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Abstract Depth-image-based rendering (DIBR) is

widely used in 3DTV, free-viewpoint video, and interac-

tive 3D graphics applications. Typically, synthetic

images generated by DIBR-based systems incorporate

various distortions, particularly geometric distortions

induced by object dis-occlusion. Ensuring the quality

of synthetic images is critical to maintaining adequate

system service. However, traditional 2D image quality

metrics are ineffective for evaluating synthetic images

as they are not sensitive to geometric distortion. In this

paper, we propose a novel no-reference image quality

assessment method for synthetic images based on con-

volutional neural networks, introducing local image

saliency as prediction weights. Due to the lack of existing

training data, we construct a new DIBR synthetic

image dataset as part of our contribution. Experiments

were conducted on both the public benchmark

IRCCyN/IVC DIBR image dataset and our own

dataset. Results demonstrate that our proposed metric

outperforms traditional 2D image quality metrics and

state-of-the-art DIBR-related metrics.

Keywords image quality assessment; synthetic image;

depth-image-based rendering (DIBR); convo-

lutional neural network; local image saliency

1 Introduction

With the development of mobile devices and wireless
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network technology, depth-image-based rendering

(DIBR) has become a mainstream technology for

supporting remote interactive 3D graphics. Example

uses include 3DTV [1], free-viewpoint video [2], stereo-

view video [3], and 3D interactive graphics systems

[4]. In these DIBR-based systems, a virtual view

is synthesized based on various known reference

views as the input, which comprise texture and

depth information. 3D warping [5] and hole filling

[1] are typically applied to generate the required

virtual views. However, the process of virtual view

synthesis is prone to distortions, degrading the visual

quality of the synthetic images. Having a proper

quality metric for synthetic images is fundamental

to ensuring quality of service (QoS) of DIBR-based

systems. Specifically, the feedback from synthetic

image assessment can be used to govern optimization

of reference view compression and transmission.

As illustrated in Fig. 1, geometric distortions,

such as holes, cracks, ghost artifacts, and stretching,

are the dominant distortions in a DIBR synthetic

Fig. 1 Geometric distortions in DIBR synthetic images. In each

pair, left: undistorted image, right: synthetic image. (a)–(d) exhibit

holes, cracks, ghost artifacts, and stretching, respectively.
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image. They mainly result from object dis-occlusion,

and rounding errors from 3D warping and hole

filling processes. Compared to traditional DCT-

based image distortions such as noise, blurring,

blocking, and ringing artifacts which are distributed

rather uniformly over an image, geometric distortions

appear in a non-uniform way and are distributed

locally around occlusion regions [6]. Existing 2D

image quality assessment (IQA) algorithms focus on

structural distortions, and are incapable of properly

assessing the visual quality of DIBR synthetic images.

So far, only a few works have aimed to evaluate

DIBR synthetic images. Most are extensions of

existing 2D IQA methods, assuming that DIBR

synthetic images follow the same natural scene

statistics (NSS) as traditional 2D images [6–9]. Their

improvements mainly rely on carefully designed

handcrafted features.

In contrast to existing DIBR-related metrics,

which heavily rely on handcrafted features, we

propose a no-reference (NR) DIBR synthetic image

quality assessment method using convolutional neural

networks (CNNs) and local image saliency based

weighting. Specifically, we exploit the power of CNNs

for synthetic image feature extraction, while utilizing

the sensitivity of local image saliency to geometric

distortions to refine the predicted scores. To overcome

the lack of existing training data, we constructed a

large DIBR synthetic image dataset with subjective

score annotations.

Our main contributions are as follows:

• To our knowledge, we are the first to propose a

CNN-based NR-IQA for DIBR synthetic images.

In particular, the integration of local image saliency

boosts prediction performance.

• We have constructed a new DIBR synthetic image

dataset with subjective scores. The capacity and

diversity of our proposed dataset is superior to any

existing public DIBR image dataset, boosting the

training quality and avoiding training bias.

• We have validated the proposed metric on both

the public benchmark IRCCyN/IVC DIBR image

dataset [10] and our own dataset. Experimental

results demonstrate that our method outperforms

conventional 2D image metrics and state-of-the-art

DIBR-related metrics.

The rest of the paper is organized as follows.

Related work is described in Section 2. Section

3 presents our NR-IQA approach, and Section 4

evaluates our proposed algorithm. Application of

the proposed metric is demonstrated in Section 5.

Finally, Section 6 concludes the paper.

2 Related work

2.1 Image quality assessment

Depending on their need for a priori knowledge

of the undistorted image, IQA methods may be

broadly categorized as full-reference (FR), reduced

reference (RR), and no-reference (NR). In FR-IQA,

algorithms typically have full knowledge of the ground

truth image, and evaluate image distortion according

to pixel error measurements, e.g., SSIM [11]. In

contrast, RR-IQA only uses partial information of a

reference image for quality evaluation [12]. NR-IQA

is the most challenging task, in which algorithms

estimate the quality of a distorted image without any

information about the ground truth. However, NR-

IQA is most suitable for DIBR system usage, since the

undistorted image corresponding to a virtual view is

typically unavailable. We hence only discuss NR-IQA

algorithms in the following.

