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No-Reference Quality Assessment of
Natural Stereopairs

Ming-Jun Chen, Lawrence K. Cormack, and Alan C. Bovik, Fellow, IEEE

Abstract— We develop a no-reference binocular image quality
assessment model that operates on static stereoscopic images. The
model deploys 2D and 3D features extracted from stereopairs to
assess the perceptual quality they present when viewed stereo-
scopically. Both symmetric- and asymmetric-distorted stereopairs
are handled by accounting for binocular rivalry using a classic
linear rivalry model. The NSS features are used to train a support
vector machine model to predict the quality of a tested stereopair.
The model is tested on the LIVE 3D Image Quality Data-
base, which includes both symmetric- and asymmetric-distorted
stereoscopic 3D images. The experimental results show that our
proposed model significantly outperforms the conventional 2D
full-reference QA algorithms applied to stereopairs, as well as
the 3D full-reference IQA algorithms on asymmetrically distorted
stereopairs.

Index Terms— Binocular rivalry, 3D image quality, stereoscopic
quality assessment, no-reference QA.

I. INTRODUCTION

T
HE QUANTITY of digital 3D videos and images avail-

able for human consumption has increased dramatically

in the last few years. According to statistics gathered by the

Motion Picture Association of America (MPAA), half of all

moviegoers saw at least one 3D movie in 2011, while those

under 25 years old saw more than twice that number [1].

To meet this demand, the number of 3D movies has been

increasing by at least 50% annually over the past few years

[1], [2]. This increase has not been limited to the theatre

screen: 3D television broadcasts [3] and 3D cameras, including

camera phones, have become commonplace. As such, con-

sumer 3D content can be expected to become increasingly

available in the near future, presenting challenges to efforts

to maintain and improve the quality of experience (QoE) of

visual content.

Understanding how to monitor the integrity of 2D and 3D

visual signals throughout computer networks has become a

critical question. Being able to provide visual quality assurance

via the ability to automatically assess the quality of visual

media delivered to the client is both demanding and increas-

ingly urgent. Thus, the development of objective visual quality
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assessment models of images and videos has been a busy and

fruitful area of work [4]. However, while great advances have

been made on modeling regular (non-stereoscopic) image and

video quality [5], [6], progress on the question of 3D image

quality has been limited [7].

Research on visual quality assessment can be divided into

three categories based on the amount of information which is

accessible to the algorithm [4]. Full-reference (FR) models

require the original pristine content to be able to assess,

for comparison, the quality of the tested content. Reduced-

reference (RR) approaches operate under the assumption that

some small fraction (at least) of information about the original

content is available. This fractional information could range

from a few parameters extracted from the pristine content

to extra side data (such as a watermark) imposed on the

tested content. Finally, no-reference (NR) quality assessment

algorithms operate on the tested content without any infor-

mation extracted from the corresponding pristine content.

Since pristine reference versions of visual signals transmitted

over networks are rarely available, NR QA algorithms are

potentially much more feasible solutions. Indeed, 2D NR

QA algorithms [5], [8]–[11] have been developed that deliver

competitive performance relative to 2D FR QA algorithms.

This is not the case with stereoscopic 3D NR QA models.

The problem of stereoscopic 3D image quality assessment

is much more complex than that of 2D quality assessment.

A number of important issues arise with the additional dimen-

sion of 3D content (depth or disparity). First, an observer

may experience binocular rivalry1 while stereoscopically view-

ing 3D content, which may affect the perceived 3D quality

[12]–[15]. Further, the perceived quality of the depth sensation

(e.g., as a function of the rendering algorithm [16]) likely

involves interactions between depth quality, 2D quality, and

3D quality [17], [18]. Finally, the important factors of visual

discomfort and fatigue arising from incorrect stereography

[19], [20] can negatively affect the experience of viewing

a stereoscopic image. From among these various factors,we

attempt to isolate and focus on predicting the 3D perceptual

quality of stereopairs that may have been subjected to distor-

tion but without considering issues related to visual comfort.

Even without considering visual comfort, it has proved quite

challenging to develop 3D FR QA models. Moorthy et al. [7]

tested a number of 2D and 3D QA algorithms against the

distorted 3D content of the Phase I dataset of the LIVE

3D Image Quality Database, and found that the tested 3D

FR QA algorithms (those that utilized depth or disparity in

1We use the term in a broader sense than is used by people who study
biological vision
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same manner) did not perform better than high performance

2D FR QA algorithms applied to the stereo imagepair when

cast against recorded human opinions on the stereoscopically

viewed 3D images.

The perceptual effects of distortions arising from compres-

sion channel errors, noise, and camera artifacts are becoming

quite important as 3D capture, transmission, and display

technology have begun to penetrate the wireless and mobile

markets. We do allow for the possibility of binocular rivalry

arising from distortion asymmetries. The result of our model-

ing effort is a 3D NR IQA algorithm that predicts the quality

of stereo images whether the distortion is symmetric or not

(rivalrous). The algorithm extracts both 2D and 3D natural

statistical features from a stereopair to be quality assessed.

These features are used to first classify a distorted stereopair

as either symmetrically or asymmetrically distorted. Then the

same set of features is used to evaluate the quality of the

stereopair.

This paper is organized as follows. Section II reviews

previous 3D image QA models that only focus on predicting

picture quality of 3D images. In Section III, we develop our

model, describing in detail the feature extraction and feature-

based quality prediction mechanisms. Section IV describes the

LIVE 3D Image Quality Database and details the experimental

results. Finally, Section V concludes the paper with a discus-

sion of ideas for future work.

II. PREVIOUS WORK

While just three categories (FR, RR, and NR) are com-

monly used to distinguish 2D QA models, we will also

further divide 3D QA models into two classes that may

come from any of the usual three categories. The first class

(Class 1) [21]–[23] are 2D-based 3D QA models which do

not utilize computed or otherwise measured depth/disparity

information from the stereopairs. Among Class 1 models,

the methods in [21], [22] conduct 2D FR QA on the left

and right views independently, then combine (by various

means) the two scores into predicted 3D quality scores.

Gorley, et al. [23] compute quality scores on matched

feature points delivered by SIFT [24] and RANSAC [25]

applied to the two views.

