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Abstract

Video quality assessment (VQA) is an important element of various applications ranging from

automatic video streaming to display technology. Furthermore, visual quality measurements

require a balanced investigation of visual content and features. Previous studies have shown

that the features extracted from a pretrained convolutional neural network are highly effective

for a wide range of applications in image processing and computer vision. In this study, we

developed a novel architecture for no-reference VQA based on the features obtained from

pretrained convolutional neural networks, transfer learning, temporal pooling, and regression.

In particular, we obtained solutions by only applying temporally pooled deep features and

without using manually derived features. The proposed architecture was trained based on the

recently published Konstanz natural video quality database (KoNViD-1k), which contains

1200 video sequences with authentic distortion unlike other publicly available databases.

The experimental results obtained based on KoNViD-1k demonstrated that the proposed

method performed better than other state-of-the-art algorithms. Furthermore, these results

were confirmed by tests using the LIVE VQA database, which contains artificially distorted

videos.

Keywords No-reference video quality assessment · Convolutional neural network

1 Introduction

Multimedia technology and digital visual signal processing have developed rapidly during

recent decades. Digital images and videos are very easy to create, transmit, store, and share.

Owing to these developments, the design of reliable video quality assessment (VQA) algo-

rithms has attracted considerable attention. Consequently, VQA has been the focus of many

research studies and patents. Furthermore, the vast volume of user-created digital video con-

tent has led to the development of numerous VQA applications, which require reliable and

effective quality monitoring [39].
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Visual signals can undergo a wide variety of distortions after their capture during com-

pression, transmission, and storage. Human observers are the end users of visual content;

thus, the quality of visual signals should ideally be evaluated in subjective user studies in a

laboratory environment involving specialists. During these user studies, subjective quality

scores are collected from each participant. Subsequently, the quality of a visual signal is given

a mean opinion score (MOS), which is calculated as the arithmetic mean of all the individual

quality ratings. In most cases, an absolute category rating is applied, which ranges from 1.0

(bad quality) to 5.0 (excellent quality). Other standardized quality ratings also exist, such as

a continuous scale ranging from 1.0 to 100.0, but Huynh-Thu et al. [11] noted that there are

no statistical differences between the different scales used for the same visual stimuli.

However, subjective VQA is expensive, time consuming, and labor intensive, thereby

preventing its application to real-time systems. Moreover, the results obtained by subjec-

tive VQA depend on the physical condition, emotional state, personality, and culture of the

observers [27]. As a consequence, there is an increasing need for objective VQA. The clas-

sification of VQA algorithms is based on the availability of the original (reference) signal.

If a reference signal is not available, a VQA algorithm is regarded as a no-reference VQA

(NR-VQA). NR algorithms can be classified into two further groups, where the so-called

distortion-specific NR algorithms assume that specific distortion is present in the visual

signal, whereas general purpose (or non-distortion specific) algorithms operate on various

distortion types. Reduced-reference methods retain only part of the information from the ref-

erence signal, whereas full-reference algorithms have full access to the complete reference

medium to predict the quality scores.

Deep learning is now applied widely in industry and research, and with great success

in the fields of image processing and computer vision [7,8,44]. Thus, recently developed

NR-VQA algorithms have employed deep learning techniques, such as neural networks [47],

convolutional neural networks (CNNs) [2], and deep belief networks [5].

It has been shown that the features extracted using a pretrained CNN are rich and effective

for a wide range of computer vision and image processing tasks, such as content-based image

retrieval [35], NR image quality assessment [2], and medical image classification [10]. The

main contribution and novel aspect of the present study is that we obtain possible solutions

for NR-VQA using only the deep features extracted from pretrained CNNs (Inception-V3

[32] and Inception-ResNet-V2 [31]) without depending on manually selected features. In

particular, for a given video sequence that needs to be assessed, frame-level deep features

are extracted from each video frame with a pretrained CNN. Subsequently, these frame-level

features are temporally pooled to compile a video-level feature vector that characterizes the

video sequence. Finally, the temporally pooled video-level feature vectors are mapped onto

perceptual quality scores with a support vector regressor (SVR). Furthermore, our architec-

ture was trained based on the recently published Konstanz natural video quality database

(KoNViD-1k) [9], which in contrast to other publicly available databases, contains video

sequences with authentic distortion rather than artificial distortion. Moreover, KoNViD-1k

contains more videos (1200 sequences) than any other publicly available databases, which

allowed us to create a deep, temporally pooled model.