Most NR-IQA methods are based on NSS priors.

Mittal et al. [13] proposed a Blind/Referenceless

Image Spatial Quality Evaluator (BRISQUE), which

extracts point-wise statistics from local normalized

luminance signals, measuring image naturalness by

the deviations from a natural image model. They

also proposed another no-reference metric, Natural

Image Quality Evaluator (NIQE) [14], without the

need for knowing the human subjective score for a

distorted image.

Recently, deep learning methods, especially CNNs,

have attracted great attention for their powerful

image feature extraction capability. Kang et al.

[15] firstly introduced CNNs into image quality

assessment. In their work, training images are divided

into small patches assigned with subjective scores as

labels. The small patches are then trained to fit

human subjective scores using CNNs. Bosse et al.

[16] and Bare et al. [17] improved the prediction

performance by weighting the predicted patch scores

with image saliency. Bare et al. [17] adopted a more

complex network architecture which clusters each

minibatch of training patches. In Ref. [18], a pre-

trained CNN model is utilized to provide multiple
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level features for image quality assessment. GANs are

also introduced into NR-IQA [19], where a plausible

reference image is generated to assist training. As

well as for image quality assessment, deep learning

has also been applied in aesthetic evaluation [20].

CNN-based NR-IQA methods have achieved state-of-

the-art performance on public 2D image databases,

such as LIVE [21], TID2008 [22], and TID2013 [23].

However, no work has been reported for assessing

DIBR synthetic images. This is mainly due to the

training bias of traditional 2D image datasets, as

the features of traditional 2D images and synthetic

images are different due to the different natures of

their distortions.

2.2 DIBR-related image quality assessment

Previous IQA methods for 2D images are

inappropriate for assessing DIBR synthetic images,

since the dominant distortions in synthetic images

are geometric distortions, as mentioned before.

Specifically, holes are mainly induced by object dis-

occlusions in a virtual view. Cracks are induced by

rounding errors from 3D warping. Ghost artifacts are

mainly induced by inaccurate depths, and stretching

is due to improper hole filling algorithms. These

distortions are quite different from traditional image

distortions, such as noise, blurring, blocking, and

ringing artifacts induced by DCT-transform based

coding and lossy transmission.

Conze et al. [24] aggregated texture, gradient

orientation, and contrast information as weighting

maps for assessing DIBR synthetic image distortions.

Battisti [7] presented an FR synthetic image quality

metric. It evaluated a synthetic image by comparing the

Kolmogorov–Smirnov distance between the blocks of

the synthetic image and the undistorted image. Sandić-

Stanković et al. proposed a Morphological Wavelet

Peak Signal-to-Noise Ratio (MW-PSNR) metric [25]

and a Morphological Pyramids Peak Signal-to-Noise

Ratio (MP-PSNR) metric [26]. Both MW-PSNR

and MP-PSNR transform a synthetic image into

wavelet domain, and measure the spectral difference

between the synthetic image and the undistorted

one. Zhou et al. [6] proposed an FR metric for

DIBR synthetic images with dis-occluded region

discovery. It first detected the dis-occluded regions

by comparing the absolute difference between the

synthetic image and the undistorted image, and then

weighted the predicted quality using the detected

dis-occluded regions. Gu et al. [8] proposed an

NR method for DIBR synthetic images using local

image description. It measured geometric distortions

with an auto-regression based NSS model. Tian

et al. [9] proposed another NR-IQA method for

measuring synthetic image distortions. Four kinds of

features, including morphological differences, edges,

gradients, and holes ratio, are separately measured

and finally aggregated. These DIBR-related metrics

achieve significant improvement over conventional

IQA metrics, yet heavily rely on handcrafted features.

3 Our approach

We now present the details of our method. As

mentioned above, current DIBR-related IQA methods

rely heavily on handcraft features, while CNN-based

methods suffer from training bias. We hence propose

a novel NR-IQA method for synthetic images based on

CNNs and local image saliency based weighting. We

also address the lack of training data by constructing

a new DIBR synthetic image database with sufficient

samples.

3.1 Overview

Motivated by previous work, we apply CNNs to train

a regression model between predicted image quality

scores and human subjective scores. Specifically, the

CNN model is assumed to represent the feature sub-

space of DIBR synthetic images in terms of natural

images.

The main bottleneck of CNN-based synthetic image

quality prediction is the lack of sufficient training

data. Notably, existing CNN-based IQA methods

achieve successful results as they are typically trained

on very large image databases, e.g., LIVE, CSIQ,

TID2008, and TID2013, which contain thousands of

images. In contrast, existing public DIBR synthetic

image datasets, in particular the IRCCyN/IVC DIBR

image dataset, contain only 96 images (including

the undistorted images). Our new synthetic image

dataset was developed to address the lack of training

data.