The second class (Class 2) of models include some kind of

disparity information in the overall 3D QA process. Among

Class 2 3D QA algorithms, Benoit, et al. [26] proposed a

FR 3D QA algorithm that computes quality scores between

the left reference and left distorted view, the right reference

and right distorted view, and between computed reference and

distorted disparity maps. The quality scores are computed

using the 2D FR QA indices C4 [27] and SSIM [28], then

combined to produce a final predicted 3D QA score. Their

results suggest that disparity information might improve 3D

QA performance when SSIM is applied to the disparity data,

but they also claimed that the 2D C4 algorithm performs better

than applying SSIM on both stereo image pair and the disparity

map. They observe that the disparity estimation algorithm

can affect the performance of 3D QA. You, et al. [29]

further extended the idea of predicting the 3D quality of a

stereopair by applying 2D QA algorithms on the stereopair

and on its disparity map. They applied a large pool of FR

2D QA algorithms on the stereopairs and disparity maps,

and concluded that applying SSIM on stereopairs and mean-

absolute-difference (MAD) on the estimated disparity map

yields good performance in predicting the 3D quality of stereo

images. Unlike the work reported by Benoit, et al., their SSIM-

based 3D QA algorithm significantly outperformed all 2D

FR QA models on their dataset. Using a similar framework,

Zhu, et al. [30] proposed a 3D QA model based on a 2D

QA algorithm. Similarly, Yang, et al. [31] proposed a FR

3D QA algorithm based on the average PSNR of the two

images in the stereopair and the absolute difference between

the left and right view. Their algorithm therefore did not

deploy a stereo matching stage to compute depth or disparity.

However, none of these studies benefited by a large scale study

of algorithm QA performance against human opinion. The

study in [7], which employed thirty-two subjects who viewed

two hundred distorted stereopairs affected by five different

distortions, found the remarkable result that none of the 3D

QA algorithms developed at the time of the study delivered

QA prediction performance better than or in most cases, even

as good as, 2D QA algorithms applied to the individual stereo

image pairs.

Maalouf, et al. [32] proposed to perform the task of 3D

QA on a Cyclopean image, which they define as the average

of the left image and the disparity-compensated right image.

Of course, the Cyclopean image is not an average of the left

and right views but instead, is a 3D percept consisting of

luminance and color patterns superimposed on a 3D images

[33], [34]. Bensalma, et al. [35] proposed a 3D QA algorithm

that measures the difference of binocular energy between

the reference and tested stereopairs, and thus considers the

potential influence of binocularity on perceived 3D quality.

Chen, et al. [36] proposed a 3D FR QA framework that models

the influence of binocular effects, and claim that modelling

binocular effect can yield better performance when predicting

the subjective 3D quality of stereopairs. Further positive

developments would likely benefit from a better understanding

of the relationship between perceived distortions and binocular

rivalry.

Only a small amount of work has targeted the development

of RR and NR 3D QA models. An RR 3D QA algorithm

was proposed by Hewage, et al. [37]. In their model, edges

are computed from the depth map, then the PSNR between

the reference and test edge maps are analyzed to predict 3D

quality. Akhter, et al. [38] proposed a NR 3D QA algorithm

which extracts features from stereopairs and an estimated

disparity map. A logistic regression model is used to predict

3D quality scores from these features.2

III. 3D NR QA MODEL DESIGN

A flowchart of our proposed model is shown in Fig. 1. Since

disparity is estimated and used to conduct QA, it is a Class 2

2There are other NR 3D QA algorithms that specifically deal with depth-
image-based-rendering (DIBR) generated 3D images/videos, but here we only
discuss the algorithms that operate on natural stereo content.



CHEN et al.: NO-REFERENCE QUALITY ASSESSMENT OF NATURAL STEREOPAIRS 3381

Stereo Image

Quality Es�ma�on

Predicted 3D Quality Score

“Cyclopean”

Image 

SSIM-Based

Stereo 

Algorithm

Disparity 

Map

Uncertainty

Map

2D Feature Extrac�on

seuC D3seuC D2

3D Feature Extrac�on

serutaeF D3serutaeF D2

Gabor Filter

Responses

Fig. 1. Flowchart of proposed 3D NR QA model.

3D NR IQA model. Given a stereo imagepair, an estimated

disparity map is generated by a SSIM-based stereo algorithm,

while a set of multi-scale Gabor filter responses are generated

on the stereo images using a filter bank. A Cyclopean Image

is then synthesized from the stereo image pair, the estimated

disparity map, and the Gabor filter responses. 2D features are

then extracted from the synthesized Cyclopean Image, while

3D features are independently extracted from the estimated

disparity map and an uncertainty map that is also produced

by the stereo matching algorithm. Finally, all of the extracted

2D and 3D features are fed into a quality estimation module

which predicts the perceived 3D quality of each tested stereo

imagepair.

An extension of the linear model proposed by Levelt [34] is

used to synthesize the Cyclopean Image from a stereo image

pair. First, a disparity map is estimated from a test stereo pair

using a very simple SSIM-based dense stereo matching algo-

rithm. The algorithm operates by search for disparities yield

the best SSIM match between left and right image patches,

with ties broken by selecting the lower disparity solution. This

estimated disparity map is then used to create a disparity-

compensated right view image. The Gabor filter responses are

then extracted from the left view image and the disparity-

compensated right view image. Finally, the Cyclopean image

is calculated as a weighted summation of the left and disparity-

compensated right views, where the weights are computed

from the Gabor filter responses. The details of this process

can be found in [36]. Since the contribution of this work is the

method of selecting and extracting features and the way they

are used to conduct NR 3D QA, we only focus on explaining

these later parts.

A. 2D Feature Extraction

Research on natural scene statistics (NSS) has clearly

demonstrated that images of natural scenes belong to a

small set of the space of all possible signals and that

they obey predictable statistical laws [39]. Successful 2D

NR QA algorithms [5], [8], [9] based on the statistics

of natural scenes (and the fact that human perception has

adapted to these statistics over the eons) have achieved

comparable QA prediction performance as high performance

FR QA models [28], [40]. Although images of real-world

scenes may vary greatly in their luminance and color dis-

tributions, by pre-processing images in biologically rele-

vant way, e.g., by processes of predictive coding [41]

and divisive normalization [42], yields transformed images

obeying a regular parametric statistical model [39], [43].

