, p, x0

and k, we would need the following simultaneous equations

to be true ⎧
⎪⎪⎨
⎪⎪⎩

N∑
i=1

wi = 0

N∑
i=1

(wi/si ) = 0.

(24)

Without loss of generality, we assume w1 = 1. This results

in N − 1 unknowns (w2, w3, · · · , wN ) with two equations.

In the case that N = 3, the solutions are unique and are given

by ⎧
⎪⎨
⎪⎩

w1 = 1

w2 = s2(s3−s1)
s1(s2−s3)

w3 = s3(s2−s1)
s1(s3−s2)

.

(25)

When N > 3, we can solve for a least square weight energy

solution under the constraints of (24). Using a Lagrange

multiplier approach, we define the following energy function

E =
N∑

i=1

w2
i + λ1

(
N∑

i=1

wi

)
+ λ2

(
N∑

i=1

wi

si

)
(26)

where λ1 and λ2 are the Lagrange multipliers. Taking deriva-

tive of E with respect to λ1, λ2 and wi for i = 1, 2, · · · , N and

setting them to zero, we obtain a linear system of equations

Aw∗ = b (27)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1/2 1/2s2

0 1 · · · 0 1/2 1/2s3

...
...

. . .
...

...
...

0 0 · · · 1 1/2 1/2sN

1 1 · · · 1 0 0

1/s2 1/s3 · · · 1/sN 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

w∗ =
[
w2 w3 · · · wN λ1 λ2

]T

b =
[

0 0 · · · 0 −1 −1/s1

]T
. (28)

We can then solve for the weights by

w∗ = A−1b. (29)

In practice, one would likely to choose s1 to be the finest

scale (s1 = 1) for maximal localization, and choose the other

si values to be evenly spaced in either linear or logarithm

scale. For example, in N = 3 case,
⎡
⎣

s1

s2

s3

⎤
⎦ =

⎡
⎣

1

1 + d

1 + 2d

⎤
⎦ or

⎡
⎣

s1

s2

s3

⎤
⎦ =

⎡
⎣

1

r

r2

⎤
⎦. (30)
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TABLE I

WEIGHT SOLUTIONS FOR THREE SCALES

s1 s2 s3 w1 w2 w3

1 1 + d 1 + 2d 1 −2(1 + d) 1 + 2d

d = 1/4 1 5/4 3/2 1 −5/2 3/2

d = 1/2 1 3/2 2 1 −3 2

d = 1 1 2 3 1 −4 3

d = 3/2 1 5/2 4 1 −5 4

d = 2 1 3 5 1 −6 5

1 r r2 1 −(1 + r) r

r = 5/4 1 5/4 25/16 1 −9/4 5/4

r =
√

2 1
√

2 2 1 −1 −
√

2
√

2

r =
√

3 1
√

3 3 1 −1 −
√

3
√

3

r = 2 1 2 4 1 −3 2

r =
√

5 1
√

5 5 1 −1 −
√

5
√

5

The weight solutions of these two cases are computed as
⎡
⎣

w1

w2

w3

⎤
⎦ =

⎡
⎣

1

−2(1 + d)

1 + 2d

⎤
⎦

and
⎡
⎣

w1

w2

w3

⎤
⎦ =

⎡
⎣

1

−(1 + r)

r

⎤
⎦ (31)

respectively. The solutions of the two cases for specific selec-

tions of d and r values are given in Table I. Interestingly, the

previous LPC computation (8) becomes a special case that can

be directly derived from the row for r = 2 in Table I. In the

cases of N = 4 and N = 5, the least square weight energy

solutions for specific values of d and r are shown in Tables II

and III, respectively.

D. Image Sharpness Measure

Given an input image whose sharpness is to be evaluated,

we first pass it through a series of N-scale M-orientation log-

Gabor filters without any subsequent downsampling process.