A CNN model is proposed and trained on

our dataset. Particularly, we utilize local image

saliency to weight the predicted score, appropriately

emphasising the contribution of geometric distortions.

The architecture of proposed method is illustrated in

Fig. 2. With our trained model, we can predict the
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Fig. 2 Architecture of our no-reference synthetic image quality metric. The inputs are small (32 × 32) patches. The predicted patch scores are

weighted by local image saliency.

quality score for test images without knowledge of

undistorted versions of them.

3.2 Local image saliency based weighting

Previous work assigns the subjective score of an

image to small image patches uniformly [15–17]. It

implicitly assumes that the small image patches

equally contribute to image quality. In fact, the

visual quality of each small image patch is quite

different from the whole image quality [27], especially

for synthetic images. Suppose a small image patch

is exactly covered by a dis-occluded region, and

holes dominate an entire patch. As illustrated in

Fig. 3, such a patch may be perceived as having

better visual quality than that of the whole image.

Without knowledge of geometric distortions, a user

may simply think that the patch contains a smooth

region. Therefore, the strategy of assigning a uniform

Fig. 3 Visual appearance of image patches containing geometric

distortions. Patch A has partial holes, while patch B is dominated

by holes. Compared to patch A, patch B is generally perceived as a

higher quality image patch, if knowledge of geometric distortions in

the whole image is not known.

predicted score to all image patches cannot properly

represent the contributions of geometric distortions.

As performing subjective tests on small image

patches is expensive and time-consuming (e.g., a

total of 768 subjective tests are required to consider

small image patches for each image), a light-weight

method of assignment of predicted patch scores is

highly desirable. In Ref. [16], the predicted patch

score is weighted by image saliency, i.e., salient regions

are assigned larger weights. This fits the assumption

that observers are generally more sensitive to salient

regions, such as the person and chair in Fig. 4(a).

The distortions in such salient regions have more

influence on the quality of the whole image. However,

this only holds for traditional distortions, such as

blurring, white noise, and blocking artifacts that

are distributed uniformly across the whole image.

It is inapplicable to DIBR synthetic images, as

geometric distortions in such images are non-uniform

and locally-distributed.

Consider Fig. 4. Figure 4(b) shows the saliency

map for Fig. 4(a) generated by Ref. [28]. Note

that the most salient regions (depicted brighter) are

not those regions containing geometric distortions

in the synthetic image. For instance, the most

salient region in Fig. 4 is the blurred red book, but

it is not humanly perceived as distorted. Directly

applying image saliency based weighting as proposed

in Ref. [27] to the synthetic image thereby overstates

the contribution of such regions, while weakening the

contribution of local patches containing geometric

distortions.

We observe that it makes sense to exploit the

difference between the saliency map of a local patch
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Fig. 4 Saliency maps for a synthetic image and its local patches. (a) Synthetic image. (b) Associated saliency map, with brighter intensity

indicating stronger saliency. (c) Six chosen small patches extracted from the synthetic image, the corresponding patch saliency maps using the

same saliency model, and the corresponding region extracted from the image saliency map. Note that geometric distortions appear differently in

the patch saliency map and the image saliency map.

and its corresponding region of the saliency map for

the whole image to help to improve the representation

of geometric distortions. As seen in Fig. 4(c), the

cracks on the wall are dark (indicating weak saliency)

in the whole image but are bright (indicating strong

saliency) in the small patch. In reality, human

perception is most sensitive to such cracks. We should

hence assign a large weight to the corresponding

patches. In contrast, the holes appearing at the

right side of the lion statue are dark (indicating weak

saliency) in both the image saliency map and the

patch saliency map. This fits the observation that

holes around the lion statue are not perceived to be

consistent with the cracks in the white wall. This is

partly supported by theories that in the human visual

system, texture contrast masking and luminance

adaptation conceal distortions to some extent [29].

We can thus give the corresponding patch a small

weight. On the other hand, patches containing no

geometric distortion share similar appearance of local
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patch saliency and corresponding regional saliency in

the whole image. For instance, the aforementioned

red book with motion blurring appears to be salient

in both the patch and the corresponding region of

the whole image. However, human perception does

not consider motion blurring to be a distortion. In

this situation, the contribution of the predicted patch

score should be low. The background floor is neither

salient at the patch level nor the whole image level,

and that should also be considered as unimportant,

as shown in Fig. 4(c).

Based on the above observations, we exploit the

ratio between the local patch saliency and the

corresponding regional saliency in the whole image

to represent the contribution of patch scores toward

geometric distortions. We define this as local image

saliency, formulated as follows:

cx =

∑
p∈Ωx

S(p)
∑

p∈Ωx

S′(p)
(1)

where Ωx indicates the region of a small patch.

S(·) and S′(·) denote the per-pixel value of patch

saliency and the corresponding saliency in the whole

image, respectively. The proposed local image

saliency is then used to weight the predicted patch

scores. For example, a patch with high local image

saliency implies that the patch contains clearly visible

geometric distortions, and that the predicted score

should be increased, and vice versa.