Ruderman [39] showed that images processed via a simple

local mean subtraction and divisive variance normalization

produces nearly decorrelated luminances obeying a Gaussian-

like distribution. This model closely mimics the classical front-

end center surround model with adaptive gain control. Using

these kind of NSS features, Mittal et al. [8] developed a highly

competitive 2D NR IQA model, called BRISQUE.

We apply similar pre-processing on the synthesized Cyclo-

pean Image:

M(i, j) =
I (i, j) − µ(i, j)

σ (i, j) + C
(1)

where i, j are spatial indices, µ and σ are the local sample

mean and weighted standard deviation computed by a local

window, and C is a constant that ensures stability. In our

implementation, we use an 11 × 11 Gaussian weighting matrix

with a sigma of 3.67 pixels to compute µ and σ , and fixed

C = 0.01.

Following [8] we model the coefficients in equation (1)

of the possibly distorted cyclopean image as following a

generalized Gaussian distribution(GGD):

fx (x; µ, σ 2, γ ) = ae−[b|x−µ|]γ (2)

where µ, σ 2 and γ are the mean, variance, and shape-

parameter of the distribution,

a =
bγ

2Ŵ(1/γ )
(3)

b =
1

σ

√

Ŵ(3/γ )

Ŵ(1/γ )
(4)

and Ŵ(·) is the gamma function:

Ŵ(x) =
∫ ∞

0

t x−1e−t dt, x > 0. (5)

The parameters (σ and γ ) are estimated using the method used

in [44]. The skewness and the kurtosis of these coefficients are

also estimated.

B. 3D Feature Extraction

Features based on natural scene statistics have been shown

to be effective, robust tools for predicting the quality of

natural images. The success of NSS-based features is built

on the fact that pristine natural scenes tend to follow certain

regular statistical laws. Towards further following this philos-

ophy when modeling 3D images, we also build into our QA

model features derived from 3D natural scene statistic models.
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Fig. 2. A stereopair with ground truth disparity and estimated disparity. Top
left: Right view of the stereo image. Top right: Left view of the stereo image.
Bottom left: Ground truth disparity. Bottom right: Estimated disparity.

As compared to the extensive body of literature on 2D natural

luminance statistics, studies on the statistics of disparity and

depth have been quite limited. One possible explanation for

this dearth is that acquiring accurate disparity data is a much

more difficult task than capturing 2D imaging data.

There has also been only a small amount of reported work

on modeling of natural 3D statistics. Huang [45] first studied

the statistics of range images, using range data measured by

a laser range-finder. They begin with the assumption that

natural range maps follow the random collage model, i.e.

that a range image can be partitioned into disjoint smooth

surfaces separated by discontinuities. Yang and Purves [46]

further studied the statistics of range data, which are acquired

by a laser scanner, and found that their range data is quite

rough and has a property of anisotropy. If a viewing model

is defined, the range data can be transformed into disparity

data. To study the statistics of disparity, Hibbard [47] and

Liu et al. [48] model the fixation distance of a virtual subject.

An essential difference between their work is that ground truth

range data (measured by a laser scanner) is analyzed in Liu’s

work, while Hibbard used a random collage sphere model to

synthesize range data. Both groups found that the distribution

of disparity follows a Laplacian shape. In the following, we

discuss how to bring to bear 2D and 3D NSS models on the

3D QA problem.

To conduct the task of no-reference quality assessment on

a stereo image pair, it is assumed that only the stereopair is

available, without any reference data, including ground truth

disparity. Thus, the only accessible 3D feature is estimated

disparity from a stereo matching algorithm. Here, we use a

simple SSIM-based stereo matching algorithm to estimate a

disparity map. Therefore, it is worth discussing the differ-

ence between ground truth disparity and estimated disparity.

Figure 2 shows a stereopair with ground truth disparity and

estimated disparity map. This stereopair was captured using

a parallel-camera set-up with a laser scanner that captures

ground truth range data. The ground truth disparity map is

directly converted from the range data since the capture model

is known. In Fig. 2, one can clearly see that there are many

estimated errors, especially towards the bottom sections of the

Fig. 3. Top left: Histogram of ground truth disparity map. Top right:
Histogram of the estimated disparity map. Bottom left: Histogram of the
local-normalized ground truth disparity map GGD fit overlaid. Bottom right:
Histogram of the estimated disparity map with GGD fit overlaid.

A natural undistorted stereopair(free−fuse the left and right images)

Fig. 4. A undistorted natural stereopair (free-fuse to view).

image. The errors are produced by the complex, repetitive

texture of the sidewalk, which the simple low-complexity

stereo-algorithm doesn’t handle well. Moreover, the slanting

foreground surface plane is smoothly captured in the ground

truth disparity map while the estimated map shows a ladder-

like appearance map due to the integer pixel precision of the

stereo algorithm. Figure 3 depicts the histogram of a ground

truth and an estimated disparity map both before and after

local mean removal and divisive normalization as in (1). The

top left and top right of Fig. 3, suggest that no known model

distribution could be used to consistently fit them. However,

following the normalization process, the ground truth disparity

distribution takes a Gaussian-like shape, while the estimated

disparity distribution is much more peaky and heavily tailed.

However, both are zero-mean symmetric and can be modelled

as following a GGD. As before, we take the following as

features: GGD parameters, standard deviation, skewness, and

kurtosis.

These 3D NSS features can be effectively used in the

process of distinguishing a pristine stereo image pair from

a distorted version of it. We used five common distortion

types to impair the stereo image data: white noise, blur,

JPEG compression, JPEG2000 (JP2K) compression, and a

Fast-Fading (FF) model based on the Rayleigh fading channel.

Figure 5 shows histograms of the estimated disparities of

stereo images distorted by these models. The left plot in

figure 5 shows the distributions of symmetrically distorted

stereopairs, while the right plot shows the distributions of

asymmetrically distorted stereopairs. Different types of dis-

tortions were applied on an undistorted natural stereopair

(Figure 4) to demonstrate how the statistics of distinctly
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Fig. 5. Left: Fitted disparity distributions for a natural undistorted stereopair and its “symmetrically” distorted versions. Right: Fitted disparity distributions
for a natural undistorted stereopair and its “asymmetrically” distorted versions.

distorted stereopairs tend to differ from one another. It may be

seen that symmetrical distortions create peakier distributions

whereas asymmetrical distortions result in Gaussian-like dis-

tributions. Different distortion types cause feature distributions

that have different shape (kurtosis) and spread.