This results in M N “subbands” and there are M N complex

coefficients at each spatial location across all orientations and

all scales. Let cijk be the complex coefficient at the i -th scale,

the j -th orientation and the k-th spatial location. Then at the

j -th orientation and the k-th location, we can compute the LPC

strength by

S
{ j,k}
LPC = cos(wT

� j ) = cos

(
N∑

i=1

wi�{cijk}
)

= cos

(
�

{
N∏

i=1

c
wi

ijk

})

=
ℜ
{∏N

i=1 c
wi

ijk

}

∣∣∣
{∏N

i=1 c
wi

ijk

}∣∣∣
(32)

where R{·} denotes the real part of a complex number. This

LPC strength measure is combined at each spatial location

k by a weighted average across all orientations, where the

weights are determined by the magnitude of the first (finest)

TABLE II

WEIGHT SOLUTIONS FOR FOUR SCALES

s1 s2 s3 s4 w1 w2 w3 w4

d = 1/3 1 4/3 5/3 2 1 −1.9474 −0.1316 1.0789

d = 1/2 1 3/2 2 5/2 1 −2.2347 −0.0408 1.2755

d = 2/3 1 5/3 7/3 3 1 −2.5166 0.0464 1.4702

d = 1 1 2 3 4 1 −3.0714 0.2143 1.8571

d = 2 1 3 5 7 1 −4.7089 0.6962 3.0127

r = 21/3 1 21/3 22/3 2 1 −1.5962 −0.2401 0.8363

r = 31/3 1 31/3 32/3 3 1 −1.7828 −0.1683 0.9511

r = 41/3 1 41/3 42/3 4 1 −1.9320 −0.1084 1.0404

r = 61/3 1 61/3 62/3 6 1 −2.1686 −0.0097 1.1784

r = 2 1 2 4 8 1 −2.3571 0.0714 1.2857

TABLE III

WEIGHT SOLUTIONS FOR FIVE SCALES

s1 s2 s3 s4 s5 w1 w2 w3 w4 w5

d = 1/4 1 5/4 3/2 7/4 2 1 −1.4477 −0.4827 0.2067 0.7237

d = 1/2 1 3/2 2 5/2 3 1 −1.8458 −0.4581 0.3744 0.9295

d = 3/4 1 7/4 5/2 13/4 4 1 −2.2252 −0.4350 0.5289 1.1314

d = 1 1 2 3 4 5 1 −2.5957 −0.4137 0.6774 1.3320

d = 3/2 1 5/2 4 11/2 7 1 −3.3237 −0.3745 0.9661 1.7321

r = 21/4 1 21/4
√

2 23/4 2 1 −1.1937 −0.4932 0.0958 0.5911

r = 31/4 1 31/4
√

3 33/4 3 1 −1.3271 −0.4818 0.1604 0.6484

r =
√

2 1
√

2 2 2
√

2 4 1 −1.4314 −0.4698 0.2102 0.6910

r = 61/4 1 61/4
√

6 63/4 6 1 −1.5930 −0.4466 0.2858 0.7538

r = 81/4 1 81/4 2
√

2 83/4 8 1 −1.7185 −0.4255 0.3434 0.8006

scale coefficient c1jk, so that the orientations that contain more

energy are given higher importance:

S
{k}
LPC =

∑M
j=1

∣∣c1jk

∣∣ S
{ j,k}
LPC∑M

j=1

∣∣c1jk

∣∣+ C
(33)

where a constant C is added to avoid instability when the

magnitudes of the coefficients are close to zero.

The collection of S
{k}
LPC at all locations constitutes a spatial

LPC map. An example LPC map of a natural image of

Fig. 2(a) is shown in Fig. 2(d). It can be observed that the

local LPC strength measure responds strongly to sharp image

structures around the sharp foreground region but weakly

to the background out-of-focus regions. When the image is

blurred as in Fig. 2(b), the strength of local LPC is reduced,

reflecting the observation presented in Fig. 1, where it shows

blur weakens the LPC relationship in the scale-space. When

the image is severely blurred as in Fig. 2(c), the LPC relation-

ship is completely disrupted, as shown in Fig. 2(f).

In order to provide an overall evaluation about the sharpness

of the test image, we need to pool the LPC map into a

single sharpness index. An effect in subjective sharpness

assessment is that humans tend to make their judgment based

on the sharpest region in the image [24]. For example,

Fig. 4(a) is typically rated as a sharp image regardless of the

out-of-focus background. This suggests that in pooling the

LPC map, a mechanism is necessary to put more emphasis

on the sharpest regions in the image. Here we propose a

weighted averaging method based on ranked LPC values: Let
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Original. (b) and (c) Gaussian blurred “Monarch” images at two blur levels, together with their corresponding LPC maps (d)–(f).

