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No-Reference Video Quality Assessment Based on

Artifact Measurement and Statistical Analysis
Kongfeng Zhu, Chengqing Li, Senior Member, IEEE, Vijayan Asari, Senior Member, IEEE, and Dietmar Saupe

Abstract— A discrete cosine transform (DCT)-based
no-reference video quality prediction model is proposed
that measures artifacts and analyzes the statistics of compressed
natural videos. The model has two stages: 1) distortion
measurement and 2) nonlinear mapping. In the first stage, an
unsigned ac band, three frequency bands, and two orientation
bands are generated from the DCT coefficients of each decoded
frame in a video sequence. Six efficient frame-level features
are then extracted to quantify the distortion of natural scenes.
In the second stage, each frame-level feature of all frames
is transformed to a corresponding video-level feature via a
temporal pooling, then a trained multilayer neural network
takes all video-level features as inputs and outputs, a score
as the predicted quality of the video sequence. The proposed
method was tested on videos with various compression types,
content, and resolution in four databases. We compared our
model with a linear model, a support-vector-regression-based
model, a state-of-the-art training-based model, and a four
popular full-reference metrics. Detailed experimental results
demonstrate that the results of the proposed method are highly
correlated with the subjective assessments.

Index Terms— Blocking artifact, discrete cosine
transform (DCT), H.264/Advanced Video Coding (AVC),
natural scene, no-reference (NR) measure, video quality
assessment (VQA).

I. INTRODUCTION

V
IDEO services have been adopted widely in both mobile

and fixed networks. To provide better service, the capa-

bility of digital cameras, smartphones, and tablet computers

to acquire and display high-resolution images and videos

continues to advance rapidly. However, the human appetite for

electronic visual content is always high, and consumer demand

is increasing rapidly [2]. Thus, content providers are interested

in evaluating the performance of their services from the final
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users’ perspective, i.e., their quality of experience (QoE).

The QoE of the visual signal is of fundamental importance

for numerous image and video processing applications, such as

3-D TV systems, surveillance systems, mobile video systems,

and conferencing systems. Before multimedia data reach the

final users, they pass through three main stages: 1) generation

by a capture device; 2) compression with a codec; and 3) trans-

mission via a communication channel. The most reliable way

of assessing video quality is subjective evaluation, where a

number of human users are asked to evaluate the perceived

quality, summarized in mean opinion scores (MOSs).

However, this approach is cumbersome, slow, and expensive

for most applications.

In contrast, algorithms may provide an efficient and

effective video quality assessment (VQA). VQA algorithms

(or metrics) can be classified into three types according to

how much reference information is used: 1) full-reference

VQA (FR-VQA); 2) reduced-reference VQA (RR-VQA); and

3) no-reference VQA (NR-VQA) [2]. In some situations, such

as evaluating the performance of digital camera and camcorder

systems, the original uncorrupted images or videos are often

unavailable because the imaging (sensing) and recording sys-

tem are unknown and have to be treated as a black box, without

providing access to the original video reference. For such

applications, only NR-VQA is applicable. However, designing

NR-VQA schemes for accurate prediction of visual quality

is more difficult than for VQA with full or partial

reference [3], [4].

Up to now, some work on NR-VQA has been reported

to measure distortion of certain types. One straightforward

approach is to run an NR-image quality assessment (NR-IQA)

algorithm on video frames one by one. However, that approach

does not perform well due to the lack of reference, the high

complexity of the distortion in the videos, and the strong vari-

ation in the video content. Obviously, the low-level features

in distortion measurements are significantly influenced by the

content of the videos, and the relation between an objec-

tive distortion measurement and the (subjectively) perceived

video quality remains unknown. Therefore, extracting content-

independent features and exploring the unknown relation are

two key problems to be solved to improve the performance of

NR-VQA algorithms.

The previous two key problems are addressed by existing

IQA and VQA algorithms in a two-stage framework that

consists of distortion measurements followed by a nonlinear

mapping [5], [6]. A distortion measurement quantifies the

difference between the distorted data and the corresponding
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reference. The nonlinear mapping is composed of one or

more nonlinear functions that transform the collection of

distortion measurements to a single score representing the

overall perceived quality of the video.

There is a tradeoff between the complexity and the

performance of these VQA algorithms. The VQA algorithms

with good performance usually require a large number of fea-

tures for the distortion measurement, and complicated training

models for determining the nonlinear mapping. To achieve

a balance between complexity and performance, this paper

focuses on the distortion measurement, and proposes an

NR-VQA algorithm with a small number of efficient and

content-independent features and a simple strategy for the

nonlinear mapping. The proposed algorithm is designed to

assess the perceived quality of compressed videos, since most

of the artifacts encountered in videos are a direct result of

lossy compression.

Our video quality prediction is based on the analysis of

discrete cosine transform (DCT) coefficients, frame-by-frame

and without reference. This follows the previous two-stage

framework. In the first stage, the distortion is quantified by

combining the artifact measurements and a statistical analysis.

Six feature maps are generated from the DCT coefficients

of all 4 × 4 subblocks in the decoded frame. From the six

bands, three features (sharpness, smoothness, and blockiness)

are extracted to quantify the artifacts introduced by lossy

compression, and three other features [kurtosis, mean

Jensen–Shannon divergence (MJSD), and distribution noise]

are calculated for the statistical analysis. In the second stage,

temporal pooling transforms the frame-level features of all

frames to six video-level features. Finally, from these six

features, a trained multilayer neural network computes a single

numerical value as the predicted video quality. Comprehensive

experiments were conducted, showing the effectiveness of the

proposed method.