Other than the estimated disparity, the uncertainty produced

by the SSIM-based stereo matching algorithm is a useful

feature for the task of 3D NR QA. The uncertainty is defined

as

Uncertainty(l, r) = 1 −
(2µlµr + C1)(2σlr + C2)

(µ2
l + µ2

r + C1)(σ
2
l + σ 2

r + C2)
(6)

where l is the left-view image and r is the disparity-

compensated right-view image of a stereopair. The uncertainty

reflects the degree of similarity (or lack thereof) between

the corresponding pixels of a stereopair. We have observed

that the histograms of noise-free natural stereopairs captured

using a paralleled-camera setting present a very positive skew

distribution. This may be understood by observing that the

stereo-matching algorithm generally finds good matches (low-

uncertainty) at most places, while relatively rare occluded or

ambiguous flat or textured areas may cause sparse errors in

the results of the stereo matching algorithm (high-uncertainty),

contributing weight to the tail of the uncertainty distribution.

Figure 6 demonstrates this observation. The bottom right

plate of Fig. 6 shows that most regions of the image have a

low uncertainty, while higher uncertainty values are observed

around the sky and trees. To model this observation, we fit

a log-normal distribution to the histogram of the uncertainty

map. The probability density function of a log-normal distri-

bution is defined as

fX (x; µ, σ) =
1

xσ
√

2π
exp −

(ln x − µ)2

2σ 2
(7)

where µ is the location parameter and σ is the scale parameter.

A maximum likelihood method is used to estimated µ and σ

for a given histogram of uncertainties.

The histogram of uncertainty also varies as a stereopair

is distorted. Figure 7 shows the uncertainty distribution of

L

Disparity Uncertainty map

0 0.2 0.4 0.6 0.8 1
0

0.02
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0.08

0.1

0.12

Log−normal fitting on the

histogram of uncertainty map

Log−normal fitting

Fig. 6. Top left: Left view of a stereopair. Top right: Histogram of the
uncertainty map and the best log-normal fit. Bottom left: The estimated
disparity map. Bottom right: The uncertainty map produced by the stereo
matching algorithm.

a natural stereopair distorted by white noise, blur, FF, JPEG

compression and JP2K compression. As depicted in Fig. 7,

the uncertainty distribution predictably changes with distortion

type and the way a stereopair is distorted (symmetrically

or asymmetrically). For symmetrically distorted stereopairs,

a Gaussian blur distortion, JP2K compression or packet loss

in both views tends to suppress details in both images in

the stereopair, so uncertainties in the disparity estimation

are reduced, yielding a peakier distribution of uncertainties.

Conversely, white noise and JPEG distortion increase the

uncertainty of stereo matching and reduce the peakiness

of the uncertainty distribution. For asymmetrically distorted

stereopairs, the uncertainty generally increases because of the

unmatched distortions, except for Gaussian blur distortion.

To summarize, the 3D features used for 3D NR QA predic-

tion are the GGD fitting parameters (mu, sigma), the standard

deviation, skewness, and kurtosis of the local-normalized

estimated disparity map, and the best-fit log-normal parameters

(µ and σ ), skewness, and kurtosis of the uncertainty map.
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Fig. 7. Left: Fitted uncertainty distributions for a natural undistorted stereopair and its “symmetrically” distorted versions. Right: Fitted uncertainty distributions
for a natural undistorted stereopair and its “asymmetrically” distorted versions.

By showing the fitted histograms of a natural stereopair and

distorted versions of it, we visually demonstrate how these

features tend to vary, and they can be used as a source of

features that predict perceived 3D quality. These observa-

tions are supported by the results obtained on independent

training and testing datasets as explained in the experimental

section.

C. Quality Estimation

A two-stage QA framework is used to predict the quality of

a test stereopair. This follows the framework introduced in [49]

and elaborated in the 2D IQA DIIVINE index [5]. In their

model, a probabilistic support vector classifier is applied

first to decide the most likely distortion type afflicting the

stereopair. A support vector regressor (SVR) is then used

to assess the perceptual distortion severity. However, unlike

DIIVINE, the classifier in our 3D NR IQA model is designed

to decide whether a stereo pair is symmetrically or asymmet-

rically distorted, without predicting the distortion type. This

is important since asymmetrically distorted stereopairs may

create binocularly rivalrous 3D experiences, and may yield

different extracted 3D features than symmetrically distorted

stereopairs. In the human study on distorted stereopairs that

we conducted [15], we found that the perceived quality of

a asymmetrically distorted stereopair is not accurately pre-

dicted by the simple average quality of the stereo views,

although the quality of symmetrically distorted stereopairs

might be accurately predicted in this manner. The same feature

vector is used for classification and regression. After the

classification process is complete, the predicted quality score

is computed as the dot product of the distortion probabil-

ity vector and the vector of symmetric/asymmetric quality

scores.

IV. EXPERIMENTAL RESULTS

We utilized the LIVE 3D Image Quality Database to verify

the performance of our proposed 3D NR IQA model. Although

Fig. 8. A stereo image (free-fuse the left and right images) and ground truth
disparity maps.

TABLE I

RANGE OF PARAMETER VALUES FOR DISTORTION SIMULATION

part of this database is publicly available [7] (Phase I, consist-

ing of symmetric distortions), a second phase has only recently

been created.

A. LIVE 3D Image Quality Database

This database was constructed in two phases (phase I con-

tains symmetrically distorted stimuli while phase II has both

symmetrically and asymmetrically distorted stimuli). Phase I

and phase II are actually different and complementary datasets.

Phase I [7] has 20 pristine stereopairs and 365 distorted

stereopairs, while phase II has 8 pristine sterepairs and 360

distorted stereopairs. The details of the dataset and of the

human studies that were conducted on them to subjectively

annotate the stimuli are described in the following.
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Fig. 9. Left: DMOS of LIVE 3D Image Quality Database Phase I. Right: DMOS of LIVE 3D Image Quality Database Phase II.