3.3 Network architecture

Our network is mostly inspired by Ref. [15], but is

designed to process DIBR synthetic images during

preprocessing, and to use local image saliency based

weighting.

3.3.1 Preprocessing

Before training, we divide each synthetic image into

small patches of size 32 × 32 pixels. As depicted

in Fig. 5, geometric distortions are visible in RGB

channels. However, such distortions are concealed

after gray-scale transformation and local contrast

normalization. Consequently, we abandon gray-

scale transform and local contrast normalization,

even though they have been widely used in existing

CNN-based NR-IQA methods [15, 17]. As a result,

important distortion information can be better

preserved.

3.3.2 Layers

We use 9 convolutional layers to extract local patch

features. Each convolutional layer is followed by a

ReLU activation function, which means the local

Fig. 5 Visual perception of synthetic images. (a) Two synthetic images. (b) Corresponding gray-scale maps. (c) Visualization of the local

normalized maps [15, 17]. Note that holes in regions with high intensity contrast and complex textures are lost after gray-scale transformation

and local contrast normalization.
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information is extracted into a deeper layer. The

convolutional layer can be formulated as

Cj+1 = max(0, WjCj + Bj) (2)

where Cj is the feature map of the jth layer, and Wj

and Bj are weight and bias respectively. Details of layer

configurations as well as kernels are depicted in Fig. 2.

Note that we use a zero-padding strategy, so as

to preserve the information at image borders. After

three convolutional layers, we apply a max-pooling

layer with a 2 × 2 kernel to enlarge the respective

field. We also apply the dropout strategy after the

first fully connected layer. The network depth is

chosen with the assumption that shallow network

architectures capture low-level features while deep

network architectures capture semantic features. The

effect of network depth is discussed in Section 4.

3.3.3 Optimization

By aggregating the local image saliency based weight-

ing, the loss function is formulated as follows:

min |cxf(x; W , B) − qx| (3)

where cx is the local image saliency defined in Eq. (1).

x and qx denote the input small image patch and its

assigned subjective quality score, respectively. f(·)

outputs the predicted quality score. W , B indicate

the trainable weights and biases, respectively. The

effectiveness of our proposed local image saliency

based weighting is discussed in Section 4. We use the

ADAM optimizer to solve this problem.

3.4 Construction of training database

3.4.1 Our DIBR synthetic image database

Until recently, available synthetic image databases

with subjective scores were insufficient for training.

For instance, the IRCCyN/IVC DIBR image dataset

[35] contains only 12 undistorted images and 84

synthetic images. Moreover, these images cover only

three scenes: Book Arrival, Newspaper, and Lovebird.

All have humans in the center of the scene, which

may lead to training bias. The MCL 3D database

[36] contains 693 stereoscopic image pairs, which is

sufficient for training. However, it lacks subjective

scores for each synthetic image. In order to improve

training performance, we constructed a new DIBR

synthetic image dataset.

A total of 18 reference images were chosen. These

reference images ranged from 960×640 to 1920×1080

pixels in size. Twelve reference images were randomly

sampled from 3D-HEVC testing video sequences

or other typical RGBD databases. Note that the

sampled reference images are quite different from

those in the IRCCyN/IVC DIBR image dataset. The

remaining six reference images were picked from the

Middlebury Stereo dataset [34], which only contains

indoor objects without people. We specifically chose

these reference images to avoid training bias. The

reference images are shown in Fig. 6.

Figure 7 shows a scatter plot of spatial information

(SI) vs. colorfulness information (CI) for our chosen

reference images and IRCCyN/IVC DIBR image

dataset, as suggested by Ref. [37]. They show that

the SI and CI of our chosen reference images span

a larger range than the IRCCyN/IVC DIBR image

dataset, indicating that the contents of our dataset

are more diverse and more likely to avoid training

bias.

For each reference image, we set four camera

baselines between the reference view and the virtual

Fig. 6 Reference images from Nayoga Free-viewpoint video dataset [30], Microsoft 3D Video database [31], Poznan Multiview video test

sequences [32], Freiburg stereo dataset [33], and Middlebury Stereo dataset [34].
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Fig. 7 Spatial information versus colorfulness scatter plots for (a) the IRCCyN/IVC DIBR image dataset and (b) our proposed augmented

synthesized image dataset. Red lines indicate the convex hull of the points in each scatter plot, indicating the range of scene diversity.

view. For instance, the camera position of the

Balloons reference image is denoted by 0, then we

select four virtual cameras along the horizon line of

the reference camera, while the baselines between

the virtual cameras and the reference camera are

set to −2d, −d, +d, +2d, respectively. d is the preset

unit distance. After 3D warping, we conduct 7 hole-

filling algorithms on the synthetic images. Finally,

we obtain 504 synthetic images. Note that the hole-

filling algorithms are the same as those used for the

IRCCyN/IVC DIBR image dataset. Details of the

hole-filling algorithm are given in Ref. [7]. Compared

to the IRCCyN/IVC DIBR image dataset, our new

database has over 5 times as many images. Further

comparisons are listed in Table 1.