The rest of this paper is organized as follows. In Section II,

previous work on NR-VQA is reviewed. Then, we discuss

the character of compressed video in the DCT-domain and

motivate the choice of our features in Section III. Section IV

details the proposed DCT-based NR-VQA model, including

the generating bands, the extraction of the frame-level features,

and the pooling of the features to predict the quality score.

In Section V, we give the experimental results on four video

databases and report on the correlation between the objec-

tive prediction with the subjective MOS. The conclusion is

drawn and some avenues for further research are summarized

in Section VI.

II. PREVIOUS WORK

A large amount of work has been done to assess the quality

of distorted images and videos by the two-stage framework,

namely, distortion measurement and nonlinear mapping. In the

following, we review previous work for both stages.

A. Distortion Measurement

1) Artifact Measurement: Assuming the video compres-

sion algorithm is known, for example, motion picture expert

group (MPEG)-4 or H.264/Advanced Video Coding (AVC),

distortion-specific NR-VQA algorithms can measure the spe-

cific artifacts that exist in the decoded video. Blockiness and

blurriness (or lack of sharpness) are the most annoying arti-

facts and have received intensive attention. In the following

section, we study blind IQA or VQA algorithms that mea-

sure one or more kinds of artifacts in the distorted image

or video, and focus on the measurement of blockiness and

blurriness.

Blurriness appears as a widening of edge width, thus a

straightforward way is to measure the average edge width [7].

An indirect measurement is to analyze the statistics of the

local edge gradients [8] and model the gradient image as a

Markov chain [9]. Blurriness was also modeled as the loss of

energy at high frequencies and measured from the local power

of the high-frequency wavelet coefficients [10], the log-energy

of the discrete wavelet transform subbands [11], and the image

effective bandwidth [12]. In addition, both spectral and spatial

properties of the image were explored to quantify the perceived

sharpness [13].

Blockiness is an annoying impairment in a decoded image

and video frames at low bit-rates. It originates from a block-

based encoding. Thus, some NR blockiness measurement

techniques model, the blocky image as a nonblocky image

interfered by a pure blocky signal in the spatial domain,

and then detect and evaluate the power of the pure blocky

signal [14]–[16]. The detected blockiness was also weighted

by models of the luminance and texture masking effects of the

human visual system (HVS), and models of human perception,

since the perception of blockiness is influenced by the amount

of detail in the images and video [17]–[19]. However, these

metrics are not efficient for H.264/AVC compressed videos

because of the deblocking filter, which smoothes the sharp

edges between macroblocks.

2) Statistical Analysis: Undistorted natural images are

assumed to possess certain statistical properties that hold

across different image contents [20], [21]. The natural scenes

here refer to real environments, as opposed to laboratory

stimuli, and may include human-made objects [21], thus any

image or video obtained from a camera or camcorder is

considered to be natural.

Based on the hypothesis that the presence of distortions

in natural images alters the natural statistical properties of

the images, researchers have attempted to develop general

purpose NR-QA algorithms without prior knowledge of the

specific types of distortion [22]. The natural image quality

evaluator in [23] uses a simple and successful spacial-domain

natural scene statistic (NSS) model to construct a quality aware

collection of statistical features.

Another statistical approach is to estimate the peak

signal-to-noise ratio (PSNR) of a compressed frame from

the coded bitstream. The transform coefficients obtained from

quantized coefficients have been variously conjectured to

follow a Laplacian distribution, a Cauchy distribution, or

a generalized Gaussian distribution [24]–[26]. For instance,

in [25], the DCT coefficients were modeled using Cauchy

and Laplace probability density functions, the maximum-

likelihood estimation method then yielding an estimate of

the coding error, which was weighted by the spatio-temporal



535

contrast sensitivity function of the HVS for the prediction of

perceptual video quality.

B. Nonlinear Mapping

In previous work, a monotonic mapping function was

usually applied to a quality measure to minimize the prediction

error without changing the rank order. The simplest one is a

linear function. There are also more sophisticated monotonic

functions, such as a third-order polynomial function with

monotonicity constraints [27], an S-shaped function [28],

a four-parameter logistic function [29], and a five-parameter

logistic function [30], [31]. Parameters of these functions

are estimated by regression analysis between MOS and the

corresponding quality measure in a database. The regression

is useful and practical for algorithms based on one single dis-

tortion measure, e.g., PSNR, structural similarity (SSIM) [32],

multi-scale structural similarity (MS-SSIM) [33], and visual

information fidelity (VIF) [30].

Current VQA techniques tend to extract a large number

of features for distortion measurement, so that the over-

all quality can be predicted more accurately by supervised

learning methods based on subjective MOSs in a training

set of images or video sequences. Two NR image quality

measures were based on this two-stage framework [6], [34],

extracting a set of low-level image features in image databases

to learn a mapping from these features to subjective image

quality scores. By formulating IQA as a pattern recognition

problem, an FR-/RR-IQA metric was proposed based on

2-D mel-cepstrum for feature extraction and machine learning

for feature pooling [5].

One popular choice to construct the nonlinear mapping from

the distortion features to the perceived quality of the images

or video has been neural networks [35]–[37]. For example,

in [38], an NR-VQA method was presented based on nonlinear

statistical modeling, where an ensemble of neural networks

was used. Circular backpropagation neural networks were

used in a methodology for the objective quality assessment

of MPEG video streams to pool features extracted from

bitstreams [39]. An RR-VQA algorithm was proposed based

on a convolutional neural network, which allows a continuous

time scoring of the video, and a time-delay neural network that

integrates objective features along the temporal axis [40]. A

general regression neural network was employed for the non-

linear mapping in NR-IQA. The features, including the mean

value of the phase congruency image, the entropy of the phase

congruency image, the entropy of the distorted image, and the

gradient of the distorted image, were transformed to perceptual

image quality via a neural network [41].