S
{k}
LPC for k = 1, 2, . . . , K be a collection of LPC values

extracted from the LPC map, and let S
{(k)}
LPC for k = 1, 2, . . . , K

denote the sorted LPC strength values such that S
{(1)}
LPC ≥

S
{(2)}
LPC ≥ · · · ≥ S

{(K )}
LPC . Then the overall LPC-based sharpness

index (LPC-SI) is defined as

SLPC =
∑K

k=1 uk S
{(k)}
LPC∑K

k=1 uk

(34)

where uk is the weight assigned to the k-th ranked spatial LPC

value and is computed as an exponentially decaying function

given by

uk = exp

[
−
(

k − 1

K − 1

)/
βk

]
(35)

which gives a weight 1 to the highest LPC value and the decay-

ing speed of the weights is controlled by the parameter βk .

In all the experimental results reported in the next section, the

parameters are set as M = 8, N = 3, s1 = 1, s2 = 3/2, s3 = 2,

C = 2, and βk = 1e − 4, respectively. These parameters are

set empirically, but are found to be insensitive to the overall

performance in our test with various blur image databases.

IV. VALIDATION

A. No-Reference Sharpness Estimator

We test the performance of the proposed sharpness measure

using four blur data sets obtained from four independent

publicly available image databases.

1) The LIVE database [29] was developed at The Univer-

sity of Texas at Austin, where the blur data set contains

174 images including 145 blurred and 29 reference

images. All images were rated by 20–25 subjects on

a continuous linear scale divided into 5 regions, namely

Bad, Poor, Fair, Good, and Excellent. For each image,

the mean opinion score (MOS) and the standard devia-

tion between subjective scores were recorded.

2) The Tampere Image Database 2008 (TID2008) [30]

includes 100 Gaussian-blurred images obtained from

25 original images. Each image was evaluated by sub-

jects from 0 to 9. The final MOS is obtained by averag-

ing evaluated scores for a given image. Observers from

three different countries (Italy, Finland and Ukraine)

have performed two types of tests. The first test was

conducted by direct evaluation of distorted images and

the second by relative comparison between the quality

of image pairs.

3) The Categorical Image Quality (CSIQ) database [31]

was developed at Oklahoma State University, where

the blur data set contains 150 Gaussian-blurred images

created from 30 original images at four to five distortion

levels. The images are subjectively rated base on a linear

displacement of the images across four calibrated LCD

monitors placed side by side with equal viewing distance

to the observer. Ratings are reported in the form of

Difference of MOS (DMOS) between the original and

blurred images.

4) The IVC database [32] was developed at Ecole Polytech-

nique de l’Universite de Nantes. Four reference images

have been distorted with 5 levels of Gaussian blur with

a total of 20 blurred images. 15 subjects were asked to

evaluate the distortion with respect to the original image

on a five point scale. Subjective scores were reported in

the form of MOS.

We compare the proposed LPC-SI method against seven

existing NR sharpness measures, which include CPBD [13],

JNBM [11], the H-metric [18], the Q-metric [19], S3 [21],

BRISQUE [33], [34], and BLIINDS-II [35], [36]. We have

also included in our experiments two FR measures, PSNR and

SSIM [2], which provide useful comparisons on the relative

performance against the most widely used IQA measures.

It should be noted that BRISQUE and BLIINDS-II are both
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Fig. 3. Scatter plots between subjective and objective scores (after nonlinear mapping) of six blur metrics over four blur image databases. Top to bottom rows:
BLIINDS-II [35], [36], BRISQUE [33], [34], S3 [21], CPBD [13], JNBM [11], and the proposed LPC-SI measure; Left to right columns: LIVE, TID2008,
CSIQ and IVC blur databases.

general-purpose NR IQA techniques that are not designed for

assessing blur/sharpness only.