The remainder of this paper is organized as follows. In Sect. 2, we review related research,

particularly into NR-VQA algorithms. In Sect. 3, we describe our proposed NR-VQA algo-

rithm. In Sect. 4, we present the experimental results. We give our conclusions in Sect. 5.
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2 RelatedWork

As mentioned earlier, NR methods only require an input signal and no information about

the reference signal. Early NR algorithms largely focused on distortion-specific approaches.

Thus, Borer [3] developed an algorithm for measuring jerkiness based on the mean squared

difference between frames. By contrast, Xue et al. [42] trained a neural network to model

the quality impact of jerkiness. An H.264-specific algorithm was introduced by [4], where

the error estimate depended on the discrete cosine transform (DCT) coefficient for data.

Subsequently, perceptual quality scores were derived from the error estimates, and the motion

vectors were obtained from the bit stream. Similarly, Zhu et al. [47] proposed a H.264-specific

method; however, they extracted the first frame-level features using DCT coefficients. In

addition, video-level features were created by averaging the frame-level features (temporal

pooling), and a trained neural network predicted the subjective quality scores. Algorithms

were also developed to assess blocking artifacts in distorted videos in studies by [21,33,38].

Subsequent studies focused on general-purpose algorithms. A successful and widely

applied feature extraction method was developed based on natural scene statistics [22], where

it was assumed that natural visual signals contain statistical regularities that are changed by

distortion. Saad et al. [24] implemented this feature of their NR-IQA method called BLind

Image Integrity Notator with DCT Statistics (BLIINDS) [23] for NR-VQA to produce the

Video BLIINDS method. Video BLIINDS employs a spatiotemporal model derived from the

natural scene statistics of the DCT coefficients, and the extracted features are then employed

to train an SVR. This method was later extended to the three-dimensional (3D)-DCT domain

[14].

In contrast to other methods, the video intrinsic integrity and distortion evaluation oracle

(VIIDEO) [19] requires no information regarding the distortion types or human ratings of the

video quality. Instead, it is assumed that pristine video sequences contain intrinsic statistical

regularities, and deviations from them can be used to predict perceptual quality scores. The

main feature of this method is that local statistics related to the frame differences derived

using mean removal and divisive contrast normalization should follow a generalized Gaussian

distribution if the video is of a good quality. Based on the NR-IQA CORNIA method [45],

Xu et al. [40] also proposed an opinion-unaware NR-VQA method called Video CORNIA,

where the frame-level features are first extracted via unsupervised feature learning and these

features are then used to train an SVR. Finally, the video’s perceptual quality score is derived

by temporal pooling of the frame-level features. Similarly, Anegekuh et al. [1] presented

an opinion-unaware architecture for HEVC encoded videos, where the quality is predicted

based on motion vector extraction and spatial information derived from the video content

type.

In contrast to previous studies where training was conducted using artificially distorted

videos, the algorithm proposed by Men et al. [18] was trained using the KoNViD-1k database

[9], which comprises numerous video sequences with authentic distortion. They combined six

spatial features and three temporal features to characterize a video sequence. Subsequently,

a trained SVR was used to map these features onto perceptual quality scores.

Another area of research is based on deep learning techniques. Recently, deep learning-

based NR-IQA algorithms have increased in popularity [2,12,13], although very few NR-

VQA methods utilize deep learning. Zhang et al. [46] trained a CNN by weakly supervised

learning where the corresponding labels were obtained for the video blocks according to

a full reference-VQA metric. Subsequently, the feature vectors were extracted using the

trained CNN and mapped onto subjective quality scores. By contrast, Li et al. [15] applied a
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3D shearlet transform to video blocks and compiled spatiotemporal feature vectors for each

video sequence. CNN and logistic regression were then utilized to map the features onto

perceptual quality scores. Torres Vega et al. [36] proposed a restricted Boltzmann machine-

based solution, which was trained with lightweight NR metrics, such as the noise ratio, motion

intensity, and blockiness. This method was developed for assessing the quality of live video

streams.