Support vector regression (SVR) is another popular option

to determine the mapping from the extracted features to the

subjective quality. It has been adopted for FR-IQA in [42]

and for FR-VQA in [43]. A trained epsilon-SVR model was

used in an NR-VQA algorithm to predict the video quality

from the joint and marginal distributions of local wavelet

coefficients [44].

Other machine learning methods have also been adopted

for image and VQA lately. Partial least squares regression

was used to calculate the weights of the features extracted

from an H.264/AVC encoded bitstream [45]. The circular

extreme learning machine (ELM), which is an augmented

version of the basic ELM, handles the mapping of visual

signals into quality scores in the RR-IQA metric in [46].

An NR bitstream-based objective video quality metric was

constructed by genetic programming-based symbolic regres-

sion, which calculates reliable white-box models that allow

one to determine the importance of the parameters [47].

III. ANALYSIS OF COMPRESSED NATURAL SCENES

In this section, we analyze the appearance of distortion and

the corresponding characters in compressed natural scenes,

then introduce the decomposition of a natural image as

a preprocessing step prior to the distortion measurement

step.

A. Characteristics of Compressed Natural Scenes

The appearance of power laws in the power spectral

densities of natural scenes [21] suggests that it is reasonable

to assume that there exist statistical relations between the

high-pass responses of natural images and their bandpass

counterparts. Lossy video compression leads to distortion of

the natural video, which usually manifests itself as a loss of

texture and other image features in the high-frequency domain.

Thus, lossy compression decreases the similarity between the

different frequency bands of a natural image.

In the spatial domain, the loss of texture caused by

compression appears as an increase of the smooth image area,

in which pixel values are homogenous, and a decrease of the

sharp image area, in which pixel values vary significantly from

each other. In the DCT domain, lossy compression typically

sets many ac coefficients to zero, thereby modifying the

natural distributions, which were conjectured to be Gaussian,

Laplacian, or Cauchy distributions [48]. In particular, the zero

coefficients appear with a much higher probability.

An in-loop deblocking filtering technique has been

adopted [49] to reduce blocking artifacts in H.264 compressed

videos, but blockiness remains visible in the low-textured area.

A new blockiness metric is needed to measure H.264 com-

pressed videos due to the failure of existing blockiness

measurements. We have found that blocking artifacts can be

easily quantified based on the analysis of the horizontal and

vertical DCT components.

In summary, the lossy compression of videos of natural

scenes leads to an increase of the smooth image area, a

decrease of the sharp image area, to the occurrence of blocking

artifacts, a peaky ac coefficient distribution, and a dissimilarity

between the bands of different frequencies.

B. Generation of Image Bands

To measure the distortion, a sliding window is moved over

the decoded image pixel-by-pixel to generate six image bands

B1, . . . , B6. The window size is set to 4 × 4 for two reasons.

First, it is the smallest size from which we can obtain three

frequency bands while keeping the computational complexity

as low as possible. Note that, the larger the size of the sliding

window, the higher the computational complexity. Second,
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Fig. 1. Coefficient names of a 4 x 4 ocr block. 

it is the right size to generate two orientation bands for 

blockiness measurement, when the transform block size is 

4 x 4 in the H.264/AVC main profile [49]. Only the lwninance 

is considered in our analysis, since the HVS is more sensitive 

to luminance than to chrominance (color) [49]. From the 

16 OCT coefficients of the sliding window, we derive six fea

tures per pixel per frame, yielding a band per frame. Suppose, 

for example, that the frame size is (M + 3) x (N + 3). The 

generation of the six bands is described in the following four 

sections. 

1) Generation of the DCT Coefficient Matrix: The 16 OCT 

coefficients of the sliding window are referred to as Ct to 

Cl6 in raster order, as shown in Fig. I. Letting the sliding 

window move over the whole frame, each coefficient yields 

a matrix C;, i = l , ... , 16 of size M x N. The matrix 

C1 contains de coefficients, whereas the other 15 matrices 

contain the ac coefficients. As discussed in Section ill-B, 

a lossy compression mainly affects the ac coefficients and 

further leads to the degradation of the quality of the com

pressed videos, thus only {C; JJ!
2 

are involved in the following 

calculation. 

2) Generation of an Unsigned AC Band: Adding up the 

absolute values of the fifteen ac coefficients of a block, we get 

its unsigned ac band 8 1 

16 

8 1(m,n) = L IC;(m,n)l 

i=2 

where m = 1, ... , M , and n = 1, ... , N. It will be used to 

measure smoothness, sharpness, and peakiness. 

3) Nonnalization of the AC Coefficients: To normalize 

the OCT coefficients of a block, we divide each of its 

ac coefficients by its corresponding ac feature obtained 

in Section ill-B2, and get 15 matrices {C;}J!
2

, where 

- C;(m,n) 
C;(m,n) = 

8 
( ) 

1 m,n 

m = I , ... , M, and n = l , ... , N. 

4) Generation of the Frequency and Orientation Bands: 

From these 15 matrices, we obtain three frequency 

bands }h, 8 3, and 8 4 to quantify the dissimilarity and noise 

in their histograms, and two orientation bands 8 5 and 8 6 to 

quantify their blockiness. They are defined by 

B2(m, n) = L C;(m, n), i = 2, 5, 6 

8 3(m, n) = L C;(m , n), i = 3, 7, 9, 10, 11 

Fig. 2. Decoded frame. 