Four criteria are employed for performance evaluation by

comparing subjective and objective quality measures. Some

of the criteria were included in previous tests carried out by

the video quality experts group (VQEG) [37]. Other criteria

were adopted in previous publications, e.g., [38]. These eval-

uation criteria are: 1) Spearman rank-order correlation coeffi-



2806 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 7, JULY 2013

(a) (b) (c) (d) (e)

Fig. 4. (a) Sample images and their corresponding (b) CPBD [13], (c) H-metric [18], (d) S3 [21], and (e) LPC-SI sharpness maps, where brighter indicates
higher sharpness.

cient (SRCC); 2) Kendall’s rank-order correlation coefficient

(KRCC); 3) Pearson linear correlation coefficient (PLCC) after

a nonlinear modified logistic mapping between the subjec-

tive and objective scores [39]; and 4) root mean squared

error (RMSE) between MOS values and model predicted

MOS. SRCC and KRCC are both used to assess prediction

monotonicity [37]. PLCC and RMSE are employed to evaluate

prediction accuracy [37]. A good objective quality measure is

expected to achieve high values in PLCC, SRCC and KRCC,

and low values in RMSE. In all experiments, only the blurred

images in each data set have been included in the computation

(i.e., reference images are excluded).

Table IV summarizes the performance comparison results

based on all four databases. For each evaluation criterion,

we highlight the top two results obtained by NR methods

with boldface. To provide an overall evaluation, Table V

computes the average PLCC, SRCC and KRCC results for

each objective measure over all four databases. The averages

are computed using two methods. The first calculates the direct

average of the correlation scores over the four databases, and

the second computes a weighted average based on the sizes

(or the numbers of images) of the image databases (specifi-

cally, the weight factors are 145 for LIVE, 100 for TID2008,

150 for CSIQ, and 20 for IVC databases, respectively). The

results of both BRISQUE and BLIINDS-II are not included

for the LIVE database because they both use LIVE images

for training. Subsequently, their average results are computed

over the other three databases only. From Tables IV and V, we

observe that the proposed LPC-SI measure performs reason-

ably well and consistently over all four databases and in gen-

eral are among the most competitive NR methods. Although

the comparison is unfair, LPC-SI is often comparable to the

FR PSNR, but is inferior to the FR SSIM measure. It is

worth mentioning that the good performance of the proposed

method is achieved without any edge detection or training

processes.

Fig. 3 shows the scatter plots of subjective versus objective

quality scores after nonlinear mapping for the four databases,

where each sample point represents one test image. The

proposed LPC-SI method generally gives reasonable quality

predictions, where the sample points tend to be clustered closer

to the diagonal lines (representing perfect prediction) than the

other five NR methods under comparison. Interestingly, we

observe saturation effects of LPC-SI at both low and high

quality ends of the scatter plots. The effect is more apparent

in LIVE and CSIQ databases, where LPC-SI do not provide

further distinctions when the quality of image is beyond or

below the saturation levels. Similar effects are also observed

in other state-of-the-art sharpness measures such as CPBD [13]

and S3 [21] in case of the CSIQ database. This may be
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TABLE IV

PERFORMANCE EVALUATION OVER FOUR DATABASES

LIVE Blur Batabase (145 Images) [29]
Measure PLCC SRCC KRCC RMSE
PSNR 0.8782 0.8694 0.6920 13.898

SSIM [2] 0.9997 0.9990 0.9780 0.7416
H-metric [18] 0.7849 0.7147 0.5347 9.7687
Q-metric [19] 0.6971 0.5548 0.4056 11.302
JNBM [11] 0.8130 0.7821 0.6015 9.1797
CPBD [13] 0.9024 0.9271 0.7714 6.7943

S3 [21] 0.9494 0.9517 0.8157 4.9503
BRISQUE [33], [34] training images

BLIINDS-II [35], [36] training images
LPC-SI 0.9219 0.9501 0.7994 6.1092

TID2008 blur database (100 images) [30]
Measure PLCC SRCC KRCC RMSE
PSNR 0.8729 0.8702 0.7327 0.5726

SSIM [2] 0.9460 0.9550 0.8147 0.3803
H-metric [18] 0.5144 0.5106 0.3182 1.0063
Q-metric [19] 0.3074 0.3290 0.2208 1.1167
JNBM [11] 0.6931 0.6681 0.4947 0.8459
CPBD [13] 0.8237 0.8418 0.6297 0.6655