1) Source Images: The pristine stereo images used in

both phases are stereo images co-registered with range

data measured by a high-performance range scanner

(RIEGL VZ-400 [50]) obtained by a Nikon D700 digital

camera. The stereo image pairs were shot using a 65 mm

baseline. The sizes of the images are 640×360 pixels. Figure 8

shows a stereopair and its associated ground truth depth map.

For further details on the data acquisition, see [7].

2) Participants: In both phases, each subject reported nor-

mal or corrected normal vision and no acuity or color test was

deemed necessary. However, a Randot stereo test was used to

pre-screen participants for normal stereo vision in phase II.

Phase I utilized thirty-two participators with a male-majority

population. In phase II, six females and twenty-seven males

participated in the experiment, aged between 22 and 42 years.

3) Display Setting: Phase I was conducted with a iZ3D 22”

3D monitor with passive polarized 3D glasses, while phase II

was conducted using a Panasonic 58” 3D TV (TC-P58VT25)

with active shutter glasses. The viewing distance was four

times the screen height in both cases.

4) Stimuli: Both phases used five types of distortions:

compression using the JPEG and JPEG2000 compression

standards, additive white Gaussian noise, Gaussian blur and a

fast-fading model based on the Rayleigh fading channel. The

degradation of stimuli was varied by controlling parameters

within a pre-defined range, as reported in Table I. The ranges

of control parameters were decided beforehand to ensure

that the distortions varied from almost invisible to severely

distorted with a good overall perceptual separation between

distortion levels throughout. Due to the different viewing

environments, the range of distortions are also different in the

two experimental phases.

The phase I dataset contains only symmetrically distorted

stereo images (80 each for JP2K, JPEG, WN, and FF;

45 for Blur) while the phase II dataset had both symmetrically

and asymmetrically distorted stereo images (72 images for

each distortion type). The ‘symmetrically’ distorted stereopair

means that the same ‘amount’ of distortion was created for

the left and right image, while the ‘asymmetrically’ distorted

stereopair has a different ’amount’ of distortion in the two

views. In the phase II dataset, for each distortion type, every

reference stereopair was processed to create three symmetric

distorted stereopairs and six asymmetric distorted stereopairs.

5) Procedure: A single stimulus continuous quality scale

(SSCQS) [51] experiment with hidden reference was con-

ducted in both phases. Both studies used continuous scales

labelled by equally spaced adjective terms: bad, poor, fair,

good, and excellent, i.e. a Likert scale. Both studies were

divided into 2 sessions; each of less than 30 minutes to

minimize subject fatigue. A training session was also con-

ducted before the beginning of each study to help familiarize

participants with the GUI.

6) Subjective Quality Scores: Difference opinion scores

(DOS) were obtaining by subtracting the ratings that the

subject gave each reference stimuli from the ratings that the

subject gave to the corresponding test distorted stimuli. The

remaining subjective scores were then normalized to Z-scores,

then averaged across subjects to produce difference mean

opinion scores (DMOS). A subject rejection process suggested

by [51] was performed on the phase II dataset and two out of

thirty-three were rejected. Figure 9 shows the distribution of

DMOS of the database. The DMOS distributions of phase I

and phase II are quite different. In the phase I dataset, the

DMOS given to WN and FF distorted stimuli varied from −10

to 60, the DMOS given to JP2K and Blur distorted stimuli have

a range between −10 and 40, and the DMOS given to JPEG

have a significantly narrower range from −10 to 20 indicating

less perceptual distortion overall and smaller differences in

perceived severity. Similarly, JP2K and Blur was generally

less visible than WN and FF in the phase I dataset. However,

in the phase II dataset, only the JPEG distorted stimuli were

less visible than other distortion types, while WN, JP2K, Blur,

and FF distortions were generally rated as falling within a

similar quality range. The DMOS scores of both symmetric

and asymmetric stimuli are plotted in Fig. 10. From the plot,

it is apparent that the different DMOS ranges were not caused

by the symmetry (or lack of) of the distortion.

B. Classification Accuracy

The first layer of our proposed 3D NR IQA model is the

symmetric vs. asymmetric distortion classifier. We used the

LIBSVM package [52] to perform classification. To assess the

performance of the classifier, we performed 1000 iterations of

the train-test process. At each iteration, we randomly picked
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Fig. 10. Left: DMOS of Phase II symmetric distorted stimuli. Right: DMOS of Phase II asymmetric distorted stimuli.

TABLE II

COMPARISON OF 2D IQA ALGORITHMS: SROCC AGAINST DMOS ON

THE LIVE PHASE I 3D IQA DATASET

WN JP2K JPEG Blur FF All

PSNR 0.932 0.799 0.121 0.902 0.587 0.834

SSIM 0.938 0.858 0.436 0.879 0.586 0.876

MS-SSIM 0.942 0.892 0.613 0.926 0.723 0.926

BRISQUE 0.940 0.812 0.569 0.860 0.784 0.901

Our Model 0.919 0.863 0.617 0.878 0.652 0.891

Italicized algorithms are NR IQA algorithms, all others are FR IQA
algorithms.

80% of the dataset as training data and the remaining 20%

to test. The mean classification was 82.07% with standard

deviation 2.88.

C. Performance

1) Phase I dataset: Since the proposed algorithm algorithm

requires training, 1000 iterations of the train-test process

was used. At each iteration, the phase I dataset was ran-

domly divided into 80% training and 20% test across 1000

iterations. The performance was measured using Spearman’s

Rank Ordered Correlation Coefficient (SROCC), (Pearson’s)

linear correlation coefficient (LCC), the root-mean-squared

error (RMSE) and outlier ratio (OR)3 between the predicted

scores and the DMOS. LCC, RMSE and OR were computed

after logistic regression as described in [53]. Higher SROCC

and LCC values indicate good correlation (monotonicity and

accuracy) with human quality judgments, while lower values

of RMSE and OR indicate better performance.