3.4.2 Subjective testing

Since the number of synthetic images was pro-

hibitively large for a double stimulus setup, we

instead chose a single stimulus absolute category

rating procedure with hidden reference (ACR-HR),

as suggested by ITU-T Recommendation P.910

[38]. Each synthetic image was evaluated by 15

observers. Subjective testing was divided into three

sub-sessions of 25 min each with a break of five

minutes in between to reduce visual fatigue and

eye strain. Each testing image was displayed for

15 s, following by a gray image for 5 s. To ensure

Table 1 Details of our proposed DIBR synthetic image dataset

IRCCyN/IVC DIBR
image dataset

Our image dataset

Scenes 3 18

Reference images 12 18

Content With people With & without people

Synthetic images 96 504

the robustness of subjective opinion, twelve testing

images were randomly displayed repeatedly. The 15

subjects who participated in the test were graduate

or undergraduate students with ages ranging from

21 to 31. Two of them had knowledge of IQA, the

remainder having no experience of IQA.

Before testing started, the study procedure was

explained to each subject. We also obtained verbal

confirmation that the subjects had normal or

corrected-normal vision. For each sub-session, five

images were shown as a warm-up; these had different

contents but the same type of distortions as the

testing images.

A 24 inch Lenovo X23 LG 0.2 monitor was used

as display. It had 16:9 aspect ratio, 0.30 m height,

200 cd·m−2 peak luminance, and 1920 × 1080 display

resolution. The testing room was dark with weak

ambient lighting. Subjects viewed images from 2.1 m,

as suggested in ITU-T Recommendation P.910 [38].

At the end of the image display duration, the test

number of the image was displayed on the screen,

informing subjects to write down one of the five

rankings: 5-Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad

on their subjective scoring sheets.

3.4.3 Processing of raw subjective scores

The subject rejection procedure outlined in ITU-R

BT.500 [39] was used to discard scores from unreliable

subjects. The kurtosis of the scores (MOS scores) was

firstly used to determine whether the scores assigned

by a subject followed a normal distribution. For the

normally distributed scores, a subject was rejected

whenever more than 5% of the scores assigned by

the subject fell outside the range of two deviations

from the mean scores; otherwise, the subject was

rejected whenever more than 5% of the scores fell
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outside the range of 4.47 standard deviations from the

mean scores. All of the 15 subjects passed the outlier

rejection. We further analyzed the scores for the 12

redundant images, finding that most subjects assigned

the same scores to these repeated images. This further

validated the effectiveness of our subjective testing.

Finally, the scores of 15 subjects were averaged.

4 Experimental results

We now provide the details of our experimental

settings and give a performance comparison for our

proposed DIBR synthetic image quality metric on

the benchmark IRCCyN/IVC DIBR image dataset

and our own dataset. We also briefly discuss the

dependence on proposed strategies, including pre-

processing, local image saliency based weighting, and

network depth.

4.1 Settings

4.1.1 Training implementation

Two datasets were used in our experiments, including

the IRCCyN/IVC DIBR image dataset and our DIBR

synthetic image database. We trained the CNN model

on our DIBR synthetic image database; the synthetic

images were divided into training set, validation set,

and testing set according to reference image. The

dataset division obeyed the 60%/20%/20% principle.

Thus, 10 reference images with their associated

distorted images were chosen as training set. The

validation set and testing set contained 4 reference

images and their distorted images separately. Only

the training set and validation set were used during

training, while the testing set was kept secret until

performance evaluation.

In experiments, we set the ADAM optimizer

learning rate λ = 0.0001, performing stochastic

gradient descent (SGD) for 20 epochs in training,

and saving the models with the top five Pearson

linear correlation coefficient (PLCC) performance

on the validation set. For each epoch, the training

and validation set were shuffled. We calculated

local image saliency weights for the whole image and

patches using the saliency model in Ref. [28]. During

the testing stage, the predicted scores from the five

restored models were averaged.

4.1.2 Evaluation methodology

Three indicators were used to evaluate the per-

formance of our proposed metric, including Pearson

linear correlation coefficient (PLCC), root mean

square error (RMSE), and Spearman rank order

correlation coefficient (SROCC). These indicators

measure the consistency, accuracy, and monotonicity

between the predicted quality scores and subjective

scores. PLCC and SROCC range from 0 to 1,

higher values indicating better performance. RMSE

ranges from 0 to ∞+, smaller values indicating better

performance.

A total of 13 IQA algorithms were selected for

comparison. These methods can be divided into

two categories, traditional 2D IQA metrics and

DIBR-related IQA metrics. For 2D image quality

assessment, we separately choose four FR-IQA

methods, including PSNR, SSIM [11], VSNR [40],

and FSIM [41], as well as three NR-IQA methods,

including BRISQUE [13], NIQE [14], and SSEQ [42].