S3 [21] 0.8541 0.8418 0.6124 0.6103

BRISQUE [33], [34] 0.8046 0.7989 0.6229 0.6968
BLIINDS-II [35], [36] 0.8260 0.8205 0.6245 0.6614

LPC-SI 0.8455 0.8431 0.6249 0.6267

CSIQ blur database (150 images) [31]
Measure PLCC SRCC KRCC RMSE
PSNR 0.9252 0.9287 0.7539 0.1087

SSIM [2] 0.9472 0.9605 0.8246 0.0919
H-metric [18] 0.8355 0.7997 0.6274 0.1575
Q-metric [19] 0.7237 0.6528 0.4860 0.1978
JNBM [11] 0.8061 0.7624 0.5971 0.1696
CPBD [13] 0.8822 0.8790 0.6905 0.1349

S3 [21] 0.9106 0.9058 0.7290 0.1184

BRISQUE [33], [34] 0.9279 0.9032 0.7353 0.1069

BLIINDS-II [35], [36] 0.8930 0.8765 0.6783 0.1290
LPC-SI 0.9061 0.8931 0.7022 0.1212

IVC blur database (20 images) [32]
Measure PLCC SRCC KRCC RMSE
PSNR 0.8883 0.8105 0.6632 0.5243

SSIM [2] 0.9463 0.9353 0.7789 0.3690
H-metric [18] 0.9423 0.9263 0.7684 0.3822

Q-metric [19] 0.9375 0.9338 0.7789 0.3972
JNBM [11] 0.6983 0.6737 0.4947 0.8172
CPBD [13] 0.8012 0.7744 0.6105 0.6832

S3 [21] 0.9274 0.8691 0.7090 0.4269
BRISQUE [33], [34] 0.8300 0.8239 0.6561 0.6367

BLIINDS-II [35], [36] 0.7806 0.5262 0.3979 0.7136
LPC-SI 0.9574 0.9202 0.7831 0.3295

due to the facts that image sharpness is not significantly

affected with minor image distortions but is completely lost

when the distortion is beyond certain level (and thus further

distortions do not lead to further degradations of the sharpness

measures). This effect also suggests that image sharpness

assessment alone may not provide a complete solution to

evaluating the quality of blurred images. Other approaches

such as naturalness measures may be combined to improve

the quality prediction performance.

Statistical significance analysis based on variance-based

hypothesis testing provides additional information regard-

ing the relative performance of different image quality

models [39]. The assumption behind such analysis is that

the residual difference between the subjective score and its

prediction by the objective score is Gaussian distributed. In

reality, this assumption is not always met perfectly, but is

TABLE V

DIRECT AND WEIGHTED AVERAGE PERFORMANCE

OVER FOUR DATABASES

Direct Average

Measure PLCC SRCC KRCC

PSNR 0.8911 0.8697 0.7105

SSIM [2] 0.9598 0.9625 0.8491

H-metric [18] 0.7693 0.7378 0.5622

Q-metric [19] 0.6664 0.6176 0.4728

JNBM [11] 0.7526 0.7216 0.5470

CPBD [13] 0.8524 0.8556 0.6755

S3 [21] 0.9103 0.8921 0.7165

BRISQUE [33], [34] 0.8541 0.8420 0.6714

BLIINDS-II [35], [36] 0.8332 0.7411 0.5669

LPC-SI 0.9077 0.9016 0.7274

Database Size-Weighted Average

Measure PLCC SRCC KRCC

PSNR 0.8944 0.8882 0.7228

SSIM [2] 0.9652 0.9714 0.8736

H-index [18] 0.7456 0.7064 0.5273

Q-index [19] 0.6244 0.5541 0.4081

JNBM [11] 0.7761 0.7423 0.5690

CPBD [13] 0.8713 0.8818 0.7003

S3 [21] 0.9113 0.9046 0.7302

BRISQUE [33], [34] 0.8749 0.8463 0.6878

BLIINDS-II [35], [36] 0.8598 0.8298 0.6376

LPC-SI 0.8995 0.9023 0.7214

somewhat reasonable because with the large number of sample

points, the Central Limit Theorem comes into play and the

distribution of the residual difference approximates Gaussian.