B4(m,11) = z=c1(m,n), i =4,8, 12, 13, ... , 16 

Bs(m, n) = L IC;(m, n)l, i = 2, 3, 4 

B6(m, 11) = L IC;(m, n)l, i = 5, 9, 13 

where m = 1, ... , M and"= 1, ... , N. 

An example of a decoded frame is shown in Fig. 2 and 

the six bands of the corresponding frame are shown in Fig. 3. 

As demonstrated by Fig. 3, the six bands contain different 

information about the frame: I) band 8 1 E [0, oo] contains 

all the information of the image except the de components of 

local regions; 2) bands lh, 8 3, and 8 4 E [ -1, 1] contain low

' medium-, and high-frequency components, respectively; and 

3) bands 8 s and 8 6 E [0, 1] contain vertical and horizontal 

components, respectively. 

Table I lists the six generated bands. The kurtosis, 

smoothness, and sharpness will be computed on the unsigned 

ac band. Two statistical features, MJSO and histo-noise, 

will be extracted over the three frequency bands. We will 

measure the blocky artifacts on the two orientation bands. 

Note that the frequency bands 8 2, 8 3, and 84 are signed 

rather than unsigned as in !!J, because their histograms are 

bilaterally symmetric by keeping signs of their elements. The 

bilateral symmetry will increase the accuracy of difference 

measurements between their probability distributions, namely, 

the MJSO in Section IV. 

IV. PROPOSED NR-VQA ALGORITHM 

Based on the above analysis, we propose an NR-VQA 

algorithm in the two-stage framework: 1) extracting 

frame-level features and 2) video-level features from the six 

bands B 1 to 8 6, followed by mapping the feature vectors to a 

quality prediction score by a neural network. 

A. Frame-Level Feature Extraction 

Based on the six bands, six frame-level features are 

extracted to quantify the distortion of compressed natural 

videos: I) kurtosis; 2) smoothness; 3) sharpness; 4) MJSD; 

5) histo-noise; and 6) blockiness. The features of kurtosis, 

smoothness, and sharpness quantify the distortion based on the 

statistical properties of band 8 1. Histo-noise and MJSD quan

tify the similarity between frequency bands based on the 

probability density functions of 8 2, 8 3, and 8 4. To quantify 
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(a) B t 

(e) Bs (f) BG 

Fig. 3. Six bands B 1 to 8 6 of the frame shown in Fig. 2. Sums of normalized magnitudes. (a) All 15 ac coefficients. (b) Low-frequency ac coefficients. 
(c) Medium-frequency ac coefficients. (d) High-frequency ac coefficients. (e) AC coefficients for vertical structures. (f) AC coefficients for horizontal structures. 

TABLE I 

LIST OF BANDS. THE FREQUENCY BANDS ARE SIGNED SUCH TRAT THEIR HISTOGRAMS ARE SYMMETRIC 

Band Name Range Description Index 

Unsigned AC band B1 [01oo] Li IC;I. i = 21· '' 116 

low B2 [- 11 1] L 9i· i= 21516 

Frequency medium Bs [-11 1] .Li <;•· i = 31719110111 

high B4 [-11 1] .L. c,. i = 4181 121 ' ' ' 1 16 

Orientation 
vertical Bs [01 1) .L, 19•1· i = 2,314 

horizontal Ba [0 , 1] .L. IC•I· i = 5, 9,13 

TABLED 

FEATURES OF FRAME I IN THE OCT-BASED MODEL. ALL THE FEATURES ARE BETWEEN 0 AND 1 

Name Feature Range Description 

ft(t) peakiness (01 1[ inverse of the kurtosis of unsigned AC band B 1 

h(t) smoothness [0, 1] relative sharp area of the current frame 

h(t) sharpness [0, 1) relative edge area of the current frame 

!4(t) MJSD (0, 1) filtered distribution distance between B2. Ba and B4 

fs(t) histo-noise (0, 1] the average histogram noise of Bz, Bs and B4 

fs(t) blockiness (01 1] measurement of blocking artifacts 

the blocking artifacts, the blockiness measurement is proposed 

based on 8 s and 8 6. 

Compared with our prior work presented in i!J, we improve 

the feature extraction in many ways. First, the features of 

kurtosis (E [1, oo)) and blockiness (E [0, oo)) are remapped 

to (0, lJ. The accuracy and robustness of the neural network 

will be improved when all features are in (0, ll !2.Q1 Second, 

the feature of MJSD between frequency bands is improved by 

generating 8 2, 8 3, and 8 4 in a new manner, such that their 

filtered histograms are bilaterally symmetric. Together with the 

new feature of histo-noise, the modified MJSD quantifies the 

quality degradation better than that in l!J. These frame-level 

features are listed in Table ll, and presented in more detail in 

the following. 

1) Feature Extraction From the AC Band: The histograms 

of the summed unsigned ac band, B, , extracted from an 

original frame and the corresponding distorted frame are 

shown in Fig. 4. Compared with the original frame, the 

histogram for the distorted frame has a sharper main peak, 

an additional peak at near zero, and lower frequency at 
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Fig. 4. Histogram of the band B1 (summed unsigned ac coefficients) for
intensities up to 300 and bin size equal to 0.5. (a) Original frame. (b) Distorted
frame. This is an extreme example for videos with average quality. The
compression rates of the two videos are 5 Mb/s and 200 kb/s, respectively.

high intensities. In probability theory and statistics, kurtosis

measures the peakiness of the probability distribution of

a real-valued random variable. Let p1(x) be the probability

density functions of B1. We choose the inverse of the kurtosis

as a feature: its value is within (0, 1] and it is defined by

f1(t) =
σ 4

x

E(x − µx)4
∈ (0, 1] (1)

where x is the intensity, µx is the mean of x , and σx is its

standard deviation.