For further reviews of NR-VQA, we refer the reader to the studies by [29,37,41].

3 Methodology

The architecture of our proposed deep feature pooling algorithm is shown in Fig. 1. For a given

video sequence that needs to be evaluated, the frame-level deep features are first extracted

with the pretrained CNNs. Subsequently, these frame-level feature vectors are temporally

pooled to create a video-level feature vector that characterizes the whole video. Finally, the

temporally pooled video-level features are mapped onto subjective quality scores with a

trained SVR.

The remainder of this section is organized as follows. In Sect. 3.1, we describe the training

and test database compilation processes. Frame-level feature extraction is conducted by

pretrained CNNs and the detailed process is presented in Sect. 3.2. Finally, we explain the

video-level feature extraction method in Sect. 3.3.

3.1 Database Compilation

Several video quality databases are publicly available, such as LIVE VQA [28], LIVE mobile

video quality database [20], and MCL-V [16]. In this study, we selected the KoNViD-1k [9]

natural video quality database to train and test our system. In contrast to most previously

published data sets and similar to LIVE-VQC [30], KoNViD-1k [9] contains natural videos

with authentic distortions. Furthermore, the videos were sampled from the Yahoo Flickr

Creative Commons 100 Million (YFCC100m) [34] data set. The subjective quality scores

were collected online [25] using the CrowdFlower platform. The spatial resolution is 960 ×

540 in this data set and the frame rate is 25, 27 or 30 fps. Furthermore, the length of video

sequences varies between 7 and 8 s. The MOS values for the video sequences are on a scale

from 1.0 (worst) to 5.0 (best). Furthermore, KoNViD-1k contains more quality labeled video

sequences than any other publicly available data sets. The large number of video sequences in

KoNViD-1k allowed us to directly train a temporal feature pooling model using the features

extracted from pretrained CNNs.

Fig. 1 General structure of the proposed NR-VQA algorithm. The algorithm reads a given video sequence

and processes each of the video frames in turn to extract the frame-level feature vectors with the pretrained

CNN. Finally, the extracted frame-level feature vectors are temporally pooled to form a video-level feature

vector, which is mapped onto a quality score with a trained SVR
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KoNViD-1k contains 1200 video sequences. We randomly selected 960 sequences for

training purposes, whereas the remaining 240 sequences were retained only for testing and

they were not utilized in the training process. The videos selected for training were split

into frames and 20% of the frames were then selected randomly. We employed Inception-V3

[32] and Inception-ResNet-V2 [31] as feature extractors because their input receptive fields

are significantly larger than those in other pretrained networks (299 × 299 vs. 224 × 224

or 227 × 227) and in case of input image’s resizing, the visual clues of perceptual quality

deteriorates to a lesser extent than with other pretrained CNNs. As a consequence of fixed

input size, the selected video frames were resized to 338×338 and 299×299 center patches

were cropped from the resized video frames. The resulting training images retained the MOS

values of their source videos. Consequently, we assumed that the perceived visual quality of

the individual frames was related to that of the complete video sequence. The final image

database contained 43,320 images, which were used for transfer learning with the selected

pretrained CNNs.

For completeness, we selected the LIVE VQA [28] database as an additional test set

in order to analyze the generalizability of the proposed algorithm. LIVE VQA contains 15

reference videos and 150 artificially distorted video sequences with length of 8, 10 or 20 s

obtained using four different types of distortion: simulated transmission of H.264 compressed

videos through error-prone wireless networks and through error-prone IP networks, H.264

compression, and MPEG-2 compression. The spatial resolution of the videos in LIVE VQA

is 768 × 432.

3.2 Frame-Level Feature Extraction

The features were extracted by providing the CNN with the whole image, which had to fit

with the CNN’s input size. As mentioned above, both Inception-V3 and Inception-ResNet-

V2 accept images measuring 299×299, which is why the input video frames were resized to

338 × 338 and the 299 × 299 center patches were then cropped. The CNNs employed were

fine-tuned (so-called transfer learning) based on the image database described above.