For DIBR-related methods, four FR-IQA methods,

including 3DSwIM [7], MW-PSNR [25], MP-PSNR

[26], and SDRD [6], as well as two recently published

NR-IQA methods, including APT [8] and NIQSV+

[9], were chosen.

For the sake of fairness of performance comparison,

the predicted scores of compared metrics were scaled

to the subjective scores, i.e., MOS values via third-

order polynomial fitting. The polynomial fitting is

conducted as follows, which is suggested by ITU-R

BT.500 [39]:

MOSp = as3 + bs2 + cs + d (4)

where s is the score and a, b, c, d are coefficients of

the polynomial fitting function, determined by the

predicted results and associated subjective scores.

Note that our predicted scores are directly trained to

fit the subjective scores, so do not require scaling.

The parameters (if any) in the compared FR-IQA

methods were trained on the training dataset, while

the predicted scores were fitted using non-linear

logistic regression to minimize the errors between

the predicted scores and the corresponding subjective

scores, as suggested by Ref. [8]. After parameter

training, we evaluated each method’s performance on

the testing dataset. The compared NR-IQA methods

were directly evaluated on the testing dataset.

4.2 Performance on the IRCCyN/IVC DIBR

image dataset

We now compare the performance of the proposed

algorithm on the IRCCyN/IVC DIBR image dataset

with state-of-the-art methods. As mentioned before,
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we trained the CNN model on the training data of our

DIBR image database, where the models with top five

PLCC results on the validation dataset were saved.

The RMSE, PLCC, and SROCC for our metric using

the IRCCyN/IVC DIBR image dataset are listed in

Table 2. Our proposed algorithm achieves values of

0.3820, 0.8112, and 0.7520, respectively, which are

better than those for competing methods.

From Table 2, we are able to derive two important

conclusions.

Firstly, existing IQA algorithms that were designed

for traditional 2D images do not perform effectively.

The FR-IQA metrics are better than the NR-IQA

metrics. FSIM [41] achieves 0.5887, 0.4671, and

0.3286 for RMSE, PLCC, and SROCC, respectively.

Note that NR-IQA metrics are not able to predict

DIBR synthetic image scores at all well, e.g.,

NIQE [14] achieves 0.1152 and 0.1181 for PLCC

and SROCC, respectively. This is mainly due

to dependency on natural image distortion priors.

In particular, NIQE predicts image quality by

evaluating the effect of distortions in terms of the

NSS distribution. As mentioned before, geometric

distortions are different from traditional image

distortions. The learned model is thus inadequate for

assessing DIBR synthetic images.

Secondly, despite the fact that the DIBR-related

IQA algorithms perform better than those designed

for traditional 2D images, prior methods are still

insufficient. The best DIBR-related IQA metric is

Table 2 RMSE, PLCC, and SROCC on IRCCyN/IVC DIBR image

dataset

Method Type RMSE PLCC SROCC

FR

PSNR 2D 0.6018 0.4279 0.4610

SSIM [11] 2D 0.6185 0.3703 0.3069

VSNR [40] 2D 0.6614 0.4012 0.4293

FSIM [41] 2D 0.5887 0.4671 0.3286

3DSwIM [7] DIBR 0.4988 0.6623 0.6158

MW-PSNR [25] DIBR 0.5351 0.5951 0.6246

MP-PSNR [26] DIBR 0.5251 0.6148 0.6274

SDRD [6] DIBR 0.3901 0.8104 0.7610

NR

BRISQUE [13] 2D 0.4924 0.3071 0.3201

NIQE [14] 2D 0.4111 0.1152 0.1181

SSEQ [42] 2D 0.5258 0.2964 0.2890

APT [8] DIBR 0.4546 0.7307 0.7157

NIQSV+ [9] DIBR 0.4679 0.7114 0.6668

Ours DIBR 0.3820 0.8112 0.7520

SDRD [6] that achieves 0.3901, 0.8104, and 0.7610

for RMSE, PLCC, and SROCC, respectively. State-

of-the-art NR-IQA metrics, such as APT [8] and

NIQSV+ [9] achieve similar performance. Our metric

outperforms those two relatively new NR-IQA metrics

for DIBR synthetic images, and indeed achieves

performance competitive to that of the state-of-the-

art FR-IQA metric, SDRD. Note however that SDRD

is a full-reference method while ours is independent

of reference images.

4.3 Cross validation

To avoid training bias of our CNN model, we

conducted cross validation on our own database.

Particularly, we evaluated the RMSE, PLCC, and

SROCC of our metric and DIBR-related metrics on

the testing set of our database. The results are listed

in Table 3.

Our metric achieves the best performance on our

DIBR synthetic image database in comparison with

other DIBR-related metrics. Note that SDRD [6] is

inferior to our method on the new database.

The performance of most existing DIBR-related

metrics decreases when tested on our database. This

implies that lack of diversity in the IRCCyN/IVC

DIBR image dataset has caused training bias. The

variation in RMSE on these two databases is shown in

Table 4, which shows that RMSE is lower when testing

on our database. Note that the RMSE variation of

3DSwIM is the most significant. This is perhaps due

to the weighting of face features in 3DSwIM, leading

to training bias.