For each block, if the sum of the absolute ac coefficients is

less than a given threshold TL , it is considered to be a smooth

block. The degree of smoothness is quantified by the relative

area of the smooth region in the frame, which is defined as

f2(t) =
1

MN
card({(m, n) | B1(m, n) < TL}) ∈ [0, 1] (2)

where card (A) denotes the cardinality of a set A. The

smoothness is expected to grow monotonically with respect

to the compression ratio.

If the sum of the ac coefficients is greater than a given

threshold TH , the corresponding block is considered to be a

sharp block. Sharpness is quantified as the relative area of the

sharp region in the frame, defined by

f3(t) =
1

MN
card({(m, n)|B1(m, n) > TH }) ∈ [0, 1]. (3)

A compressed video with higher compression is expected to

have a smaller sharp area.

2) Feature Extraction From the Frequency Bands: The

bands B2, B3, and B4 correspond to the low-, medium-, and

high-frequency components. We assume that the frequency

components of natural scenes are dependent and statistically

smooth, and that a lossy compression reduces their dependence

and statistical smoothness. Fig. 5(a)–(c) shows the histograms

of the three bands B2, B3, and B4 of an undistorted nat-

ural video frame and Fig. 5(d)–(f) shows the corresponding

compressed video frame. The uncompressed frame exhibits

a relatively smooth statistical distribution for each band, and

there is some similarity in the distribution between bands,

whereas the distribution for the compressed frame is noisier

and shows less similarity between bands. Hence, two features,

histo-noise and MJSD, are extracted to quantify the noise in

the histograms and the dissimilarity between bands of different

frequencies.

Write ψi (x) for the noisy histogram of band Bi and ψ̄i (x)

for the filtered version of ψi (x), where the median filter is

adopted. The histogram noise of band Bi is defined by

ǫi (x) =
|ψi (x) − ψ̄i (x)|

∑

x ψi (x)
, i = 2, 3, 4.

The histogram noise of the tth frame is defined as the mean

of ǫi (x)

f4(t) =
1

3

∑

x

[ǫ2(x) + ǫ3(x) + ǫ4(x)] ∈ [0, 1]. (4)

Define p(x) and q(x) as two probability mass functions.

The Kullback–Leibler divergence (KLD) is a measure of

the difference between two probability distributions and is

given by

DKL(p||q) =
∑

p(x) log
p(x)

q(x)
.

The KLD is nonsymmetric. The symmetrized version of

KLD is the Jensen–Shannon divergence (JSD), which is a

symmetric measure of the distance between two probability

distributions [51]. The JSD is defined as

DJS(p||q) =
1

2
(DKL(p||r) + DKL(q||r))

where r(x) = (p(x) + q(x))/2.

In Fig. 5, it can be observed that the similarity between

two adjacent frequency bands of a natural video is decreased

due to lossy compression. To measure the decrease of their

similarity, the mean JSD of B2, B3, and B4 is defined as

f5(t) =
1

2
(DJS(p2||p3) + DJS(p3||p4)) ∈ [0, 1] (5)

where

pi(x) =
ψ̄i (x)

∑

x ψ̄i (x)
, i = 2, 3, 4

i.e., p2(x), p3(x), and p4(x) are the smoothed probability

density functions of B2, B3, and B4, respectively. In general,

a high value of the MJSD means a low quality of the frame.
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Fig. 5. Histograms of band B2, B3, and B4. (a)–(c) Undistorted video frame. (d)–(f) Compressed video frame. Histograms in (d)–(f) are very noisy in
comparison to those in (a)–(c), whereas all the filtered histograms are roughly bilaterally symmetric.

3) Feature Extraction From the Orientation Bands: Due

to the deficiencies of the existing blockiness metrics for

H.264/AVC compressed videos, we propose a new metric

to measure the blockiness in H.264/AVC compressed natural

videos. In the new metric, the blocking artifacts are measured

based on the two orientation bands of the decoded frame,

rather than the decoded frame itself in previous methods.

The horizontal and vertical blockiness are measured by apply-

ing the discrete Fourier transform (DFT), in the similar way

as in [14]–[16], but on bands B5 and B6 rather than gradi-

ent images. The overall blockiness measurement is defined

as the mean of the horizontal and vertical blockiness mea-

surements. Empirically, the smaller the measurement value is,

the worse the quality of the video will be. We describe the

modified blockiness measurement as follows.

Assume the macroblock size of the codec is S × S.

We measure the horizontal blockiness by applying a sum

operation along each row in band B6. This results in a

1-D array of length M , denoted by φH , where

φH (m) =

N−1
∑

n=0

B6(m, n), m = 0, ..., M − 1.

It is difficult to directly derive the blockiness power from φH .

Fortunately, more clues can be obtained in the frequency

domain [14]. We take the 1-D DFT of φH and consider the

magnitude of the DFT coefficients, which can be expressed as

�H (l) =

∣

∣

∣

∣

∣

M−1
∑

m=0

φH (m) exp

(

−
j2πml

L

)

∣

∣

∣

∣

∣

where l = 0, . . . , L − 1 and L is the smallest power of 2 less

than or equal to the upper limit M .

Due to the nature of the DFT, �H (l) has peaks at

l = (L/S) · s, for s = 1, 2, . . . , S/2 − 1. The values at

those peaks are closely related to the horizontal blockiness

of the image. The horizontal blockiness measurement is then

computed as

PH =
1

S/2 − 1

S/2−1
∑

s=1

log10

(

�H

(

L

S
· s

)

+ 1

)

∈ [0,∞). (6)

To scale the blockiness measurement to the interval (0, 1],

PH is transformed to PLKH by

PLKH =
1

1 + PH

∈ (0, 1].