We compared the performance of our 3D NR IQA model

with several 2D FR and NR IQA (Class 1) models: PSNR,

SSIM [28], MS-SSIM [54], and BRISQUE [8]. SSIM and

MS-SSIM are FR IQA algorithms, while BRISQUE is a high

performance NR QA algorithm. For all 2D QA algorithms,

the predicted quality of a stereopair is taken to be the average

quality predicted from the left and right views. The perfor-

mance numbers are shown in Tables II–IV. Our proposed

3Because the standard deviations of DMOS scores of the phase I dataset
are not available, we didn’t report OR numbers on the phase I dataset.

TABLE III

COMPARISON OF 2D IQA ALGORITHMS: LCC AGAINST DMOS ON THE

LIVE PHASE I 3D IQA DATASET

WN JP2K JPEG Blur FF All

PSNR 0.935 0.785 0.219 0.916 0.703 0.834

SSIM 0.939 0.865 0.487 0.919 0.721 0.872

MS-SSIM 0.940 0.919 0.686 0.944 0.802 0.926

BRISQUE 0.941 0.847 0.615 0.926 0.853 0.910

Our Model 0.917 0.907 0.695 0.917 0.735 0.895

Italicized algorithms are NR IQA algorithms, all others are FR IQA
algorithms.

TABLE IV

COMPARISON OF 2D IQA ALGORITHMS: RMSE AGAINST DMOS ON

THE LIVE PHASE I 3D IQA DATASET

WN JP2K JPEG Blur FF All

PSNR 5.896 8.022 6.381 5.820 8.843 9.036

SSIM 5.740 6.497 5.712 5.715 8.613 8.013

MS-SSIM 5.672 5.111 4.758 4.794 7.419 6.181

BRISQUE 5.640 6.894 5.158 5.473 6.491 6.793

Our Model 6.433 5.402 4.523 5.898 8.322 7.247

Italicized algorithms are NR IQA algorithms, all others are FR IQA
algorithms.

TABLE V

COMPARISON OF 3D IQA MODELS: SROCC AGAINST DMOS ON THE

PHASE I DATASET

WN JP2K JPEG Blur FF All

Benoit [26] 0.930 0.910 0.603 0.931 0.699 0.899

You [29] 0.940 0.860 0.439 0.882 0.588 0.878

Gorley [23] 0.741 0.015 0.569 0.750 0.366 0.142

Cyclopean MS-SSIM [36] 0.948 0.888 0.53 0.925 0.707 0.916

Hewage [37] 0.940 0.856 0.500 0.690 0.545 0.814

Akhter [38] 0.914 0.866 0.675 0.555 0.640 0.383

Our Model 0.919 0.863 0.617 0.878 0.652 0.891

Italicized algorithms are NR IQA algorithms, all others are RR or FR IQA
algorithms.

model performs as well as BRISQUE, but a little less well

than MS-SSIM. As we found in the human study [15], depth

seems to have little influence on the perceived picture quality
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TABLE VI

COMPARISON OF 3D IQA MODELS: LCC AGAINST DMOS ON THE

PHASE I DATASET

WN JP2K JPEG Blur FF All

Benoit [26] 0.925 0.939 0.640 0.948 0.747 0.902

You [29] 0.941 0.877 0.487 0.919 0.730 0.881

Gorley [23] 0.796 0.485 0.312 0.852 0.364 0.451

Cyclopean MS-SSIM [36] 0.942 0.912 0.603 0.942 0.776 0.917

Hewage [37] 0.895 0.904 0.530 0.798 0.669 0.830

Akhter [38] 0.904 0.905 0.729 0.617 0.503 0.626

Our Model 0.917 0.907 0.695 0.917 0.735 0.895

Italicized algorithms are NR IQA algorithms, all others are RR or FR IQA
algorithms.

TABLE VII

COMPARISON OF 3D IQA MODELS: RMSE AGAINST DMOS ON THE

PHASE I DATASET

WN JP2K JPEG Blur FF All

Benoit [26] 6.307 4.426 5.022 4.571 8.257 7.061

You [29] 5.621 6.206 5.709 5.679 8.492 7.746

Gorley [23] 10.197 11.323 6.211 7.562 11.569 14.635

Cyclopean MS-SSIM [36] 5.581 5.320 5.216 4.822 7.837 6.533

Hewage [37] 7.405 5.530 5.543 8.748 9.226 9.139

Akhter [38] 7.092 5.483 4.273 11.387 9.332 14.827

Our Model 6.433 5.402 4.523 5.898 8.322 7.247

Italicized algorithms are NR IQA algorithms, all others are RR or FR IQA
algorithms.

of distorted stereopairs (we have found no depth masking

phenomena that affects perceived picture quality), although

other aspects of binocular fusion, such as introduced rivalries,

are important. Since there is little or no binocular rivalry from

the distortions present in the stimuli in the Phase I dataset,

we do not expect any significant improvement in performance

under our 3D NR IQA model. In addition, the performance of

our model is significantly lower on the JPEG distorted stimuli

as compared to other distorted stimuli, but the same holds far

all of the other QA algorithms. As shown in Fig. 9, the JPEG

distorted stimuli represent a more difficult challenge because

their qualities are less perceptually separated.

We also studied the relative performance of 3D IQA

(Class 2) algorithms. The FR 3D IQA algorithms compared

include a PSNR-based 3D stereo IQA algorithm proposed by

Gorley and Holliman [23], a SSIM-based stereo IQA model

proposed by Benoit, et al. [26], Cyclopean MS-SSIM [36]

which considers the influence of binocular rivalry on per-

ceived 3D quality, and a 3D QA algorithm proposed by

You, et al., who applied a variety of 2D FR IQA algo-

rithms on steropairs and disparity maps to combine the

predicted quality scores from stereopairs and disparity maps

into predicted 3D quality score in a variety of ways. We

report their best result on our database (a SSIM-based algo-

rithm). The RR 3D IQA algorithm proposed by Hewage,

et al. [37] and the NR 3D IQA algorithm proposed by

Akhter, et al. [38] are also included. We used a SSIM-

based stereo-matching algorithm to generate disparity maps

for these 3D IQA models. Their performance in terms of

SROCC, LCC, and RMSE are reported in Tables V–VII.