4.4 Ablation study

Several strategies are involved in our method.

The most important issues concerning prediction

performance are preprocessing, local image saliency

based weighting, and network depth. We therefore

Table 3 RMSE, PLCC, and SROCC on testing dataset of our DIBR

synthetic image database

Method RMSE PLCC SROCC

FR

3DSwIM 0.5012 0.6320 0.6117

MW-PSNR 0.5781 0.5662 0.6028

MP-PSNR 0.5320 0.6022 0.6113

SDRD 0.4071 0.7882 0.7420

NR

APT 0.4651 0.7250 0.7081

NIQSV+ 0.4720 0.7106 0.6623

Ours 0.3940 0.7960 0.7461
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Table 4 RMSE on IRCCyN/IVC DIBR image dataset and testing dataset of our DIBR synthetic image database

3DSwIM MW-PSNR MP-PSNR SDRD APT NIQSV+ Ours

IRCCyN/IVC DIBR image dataset 0.6623 0.5951 0.6148 0.8104 0.7307 0.7114 0.8112

Our DIBR synthesized database 0.6320 0.5662 0.6022 0.7882 0.7250 0.7106 0.7960

RMSE performance −4.80% −4.50% −2.00% −2.70% −0.70% −0.10% −1.80%

conduct an ablation study to demonstrate the effect

of these strategies.

4.4.1 Preprocessing

We first evaluated preprocessing. While our

preprocessing strategy uses raw images directly, we

also implemented gray-scale transformation and local

contrast normalization of the training images for

comparison; the network architecture remained the

same. The RMSE, PLCC, and SROCC values are

listed in Table 5.

We can see from Table 5 that our preprocessing

strategy achieves better performance on the testing

set of our DIBR synthetic image database. It implies

that gray-scale transformation and local contrast

normalization may discard useful information.

4.4.2 Local image saliency based weighting

To demonstrate the effectiveness of local image

saliency based weighting, we separately trained

the CNN model with different modalities, i.e., the

CNN network without weighting, the same model

with image saliency based weighting as deployed

in Ref. [17], and our proposed model based on

local image saliency weighting. In the first case,

the predicted patch scores are averaged to fit the

subjective score. In the second case, the predicted

patch scores are weighted by image saliency. The

utilized image saliency is formulated as follows:

c′

x =

∑
p∈Ωx

S′(p)
∑

p∈I S′(p)
(5)

Note the difference between image saliency based

weighting in Eq. (6) and local image saliency

based weighting in Eq. (3). Image saliency considers

saliency, while local image saliency considers saliency

variation between the local region and the whole

image. The RMSE, PLCC, and SROCC for the

testing dataset of our DIBR synthetic image database

Table 5 RMSE, PLCC, and SROCC for the testing set of our DIBR

synthetic image database with different preprocessing strategies

RMSE PLCC SROCC

With preprocessing 0.4251 0.7420 0.7122

No preprocessing 0.3940 0.7960 0.7461

are listed in Table 6, which shows that the

performance of the unweighted CNN model is greatly

improved by using image saliency based weighting,

as shown in Ref. [17]. However, our proposed local

image saliency based weighting further improves the

indicators on the testing dataset. This implies that

local image saliency based weighting is better for

assessing DIBR synthetic images.

A visualization of local image saliency based

weighting is given in Fig. 8. Figure 8(a) represents

the saliency map of the entire image, while Fig. 8(b)

represents saliency maps of small patches, merged

into an entire image-sized map. Figure 8(c) visualizes

the actually used local image saliency based weights,

as calculated by Eq. (3). Clearly, the weights from

the saliency map and local image saliency are quite

different. The red box in Figs. 8(a) and 8(c) shows

cracks in the wall assigned a low weight by the

saliency map but a high weight by our proposed local

image saliency: local image saliency based weighting

provides a better representation of the contributions

of patch scores.

4.4.3 Network depth

A deeper network architecture is suggested [16] to

achieve better prediction performance on traditional

2D image databases. We validated this assumption

on our augmented DIBR synthetic image dataset.

Figure 9 shows how RMSE varies with different

network depths, i.e., number of convolutional

layers. We observe that RMSE decreases on both

the training dataset and validation dataset with

increasing network depth, agreeing with the

assumption that greater network depth benefits

prediction performance. However, the performance

gain, significantly decreases when the network depth

Table 6 RMSE, PLCC, and SROCC for the testing dataset of our

DIBR synthetic image database with different network modalities

RMSE PLCC SROCC

Without weighting 0.4630 0.6920 0.6761

With image saliency 0.4120 0.7420 0.7228

With local image saliency 0.3940 0.7960 0.7461
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Fig. 8 Visualization of local image saliency based weighting. (a) Saliency map of the entire distorted image. (b) Merged saliency maps of

the associated small image patches. All saliency maps were produced by Ref. [28]. (c) Local image saliency based weights, brighter blocks

indicating higher weights.