Fig. 6 shows the DFT coefficients of a reference frame

and its corresponding distorted frame. A 512-point DFT was

taken and the macroblock size was 16 × 16. No periodic

peak is observed in the top subfigure, while periodic peaks

appear at l = 32, 64, 96, 128, 160, 192, and 224 in the bottom

subfigure. The values at these peaks are chosen for computing

PH in (6). Note that due to the symmetry of the DFT for

real-valued signals, 14 peaks rather than seven are marked in

each subfigure, but only the first seven peaks are used in the

computation.

By applying a sum operation along each column in band

B5, the vertical blockiness PLKV is then measured accordingly.

Finally, the overall blockiness is defined as

f6(t) =
1

2
(PLKH + PLKV) ∈ (0, 1]. (7)

B. Nonlinear Mapping

To predict the video quality from the frame-level features

of all the frames of a video sequence, we nonlinearly map
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Fig. 6. DFT coefficients for the horizontal blockiness measurement.

the features to a score of the perceptual video quality. It is

composed of a temporal pooling of the frame-level features

and a multilayer neural network for combining the video-level

features. For a video sequence, each frame-level feature yields

a vector ( f j (1), f j (2), . . . , f j (t), . . . , f j (T0)), where T0 is the

total number of frames. The vector is then transformed to a

video-level feature by Minkowski pooling

Q j =
4

√

√

√

√

1

T0

T0
∑

t=1

f 4
j (t)

where j = 1, 2, . . . , 6 [52].

The video-level features Q1, . . . , Q6 are then treated as

inputs to a neural network trained to predict the subjective

video quality score. We choose the neural network rather

than the popular SVR that performs better in general because

the neural network can represents the predicted score as

a parametric function of features with a fixed number of

parameters. It is helpful to design a fixed parametric function

for the nonlinear mapping in our future work. Eventually,

an explicit nonlinear mapping will be developed to replace

the black box based on machine learning. The model size

of a kernel-based SVR, however, is not fixed in general,

because the support vectors are selected from the train-

ing data, and the number varies according to the training

data [53].

Fig. 7 gives the high-level organization of the proposed

prediction model. It is composed of two stages. In the first

stage, six bands are generated from the DCT coefficients.

Second is a frame-level feature extraction stage, as described

in Section IV-A and Table II. In the second stage, each

extracted frame-level feature as a vector is first taken as

an input to the temporal pooling. A single score results as

the corresponding video-level feature along the time axis.

An objective video quality score is then predicted by the

trained neural network from the video-level features.

V. PERFORMANCE EVALUATION

Our VQA model is effective, as demonstrated by

experiments on four video databases: 1) the Institut de

Recherche en Communications et Cybernétique de Nantes

(IRCCyN) video database [54]; 2) the video quality experts

group (VQEG) high-definition television (HDTV) Pool2 data-

base [55]; 3) the LIVE mobile video database [56]; and 4)

the LIVE video database [57]. These four databases contain

many source videos with diverse content and resolution. Only

compressed videos in the databases were used to evaluate its

performance, since our method aims to objectively assess the

quality of compressed videos.

A. Experimental Procedure

For all the experimental results in Section V-B, we set

TL = 1 in (2) and TH = 300 in (3) for extracting

frame-level features. A multilayer perceptron (MLP), which

is a feed-forward artificial neural network model, was created

with two layers, and 20 nodes were empirically set in the

hidden layer for nonlinear mapping. The sigmoid transfer

function was chosen for all hidden nodes and the output node,

as all the input features are between 0 and 1. Since there

are only six features and hundreds of videos in databases, we

adopted the Levenberg–Marquardt backpropagation algorithm

to update weight and bias values in the network during

training [58]. This method is known to be fast and have stable

convergence for small-size training problems.

Four statistical indices were used to evaluate the

performance. They are the linear correlation coefficient (LCC)

also known as Pearson’s correlation coefficient, Spearman’s

rank-ordered correlation coefficient (SROCC), the root mean

squared error (RMSE), and the mean absolute error (MAE)

between the predicted quality scores and the MOS. A value

close to 1 for the SROCC or LCC and a value close to 0 for

the RMSE or the MAE indicates superior correlation with the

subjective assessments. The four indices were defined in [31].

Depending on the size of the video database, we performed

content-sensitive k-fold or leave p-fold-out cross-validation

strategy to get a general performance of the proposed model.

Let a denote the number of reference videos in a database,

and let b be the number of distorted videos generated for each

reference. In k-fold validation, the original videos were divided

into k (k ≤ a) disjoint groups with equal size. Each group of

original videos together with their distorted videos comprised

one fold.

In one cross-validation process, a single fold is set for

testing, and the remaining (k − 1) folds for training. The

training and testing process is performed k times with a

different fold of testing videos each time. This strategy is not

robust when a and b are both very small. The leave

p-fold-out strategy usually is preferred in such cases, namely,

in one training and testing process, p folds are chosen for test-

ing, and the remaining for training. Here, one-fold is composed

of one original video and the corresponding distorted videos.

The training and testing process is repeated
(

a
p

)

times on
(

a
p

)

train-test pairs.
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TABLE ill 

LIST OP VIDEO DATABASES FOR PERFORMANCE VALIDATION AND COMPARISON. THE a STANDS FOR THE NUMBER OF REFERENCES, b FOR THE 

NUMBER OF VLDEOS GENERATING FROM EACH REFERENCE WITH DIFFERENT QUALITY, AND ab FOR THE TOTAL NUMBER OF VIDEOS 

Database a, b a.b Resolution 

JRCCyN video database 60 5 300 640 X 480 

VQEG HDTV Pool2 database 9 8 72 1920 X 1080 

LIVE mobile video database 10 4 40 1280 X 720 

LIVE video database 10 8 80 768 X 432 

We evaluated the performance of the proposed model in 

terms of the four statistical indices in testing data, and aver

aged their results from all testing processes to estimate the 

general performance of the proposed model in each video 

database. Their means and deviations are provided in Table N. 