These tables show that Cyclopean MS-SSIM has the best

TABLE VIII

COMPARISON OF 2D IQA MODELS: SROCC AGAINST DMOS ON THE

PHASE II DATASET

WN JP2K JPEG Blur FF All

PSNR 0.919 0.597 0.491 0.690 0.730 0.665

SSIM 0.922 0.704 0.678 0.838 0.834 0.792

MS-SSIM 0.946 0.798 0.847 0.801 0.833 0.777

BRISQUE 0.846 0.593 0.769 0.862 0.935 0.770

Our Model 0.950 0.867 0.867 0.900 0.933 0.880

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE IX

COMPARISON OF 2D IQA MODELS: LCC AGAINST DMOS ON THE

PHASE II DATASET

WN JP2K JPEG Blur FF All

PSNR 0.919 0.597 0.491 0.690 0.730 0.665

SSIM 0.922 0.704 0.678 0.838 0.834 0.792

MS-SSIM 0.946 0.798 0.847 0.801 0.833 0.777

BRISQUE 0.846 0.593 0.769 0.862 0.935 0.770

Our Model 0.950 0.867 0.867 0.900 0.933 0.880

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

performance among all compared 3D IQA algorithms although

its performance is not significantly different than the per-

formance of 2D MS-SSIM. The results also show that our

NR algorithm outperforms most of the 3D IQA algorithms,

except for Cyclopean MS-SSIM and the FR models proposed

by Benoit, et al. when dealing with symmetrically distorted

stereopairs. The RR IQA model [37] performs slightly worse

than 2D PSNR, while the NR IQA model proposed by

Akhter, et al. [38] performs significantly worse than 2D PSNR.

As shown in the table, 2D MS-SSIM showed the best perfor-

mance on symmetrically distorted stereopairs, outperforming

most 3D QA algorithms, except for Cyclopean MS-SSIM.

2) Phase II Dataset: Binocular rivalry is the main factor

that affects the perceived 3D quality of symmetrically distorted

stereopairs [15]. On the Phase II dataset, 1000 iterations of

train-test process were again used. We report the median result

of the 1000 runs. The same set of 2D and 3D IQA algorithms

was tested on the phase II dataset. The performance numbers

are reported in Tables VIII–XV. As shown in Tables VIII–XI,

the performance of our model is significantly better than all of

the 2D IQA models. Breaking down performance by distortion

type, the improvement relative to different 2D QA models are

observed for all distortion types, except for WN. This obser-

vation is reasonable, since there is no binocular suppression

observed in WN distorted stereopairs. The perceived quality of

a WN distorted stereopair is about the average of the qualities

of the left and right view [15].

Tables XII–XV shows the results against the mixed dataset

of all 3D IQA algorithms. Our model delivers the best per-

formance compared to most other models. The FR Cyclopean

MS-SSIM yields an insignificant difference in performance.

However, all of the others delivered significantly lower per-
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TABLE X

COMPARISON OF 2D IQA MODELS: RMSE AGAINST DMOS

ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

PSNR 4.269 7.674 6.514 9.865 7.456 8.275

SSIM 3.988 6.783 5.572 7.370 5.910 6.741

MS-SSIM 3.334 5.621 3.792 8.397 6.212 7.025

BRISQUE 5.731 7.193 4.448 4.323 4.206 7.038

Our model 3.513 4.298 3.342 4.725 4.180 5.102

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE XI

COMPARISON OF 2D IQA MODELS: OR AGAINST DMOS

ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

PSNR 0 0 0 0.083 0.014 0.017

SSIM 0 0 0 0.042 0 0.006

MS-SSIM 0 0 0 0.069 0 0.017

BRISQUE 0 0 0 0 0 0.003

Our model 0 0 0 0 0 0

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE XII

COMPARISON OF 3D IQA MODELS: SROCC AGAINST DMOS

ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

Benoit 0.923 0.751 0.867 0.455 0.773 0.728

You 0.909 0.894 0.795 0.813 0.891 0.786

Gorley 0.875 0.110 0.027 0.770 0.601 0.146

Cyclopean MS-SSIM 0.940 0.814 0.843 0.908 0.884 0.889

Hewage 0.880 0.598 0.736 0.028 0.684 0.501

Akhter 0.714 0.724 0.649 0.682 0.559 0.543

Our model 0.950 0.867 0.867 0.900 0.933 0.880

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE XIII

COMPARISON OF 3D IQA MODELS: LCC AGAINST DMOS

ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

Benoit 0.926 0.784 0.853 0.535 0.807 0.748

You 0.912 0.905 0.830 0.784 0.915 0.800

Gorley 0.874 0.372 0.322 0.934 0.706 0.515

Cyclopean MS-SSIM 0.957 0.834 0.862 0.963 0.901 0.9

Hewage 0.891 0.664 0.734 0.450 0.746 0.558

Akhter 0.722 0.776 0.786 0.795 0.674 0.568

Our model 0.947 0.899 0.901 0.941 0.932 0.895

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

formance than these two models. Among individual distortion

types, our model performed either the best or at parity with

the best for all distortion types. Compared with the other 3D

NR IQA algorithms [38], our model performed significantly

better on the entire dataset and for each distortion type.

TABLE XIV

COMPARISON OF 3D IQA MODELS: RMSE AGAINST DMOS

ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

Benoit 4.028 6.096 3.787 11.763 6.894 7.490

You 4.396 4.186 4.086 8.649 4.649 6.772

Gorley 5.202 9.113 6.940 4.988 8.155 9.675

Cyclopean MS-SSIM 3.368 5.562 3.865 3.747 4.966 4.987

Hewage 10.713 7.343 4.976 12.436 7.667 9.364

Akhter 7.416 6.189 4.535 8.450 8.505 9.294

Our model 3.513 4.298 3.342 4.725 4.180 5.102

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE XV

COMPARISON OF 3D IQA MODELS: OR ON THE PHASE II DATASET

WN JP2K JPEG Blur FF All

Benoit 0 0 0 0.125 0.014 0.028

You 0 0 0 0.042 0 0.008

Gorley 0 0.028 0 0 0.028 0.044

Cyclopean MS-SSIM 0 0 0 0 0 0

Hewage 0 0 0 0.111 0.056 0.064

Akhter 0 0 0 0.056 0.069 0.039

Our model 0 0 0 0 0 0

Italicized algorithms are NR IQA algorithms, others are RR or FR IQA
algorithms.