3.2.1 Transfer Learning

The usual method was employed for transfer learning, where we truncated the last 1000-way

softmax layer of the Inception-v3 and Inception-ResNet-v2 network. Furthermore, this layer

was replaced by a 5-way softmax layer, which was relevant to the problem addressed. Five

classes were defined in our training image database: class A for excellent image quality

(5.0 ≥ M O S ≥ 4.2), class B for good image quality (4.2 > M O S ≥ 3.4), class C for fair

image quality (3.4 > M O S ≥ 2.6), class D for poor image quality (2.6 > M O S ≥ 1.8), and

class E for very poor image quality (1.8 > M O S ≥ 1.0). During transfer learning, the initial

learning rate was set to 0.0001 and divided by 10 when the validation error stopped improving.

Moreover, the batch size was set to 32 and the momentum was adjusted to 0.9. During transfer

learning, the last new layer was trained from scratch utilizing Xavier initialization [6], where

the initial weights for the other layers came from the corresponding layers in the pretrained

networks and all the layers were updated using the back-propagation algorithm [26].

As shown in Fig. 2, the MOS distribution is imbalanced in the KoNViD-1k natural video

quality database, which could cause problems during transfer learning. Thus, we sampled

each instance in the batch based on the inverse frequency of the class. Consequently, instances
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Fig. 2 MOS distribution in the KoNViD-1k [9] natural video quality database. KoNViD-1k is a video qual-

ity database that contains 1200 real-world video sequences with authentic distortion collected from the

YFCC100m data set [34]. Furthermore, the database contains the corresponding MOS values on a scale

from 1.0 (worst) to 5.0 (best)

were selected in larger classes with lower probabilities. The final batch was equally distributed

because of differences in the populations of the classes.

Figure 3 depicts the training process with Inception-V3 [32] during transfer learning,

where the training accuracy, training loss, validation accuracy, and validation loss are plotted.

3.2.2 Feature Extraction

Frame-level feature vectors were extracted by providing the CNN with video frames that

fitted with the CNN’s input receptive field. As mentioned above, both Inception-V3 [32] and

Inception-ResNet-V2 [31] accept 299 × 299-sized images, which is why each video frame

was resized to 338 × 338 and the 299 × 299 center patch was cropped.

The CNN performed all its defined operations for an input image. Therefore, it is run

through an each resized and center-cropped video frame saving the output from the final

pooling layer which is named ’avg_pool’ both in Inception-V3 and Inception-ResNet-V2.

As a consequence, the length of the frame-level feature vectors was 2048 using Inception-V3

and 1536 when we employed Inception-ResNet-V2.

3.3 Video-Level Feature Extraction

Information fusion was conducted element by element based on each frame’s feature vectors

to create a single, video-level feature vector for each video sequence. Average, median,

minimum, and maximum pooling were considered. Let f
( j)

i denote the ith entry of the jth

video frame’s feature vector. Furthermore, let N f be the number of frames in a video sequence

and M is the length of the frame-level feature vector. The four different pooling strategies

can be formally expressed as:
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Fig. 3 Training process for Inception-V3 [32] during transfer learning. The smoothed training accuracy is

shown by the dark blue line, the training accuracy by the light blue line, the smoothed training loss by the

orange line, and the training loss by the light orange line. Furthermore, the validation accuracy and validation

loss are depicted with dashed lines. The final checkpoint is denoted by a double round which is determined

by early stopping. (Color figure online)
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where Fi denotes the i th entry of the video-level feature vector. Consequently, the length of

the video-level feature vector is equal to the length of the frame-level feature vector.

4 Experimental Results and Analysis

The proposed NR-VQA algorithms were evaluated based on their performance with the

benchmark VQA databases, which were labeled with the subjective scores and MOS values

representing the overall image quality. The Pearsons linear correlation coefficient (PLCC)

and Spearmans rank ordered correlation coefficient (SROCC) were computed between the

predicted and ground-truth scores, which are widely accepted performance metrics. The

PLCC between two data sets, A and B, is defined as:

P LCC(A, B) =

∑n
i=1(Ai − A)(Bi − B)

√

∑n
i=1(Ai − A)2

√

∑n
i=1(Bi − B)2

, (5)
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where A and B denote the average of sets A and B, and Ai and Bi denote the ith elements

of sets A and B, respectively. For two ranked sets A and B, SROCC is defined as:

S ROCC(A, B) =

∑n
i=1(Ai − Â)(Bi − B̂)

√

∑n
i=1(Ai − Â)2

√

∑n
i=1(Bi − B̂)2

, (6)

where Â and B̂ are the middle ranks.