In addition to the validation of our VQA model on four data

bases, the nonlinear mapping based on the MLP was compared 

to the simple linear regression, and the same SVR model, as 

in [47] , with a radial basis function kernel and the e insensitive 

loss function. SchOlkopf and Smola lTIJ. and Hay kin l.2.§l for a 

detailed discussion about SVR. We also compared the perfor

mance with four popular FR-VQA metrics (PSNR, SSIM [3~ , 

MS-SSIM [33], and VIF [30]) on the IRCCyN video database, 

and a FR state-of-the-art VQA metric, presented in [43], on 

the LIVE video database. 

B. Peiformance Evaluation and Comparison 

For a fair comparison, we performed the cross validation 

with the same training and testing data for all models. Table ill 

provides the basic information about the videos tested in our 

experiments and the strategies adopted for cross validation. 

1) IRCCyN Video Database: This database contains 

300 videos sequences of resolution 640 x 480 and the asso

ciated subjective results. There are 60 reference videos with 

different content and 5 versions for each one of them, includ

ing the original one and four distorted copies. Therefore, in the 

experiment a = 60 and b = 5. For each content, the reference 

and four distorted videos with random levels of degradation 

based on H.264/ scalable video coding (SVC) coding without 

transmission errors were subjectively evaluated. The absolute 

category rating was used as test methodology [54]. 

The 10-fold validation was performed, thus there were 

30 videos for each test. The estimated performance was 

MOS range Distortion Cross-validation 

[0,5] H.264/SVC 10-fold 

[0,5] H.264, MPEG2 Leave-2-fold-out 

[0,5] H.264 Leave-2-fold-out 

[0,100] H.264, MPEG2 10-fold, leave-2-fold-out 

compared with linear regression and SVR in Table IV 

and Fig. 8(a). The means and standard deviations of the 

four indices indicated that all the three mapping methods can 

accurately and stably predict the video quality, and the 

MLP-based method gave the best performance. This is not 

only because the six extracted features are efficient for distor

tion measurement but also because of the large number of the 

videos and the single type of distortion in the database. 

The performances of PSNR, SSIM [32], MS-SSIM 12l!. and 

VIF [30] are also given in Table IV and Fig. 8(a). Following 

the recommendation in [27], we chose the third-order polyno

mial function as their monotonic mapping function. Since only 

four parameters of the function were estimated on the training 

data, there is low risk of overfitting, as the lower standard 

deviation of the corresponding results suggest. In this case, 

the FR metrics are superior to NR-VQA metrics, as expected. 

2) VQEG HDTV Pool2 Database: This is a full 

HD database. It is composed of 9 original sequences and 

135 distorted videos by H.264 and MPEG2 coding with 

and without transmission error. The video resolution is 

1920 x 1080 pixels at 59.94 fields/sin interlaced format [55]. 

We discarded videos with transmission errors and tested 

our model only on compressed videos, since the proposed 

model aims to predict quality of compressed videos. Hence, 

a = 9 and b = 8 in the experiment. In addition, we extracted 

features based on all fields rather than frames, because deinter

lacing might introduce extra distortion to the video sequences. 

We performed leave two-fold-out validation with 16 videos 

compressed by H.264 and MPEG2 in each test. In comparison 

to the linear regression and the SVR in Table IV, the MLP still 

gave the best performance though the SVR was more precise 

(smaller standard deviations in Table IV). We also noticed that 

all the three mapping methods were not as stable as in the 
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TABLE IV

COMPARISON OF THE PERFORMANCE OF THE VQA ALGORITHMS. A VALUE CLOSE TO 1 FOR THE MEAN OF THE SROCC OR LCC, AND A VALUE

CLOSE TO 0 FOR THE MEAN OF THE RMSE OR THE MAE INDICATES SUPERIOR CORRELATION WITH THE SUBJECTIVE ASSESSMENTS.

A VALUE CLOSE TO 0 FOR THE STANDARD DEVIATION INDICATES A HIGH ROBUSTNESS OF THE CORRESPONDING MODEL

IRCCyN video database. This is not surprising since there are

fewer references and two types of distortion in this database.

3) LIVE Mobile Video Database: It consists of 10 reference

videos and 200 distorted videos, each of resolution 1280 × 720

at 30 frames/s, and with a duration of 15 s. A single-stimulus

continuous quality evaluation study with hidden reference was

conducted. The videos were displayed on the Motorola Atrix

smartphone for a mobile study [56]. The quality ratings are in

the range of [0, 5].

For the same reason as in the VQEG HDTV Pool2 database,

we validated our model on ab = 40, where a = 10 and b = 4,

compressed videos. It is not suitable to perform k−fold cross

validation with such small number of data. Therefore, the leave

two-fold-out cross validation was carried out with 8 videos in

each test, and the training and testing process was repeated

45 times. Unfortunately, all the mapping methods failed in

the database. We attribute the failure to the small number of

videos. The mapping was over trained on the training set, and

therefore lead to a low and unreliable performance on testing

set. The old metric in [1] was tested with the same

cross-validation strategy and was indeed inferior to the

proposed model (no data given in this paper).

4) LIVE Video Database: This database consists of

10 reference videos and 150 distorted videos, each with a

resolution of 768 ×432 pixels and a length of 10 s. A total of

15 distorted sequences were generated from each reference

sequence using four different distortion processes. Each

distorted video was evaluated by 38 human observers.