For a given image database, F-statistic can then be employed

to compare the variances of two sets of prediction residuals

by two objective methods, so as to determine whether the two

sample sets come from the same distribution. As such, we

can make a statistically sound judgment regarding superiority

or inferiority of one objective method against another. A

statistical significance analysis matrix is created and shown in

Table VI, where each entry consists of four characters which

correspond to the four blur databases in the order of LIVE,

TID2008, CSIQ and IVC, respectively. A symbol “−” denotes

that the two objective methods are statistically indistinguish-

able, “1” denotes the method of the row is statistically better

than that of the column, and “0” denotes that the method of the

column is better than that of the row. A symbol “x” denotes

unfeasible analysis between row and column method. This is

mainly in the case of BRISQUE and BLIINDS-II algorithms

over trained data from the LIVE database. It can be observed

that S3 and LPC-SI are statistically indistinguishable for all

databases and outperform all other NR sharpness methods for

all databases.

One useful feature of the proposed LPC-SI approach is

that it provides an LPC map that indicates the spatial vari-

ations of local sharpness. Sample images are given in Fig. 4,

together with their corresponding sharpness maps produced

by CPBD [13], H-Metric [18], S3 [21] and LPC-SI algo-

rithms. Since the CPBD algorithm requires a large block of

size 64 × 64 [13], to produce more localized measurement,
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TABLE VI

STATISTICAL SIGNIFICANCE ANALYSIS BASED ON QUALITY PREDICTION RESIDUALS ON LIVE [29], TID2008 [30], CSIQ [31] AND IVC [32]

DATABASES

model PSNR SSIM H-Metric Q-Metric JNBM CPBD LPC-SI S3 BRISQUE BLIINDS2

PSNR ---- 000- -10- -10- 010- 0-0- 0-00 0-0- x--- x-0-

SSIM [2] 111- ---- 111- 111- 1111 11-1 11-- 11-- x111 x111

H-Metric [18] -01- 000- ---- 1-0- 0--1 0001 000- 000- x011 x011

Q-Metric [19] -01- 000- 0-1- ---- 00-1 0001 000- 000- x011 x011

JNBM [11] 101- 0000 1--0 11-0 ---- 000- 0000 000- x011 x011

CPBD [13] 1-1- 00-0 1110 1110 111- ---- 0--0 ---0 x-1- x-1-

LPC-SI 1-11 00-- 111- 111- 1111 1--1 ---- ---- x-11 x-11

S3 [21] 1-1- 00-- 111- 111- 1111 ---1 ---- ---- x-1- x-11

BRISQUE [33], [34] x--- x000 x100 x100 x-0- x-0- x-00 x-0- x--- x-0-

BLIINDS-II [35], [36] x-1- x000 x100 x100 x10- x-0- x-00 x-00 x-1- x---
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Fig. 5. Relationship between LPC-SI and Gaussian blur standard deviation.

overlapping 64 × 64 windows of step size 8 are used, resulting

in blurry sharpness maps, as shown in Fig. 4. The H-metric

map is computed by non-overlapping 8 × 8 blocks, and

thus creates sharpness maps that have the same resolution

but are less burry. S3 employs different block sizes and

overlapping factors for spectral and spatial measurement, and

in general further improves the resolution of the sharpness

maps. Unlike the other algorithms, LPC-SI does not employ

block-based computation, and produces the most localized

sharpness map. Visual comparisons of the sample images

together with the sharpness maps in Fig. 4 suggest that

all four types of sharpness maps convey useful information

regarding local sharpness variations, and the H-Metric, S3 and

LPC-SI, to a significant extent, agree with each other, though

the localization of the measurement could be very different.

It is worth mentioning that these sharpness maps are computed

to compare the local behavior of the competing algorithms

only, some of which may not be designed to generate accurate

local sharpness measurement but to predict the overall human

sharpness assessment of the whole image. Moreover, without

precise local sharpness assessment by human subjects (which

will be our future work), it is difficult to conclude about the

relative performance of these maps.