Fig. 9 Performance of CNN models with different network depths

(numbers of convolutional layers).

exceeds nine. Also, deeper convolutional layers may

lead to overfitting on the validation dataset unless

care is taken. In practice, we use a network architec-

ture with nine convolutional layers.

5 Application

The quality of synthetic images is key to the success

of DIBR-based systems. For instance, a quality

measure can be used to guide the coding of reference

texture images and depth map. It can also be used

to evaluate hole-filling algorithms. Here we use the

proposed synthetic image quality metric to optimize

the prediction of reference viewpoints. We first

describe the baseline model of reference viewpoint

prediction, and then introduce a novel model using

our proposed metric.

5.1 Baseline model of reference viewpoint

prediction

Suppose a user navigates within a virtual environ-

ment. Reference viewpoints are predicted according

to user movement, and for each, an associated

reference texture image and depth are transmitted

to the user-end for virtual view synthesis. Ideally,

reference viewpoint prediction is frequent, to reduce

errors. However, the bottleneck of reference viewpoint

transmission is bandwidth: the reference data which

can be transmitted are limited. Previous work

[43, 44] adopts a strategy that predicts reference

viewpoints with a constant frequency. Shi et al.

[45] adopts another mechanism that predicts the

reference viewpoint when the MSE between the

synthetic image and the undistorted image exceed

preset thresholds. We choose these two models as

baselines to demonstrate the effectiveness of our

proposed metric. Following Ref. [45], we predict

reference viewpoints by assessing the quality of the

synthetic images. However, our metric requires no

reference, and can be directly used to assess the

synthetic images without need for the undistorted

images.

5.2 Performance

Suppose the user navigates the virtual environment

along a horizontal path. The path is equally sampled,

and each sample indicates a virtual viewpoint. The

positions of these virtual viewpoints can then be

denoted as (· · · , v−1, v0, v1, · · · ), where v0 denotes the

initial viewpoint. Figure 10 shows the undistorted

image and the synthetic images for v0. Note that

the two synthetic images utilize different reference

viewpoint predicted by MSE and our proposed metric.

We can see from Fig. 10 that the two synthetic

images can hardly be distinguished. However, the

predicted reference viewpoints are v4 using MSE

and v7 using the proposed metric, respectively. We

choose the predicted reference viewpoint as the new

initial viewpoint, repeating the reference viewpoint

prediction until the virtual viewpoint reaches v100. A
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Fig. 10 Visual quality of synthetic images with different predicted reference viewpoints. (a) Undistorted image of v0. (b) Synthetic image of

v0 using the reference view of v4, as suggested by MSE. (c) Synthetic image of v0 using the reference view of v7, as suggested by our metric.

total of 25 reference viewpoints are suggested by MSE,

while only 17 reference viewpoints are suggested by

our proposed metric. By doing so, the transmitted

reference data is reduced while the visual quality

maintained.

We also simulated virtual environment navigation

on a Nexus 5 device. The reference data was

transmitted to the client when the quality of the

synthetic image fell below a preset threshold. We

tested bandwidth required by MSE-based reference

viewpoints and ours. See Table 7: our metric saves

29% bandwidth on average in comparison to the

metric in Ref. [45].

Table 7 Transmission frequency and average bandwidth cost of

different reference viewpoint selection models

Model Trans. freq. Avg. bandwidth cost

Bao and Gourlay [43] 5.0 fps 6.90 Mbps

Shi et al. [45] 2.4 fps 3.31 Mbps

Ours 1.7 fps 2.35 Mbps

6 Conclusions

Compared to existing DIBR-related IQA methods,

there are some highlights of our work. Firstly, it

is the first CNN-based NR-IQA method for DIBR

synthetic images, achieving significant performance

improvements over state-of-the-art 2D and DIBR-

related IQA methods. Our proposal to use local image

saliency based weighting further benefits prediction

performance. Secondly, we have designed a diverse

DIBR synthetic image dataset, which helps to reduce

training bias in our CNN model. Although we

have achieved competitive performance on DIBR

synthetic images, there is still room to improve. For

instance, the assignment of patch scores needs further

consideration to better fit human perception. In

future, we hope to improve the proposed metric by

integrating local image saliency in an end-to-end

framework.
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[32] Domañski, M.; Grajek, T.; Klimaszewski, K.; Kurc, M.;

Stankiewicz, O.; Stankowski, J.; Wegner, K. Poznan

multiview video test sequences and camera parameters.

ISO/IEC JTC1/SC29/WG11 MPEG, M17050, 2009.

[33] Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers,

D.; Dosovitskiy, A.; Brox, T. A large dataset to

train convolutional networks for disparity, optical flow,

and scene flow estimation. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 4040–4048, 2016.

[34] Hirschmuller, H.; Scharstein, D. Evaluation of cost

functions for stereo matching. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 1–8, 2007.

[35] Bosc, E.; Pépion, R.; Le Callet, P.; Köppel, M.; Ndjiki-
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