An MOS in the range of [0, 100] is provided as the subjective

quality assessment of each distorted video [57].

The leave 2-fold-out cross validation was performed on

80 (a = 10 and b = 8) videos compressed by MPEG-2

compression and H.264 compression. The training and testing

process was repeated 45 times, each with 16 videos for

testing. We compared the performance of our model with the

training-based FR-VQA algorithm in [43]. The results of linear

regression were also given to provide a baseline for readers.

The proposed model slightly outperformed the FR-VQA

algorithm in [43] in terms of means of the LCC, SROCC,

RMSE, and the MAE, but their standard deviations were

higher in our model. Moreover, our model is distortion-

specific and limited to compressed videos, whereas the

FR-VQA in [43] is general purpose. However, we still believe

the performance of our model is comparable with the

FR-VQA algorithm since predicting video quality without

reference is much harder.

We noticed that in our experiment the performance of

FR-VQA [43] was worse than the original results reported

in [43]. Assuming this is due to the different cross-validation

strategy, we then conducted the 10-fold cross validation, as

in [43]. As expected, we obtained similar results, as shown

in Table IV.

The error bars of the LCC, SROCC, RMSE, and the MAE

in all experiments were plotted in Fig. 8 to visually compare

the performance of mapping methods and VQA models.

In general, the more videos in a database, the better were

the performance of our model. The linear mapping, with

no surprise, performed worse than the SVR and the MLP.

In addition, the performance of SVR-based nonlinear mapping

was more precise (smaller standard deviations in Table IV)
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Fig. 8. Standard error bar for performance evaluation and comparison in (a) IRCCyN video database, (b) VQEG HDTV Pool2 database, (c) LIVE mobile
video database, and (d) and (e) LIVE video database. The left y-axis corresponds to the LCC and SROCC, and the right y-axis to the RMES and MAE. The
cross-validation strategies are 10-fold in (a) and (e), and leave two-fold out in (b)–(d).

throughout the cross validation than that of the MLP-based

mapping, though the former was not as accurate as the latter.

Therefore, it is hard to conclude, which one is better than the

other.

5) Summary: Instead of adopting the leave-one-out

cross-validation approach for only one limited size video

database, as in [1], we have conducted a more comprehensive

validation. Experiments used four video databases with diverse

content and various types of video compression, and per-

formed content-sensitive cross-validation strategies to estimate

the general performance on unknown data. The proposed

model was also compared with training-based methods,

such as the linear regression and the SVR, and benchmarked

against four popular FR-VQA metrics and a state-of-the-art

training-based FR-VQA algorithm. In addition to improving

the algorithm performance from [1], the statistical results

presented in Table IV and Fig. 8 provide a more robust

validation of the model.

VI. CONCLUSION

The VQA by subjective user studies is time consuming

and expensive and may be replaced by a suitably designed

objective NR-VQA. To assess the quality of H.264 coded

videos, an NR-VQA model was presented, based on analyzing

the local DCT coefficients of compressed video frames. Based

on the properties of natural scenes and the different types of

distortion in compressed videos, the proposed model combines

the existing artifact- and NSS-based approaches. It is compa-

rable with one state-of-the-art FR-VQA method according to

the evaluation results for the LIVE video database.

The proposed model can quantify the distortion of a

video sequence by extracting a few but efficient features for
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distortion measurement and adopting a simple neural network

for the quality prediction. In the model, a DCT was taken

within a local window, which moves pixel-by-pixel over

the entire frame to generate the so-called DCT map. For

each frame, six bands are extracted from the DCT map.

Six frame-level features, including three artifact metrics and

three statistical metrics, are extracted from these bands. The

frame-level features are transformed to video-level features

through temporal pooling. Finally, a trained multilayer neural

network gives the predicted video quality according to the six

video-level features.

The performance evaluation was conducted on the

IRCCyN video database, the VQEG HDTV Pool2 database,

the LIVE mobile video database, and the LIVE video database.

The results for videos compressed by H.264/SVC, H.264, and

MPEG2 show a strong correlation between the predicted qual-

ity and the subjectively assessed quality. It is also clear that the

proposed model is comparable to one FR-VQA algorithm in

terms of Pearson’s correlation coefficient, SROCC, the RMSE,

and the MAE.

However, the proposed metric is distortion specific and data

driven. Thus, the disadvantage of data-driven approaches is

also applied to our model. For example, it is highly prone

to overfitting of their parameters on small training sets, and

therefore results in a low performance on unknown data.

In addition, tests of their general performance on unknown

data are not robust across content. Moreover, the uncertainty

of subjective results [27] and the uncertainty of the pre-

dicted quality scores call for better statistical tools to evaluate

and compare the performance of machine-learning-based

methods.

The proposed model is designed for compression-distorted

videos and aims at evaluating the performance of imaging sys-

tems based on the H.264/SVC, H.264, or MPEG2 compression

standard, such as mobile phone cameras, HD camcorders, and

video surveillance systems. Thus, its application is limited

to compressed videos. The luma component was used for

measuring the distortion frame by frame during the video

analysis. Hence, the distortion in the temporal domain and

the chroma components cannot be obtained using the proposed

method. To include these effects, further study of the properties

of natural scenes and the influence of various compressions on

these properties is required. In addition, it may be possible to

identify the most efficient features among the extracted ones

to simplify the nonlinear mapping model and to decrease the

complexity of the model, whereas preserving or improving

its performance. An explicit nonlinear mapping, for instance,

a parametric function of features, is also in demand to cir-

cumvent the intractable problem of overfitting in data-driven

methods.
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