In Fig. 5, we examine the monotonicity between LPC-SI and

the numerical level of blur, where Gaussian blur with standard

deviation between σ = 0 and σ = 4 are tested using source

images in the LIVE database. It can be seen that LPC-SI has a

monotonic behavior and therefore can successfully rank-order

the source image with different blur parameters. On the other

hand, the sharpness measures behave differently when blurred

Fig. 6. Example of original and noise corrupted images.

images generated from different source images are compared.

Similar behavior has also been observed when the same test

is applied to the other NR measures in Tables IV and V. It is

worth noting that the goal of a perceptual sharpness measure

is to predict the perceived blur, but not the numerical factor

used to create the blurred image. The perceptual blur and

the numerical blur may not perfectly agree with each other,

especially when the images are significantly different in texture

content and complexity.

Although our algorithm is not designed to work with noise,

it is interesting to observe how it reacts when images are con-

taminated with noise. The impact of noise on perceived sharp-

ness is a complicated issue. Adding noise may (or may not)

increase the visual sharpness of flat image regions, but it could

significantly affect the perceived sharpness at the sharp edges

near an object, which in turn may make it more difficult

for the visual system to discern detailed structures in an

image. Fig. 6 demonstrates this by showing the “Sail Boats”

image that is severely corrupted by noise. In this example,

the sharpness of the main objects appear to be weakened

by noise. To examine how the proposed method reacts to

noise, we plot LPC-SI versus noise level for the “Sail Boats”

image in Fig. 7, where we observe that LPC-SI decreases with

the increase of noise. We hypothesize that how noise affects

perceptual sharpness is content-dependent. It is currently not

a conclusive issue and is worth future investigations.



HASSEN et al.: IMAGE SHARPNESS ASSESSMENT BASED ON LPC 2809

TABLE VII

RUNTIME COMPARISON OF SHARPNESS MEASURES FOR IMAGES OF 1024 × 1024 RESOLUTION

Model H-metric [18] JNBM [11] CPBD [13] S3 [21] BRISQUE [33], [34] BLIINDS-II [35], [36] LPC-SI

Runtime (second) 3.86 8.37 11.29 142.5 1.03 572.0 4.37
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Fig. 7. Relationship between LPC-SI and noise standard deviation σ .

The majority of the computational cost of the proposed

LPC-SI algorithm is in the log-Gabor filtering process,

which is implemented using the fast Fourier transform (FFT)

approach. In the case of L-scale M-orientation filtering, a

total of one forward 2-dimensional (2D) FFT and L M inverse

2D-FFTs are performed, and all other computations are linear

with respect to the number of pixels N in the image. Therefore,

the computational complexity of the proposed algorithm is

determined by the complexity of 2D-FFT and is thus in

the order of O(N log N). We have also carried out fur-

ther experiment to compare the runtime of seven sharpness

measures applied on images with 1024 × 1024 resolution.

This test was performed using a computer configured with

Intel Core i7 CPU at 2.40 GHz, 8 GB RAM, Windows

7 64-bit, and Matalab 7.10. The results are summarized

in Table VII, which gives a rough estimate of the relative

complexity of the algorithms because the MATLAB code is

not optimized for speed. The BRISQUE algorithm requires a

long training process but is the fastest in the testing phase

among all algorithms being compared. The slowest meth-

ods are BLIINDS2 and S3, both of which involve sophis-

ticated block-based computation. LPC-SI achieves highly

competitive perceptual sharpness prediction and is among

the fastest algorithms, giving it advantages in real-world

applications.

V. CONCLUSION

We propose an LPC-based method for the assessment of

perceived image sharpness without referencing the original

image. The underlying assumption is that blur affects the LPC

relationship near sharp image features and the degradation of

LPC strength can be employed to measure image sharpness.

We derive a flexible framework to evaluate the LPC strength in

arbitrary fractional scales. We propose an efficient algorithm

that largely simplifies the LPC computation, making it easily

applicable in practical applications. We then develop a novel

LPC-SI image sharpness measure, which shows competitive

performance when compared with state-of-the-art algorithms.

These promising results inspire us to extend the current work

to other image processing applications where LPC may be

employed as a new type of prior model of sharp natural

images.
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