TABLE XVI

BREAK DOWN OF PERFORMANCE ON SYMMETRICALLY AND

ASYMMETRICALLY DISTORTED STIMULI IN THE PHASE II

DATASET. SROCC NUMBERS ARE REPORTED

Symmetric Asymmetric

2D PSNR 0.776 0.587

2D SSIM 0.828 0.733

2D MS-SSIM 0.912 0.684

2D BRISQUE 0.849 0.667

Benoit 0.860 0.671

You 0.914 0.701

Gorley 0.383 0.056

Cyclopean MS-SSIM 0.923 0.842

Hewage 0.656 0.496

Akhter 0.420 0.517

Our model 0.918 0.834

Italicized algorithms are NR IQA algorithm, others are RR or FR IQA
algorithms.

We also studied the performance of the tested algorithms

broken down by the way they are distorted (symmetrically or

asymmetrically). Table XVI shows the performances of the 2D

and 3D IQA algorithms. As one can see, our model performs

as well as 2D MS-SSIM, You’s algorithm, and Cyclopean

MS-SSIM on symmetrically distorted stereo 3D images. When

dealing with asymmetrically distorted stereo 3D images, our

model significantly outperforms all other both 2D and 3D IQA

algorithms, except Cyclopean MS-SSIM, which also models

binocular rivalry.

Making comparisons across the phase I and phase II

datasets, the FR Cyclopean MS-SSIM model and our new
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TABLE XVII

TEST ACROSS DATASETS: SROCC AGAINST DMOS

OF THE PHASE I DATASET

WN JP2K JPEG Blur FF All

Train with Phase II dataset 0.826 0.849 0.626 0.882 0.423 0.865

1000 iterations on I dataset 0.919 0.863 0.617 0.878 0.652 0.891

3D NR IQA model show competitive performance on the

symmetric dataset and outperform all other 2D and 3D IQA

algorithms on the mixed dataset. The 3D FR QA model

proposed by You, et al. [29] performed either equally well

as SSIM on both datasets. The SSIM-based 3D FR model

proposed by Benoit performed as well as SSIM on the

symmetric dataset, but significantly worse than SSIM on the

mixed dataset. The others 3D IQA models performed worse

than PSNR on both datasets.

To further verify the performance of our model, we also

report performance across datasets. Since only the phase II

dataset included both symmetrically and asymmetrically dis-

torted stereopairs, we trained our model on the phase II dataset

and tested on the phase I dataset. The result is reported in

Table XVII. Across datasets, our model performs equally well

on WN, JP2K, JPEG, and the blur distorted stereopairs, but

the performance was lower on FF distorted stereopairs. The

overall performance drops slightly due to the the performance

lost on the WN and FF distorted stimuli.

Lastly, we also tested our algorithm on another 3D image

quality database created under significantly different condi-

tions. The MICT stereo image database [38]4 has 480 JPEG

distorted stereo images, which include both asymmetrically

and symmetrically JPEG distorted stereo images, and 10

pristine stereo image. However, a double stimulus impairment

scale(DSIS) protocol and a discrete scale was used in the

subjective study. Subjects were asked to assess the annoyance

their experienced when viewing each distorted stereo image-

pair against the simultaneously displayed reference image by

choosing a rating among the following five options: 5=Imper-

ceptible, 4=Perceptible but not annoying, 3=Slightly annoying,

2=Annoying and 1=Very annoying. The display they used was

a 10-inch auto-stereoscopic display, but the viewing distance

was not provided.

The performance numbers (SROCC, LCC, MSE, and OR)

of 2D and 3D QA models on the MICT database are shown in

Table XVIII. The performance of our model reported on the

MICT database was computed by a 10-fold cross-validation

train-test procedure [55]. From Table XVIII, it is clear that

the FR models MS-SSIM and C4 deliver the best performance

among all the compared QA models on the MICT dataset, even

though the majority of the distorted stereo images in the MICT

dataset are distorted asymmetrically. The performance of our

proposed NR model does not quite match that of MS-SSIM,

but is quite competitive with Benoit’s 3D FR QA algorithm.

4We thank the authors of [38] for kindly providing access to their dataset.
We obtained 13 reference stereo images and corresponding 624 distorted
stereo images. Following the instructions given by the authors, we used only
10 reference images and 480 distorted stereo images in our experiments.

TABLE XVIII

PERFORMANCE NUMBERS TESTED AGAINST MICT DATABASE

SROCC LCC MSE OR

2D PSNR 0.586 0.554 0.971 0.255

2D SSIM 0.846 0.862 0.591 0.098

2D MS-SSIM 0.935 0.935 0.415 0.051

C4 0.921 0.927 0.438 0.059

Benoit* 0.902 0.910 0.483 0.071

You* 0.857 0.864 0.586 0.090

Cyclopean MS-SSIM* 0.862 0.864 0.587 0.084

Akhter* 0.785 0.795 0.708 0.133

Our model* 0.904 0.913 0.431 0.053

Italicized algorithms are NR IQA algorithm, others are FR IQA algorithms,
and 3D IQA algorithms are marked with an asterisk.

Akhter’s algorithm5 did not perform well and did not match

the reported numbers in [38].

V. CONCLUSION

We proposed a no-reference stereoscopic 3D image quality

assessment algorithm based on 2D and 3D natural scene

statistics. The resulting algorithm utilizes statistical features

previously proposed for 2D NR algorithms and binocular

rivalry modelled by 3D FR IQA algorithms. When there was

no binocular rivalry, our algorithm performs equally well as

the state-of-the-art 2D NR IQA algorithm. Compared with

3D IQA algorithms, our algorithm significantly outperformed

3D NR QA algorithms and delivered competitive performance

relative to high performance 3D FR IQA algorithms.

In the future, we think that extending this framework to

be able to predict the quality of depth image base ren-

dered (DIBR) 3D images is an important direction. DIBR

generated 3D images may have distortions caused by hole-

filling algorithms, 3D warping algorithms, and errors from

depth estimation. The challenge of IQA models for DIBR

generated 3D images is not limited to visible distortions.

Unnaturalness of synthesized 3D stereopairs may contribute

to visual discomfort, which is more difficult to quantify than

image quality.
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