4.1 Parameter Study

First, we evaluated the design choices for our proposed method, before comparing it with other

state-of-the-art NR-VQA techniques. As mentioned above, two different publicly available

databases were used for training and testing purposes, i.e., KoNViD-1k [9] for training

and testing, and the LIVE VQA database only for testing. To evaluate the performance of

our proposed architecture and the effects of the parameters in the algorithm, we used four

different pooling strategies (average, median, minimum, and maximum) and SVRs with

different kernel functions (linear, Gaussian, 1st-order polynomial, 2nd-order polynomial,

and 3rd-order polynomial). The different versions of our algorithm were assessed based on

KoNViD-1k [9] by fivefold cross-validation with ten replicates in the same manner as the

study by [14].

Figures 4, 5, 6 and 7 summarize the results obtained with different design choices. The

results showed that the architectures based on SVRs with Gaussian kernel functions obtained

significantly better results than the architectures with other kernel functions. Furthermore,

SVRs with third order polynomial kernel functions apparently overfit the training data because

they produce 0 or negative values PLCC and SROCC values on the test. The difference

between linear and 1st order kernel function is marginal. Compared to these, 2nd order

polynomial kernel function performs slightly worse results.

Further, we evaluated the architectures with and without transfer learning, where the results

demonstrated that transfer learning significantly improved the performance. Specifically, it

can be clearly seen that transfer learning significantly improved the performance because it

was able to improve PLCC and SROCC by at least 0.1 in all cases except those architectures

Fig. 4 Pooling technique and SVR comparison trained and tested on KoNViD-1k [9] using Inception-V3 [32]

base architecture
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Fig. 5 Pooling technique and SVR comparison trained and tested on KoNViD-1k [9] using Inception-V3 [32]

base architecture

Fig. 6 Pooling technique and SVR comparison trained and tested on KoNViD-1k [9] using Inception-ResNet-

V2 [31] base architecture

Fig. 7 Pooling technique and SVR comparison trained and tested on KoNViD-1k [9] using Inception-ResNet-

V2 [31] base architecture

with 3rd order polynomial kernel function. Moreover, in most cases average pooling was the

best choice, except in one case where max pooling was the best option. Subsequently, we

compared the four best methods with state-of-the-art NR-VQA techniques.
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4.2 Comparion to the State-of-the-Art

We compared seven state-of-the-art NR-VQA methods with our architectures. First, the

algorithms were assessed based on KoNViD-1k [9] by fivefold cross-validation in a similar

manner to the study by [18]. The PLCC and SROCC values for five baseline methods (Video

BLIINDS [24], VIIDEO [19], Video CORNIA [40], FC Model [17], and STFC Model [18])

were those measured by Men et al. [9] and [18], while the results of STS-MLP [43] and STS-

SVR [43] were taken from their original publication. The proposed architectures were also

assessed based on all the videos in LIVE VQA [28] but without cross-validation because they

were trained based on KoNViD-1k [9] and we wanted to demonstrate the generalizability of

the proposed method. The PLCC and SROCC values for the baseline methods were those

reported in the original studies.

Table 1 shows the comparisons with other state-of-the-art algorithms, which demonstrate

that our architecture could also achieve state-of-the-art results without transfer learning. In

addition, our fine-tuned CNN-based architectures performed significantly better than the

state-of-the-art algorithms. In particular, the PLCC and SROCC values both improved by

approximately 0.1. The scatter plots showing the ground-truth MOS values versus the pre-

dicted MOS values are depicted in Fig. 8.

For completeness, we also performed a comparison based on the widely used LIVE VQA

database [28], which unlike KoNViD-1k [9] contains artificially distorted video sequences.

Furthermore, LIVE VQA contains several videos with length of 20 s. On the other hand,

KoNViD-1k typically consists of videos with length of 8 s. This difference between the

two databases was essentially a serious limiting factor considering our temporally pooled

video-level feature vectors. In spite of this, the results demonstrated that our architecture

could obtain state-of-the-art results on the LIVE VQA database [28], although it was not

employed as the training set. As shown in Table 1, Video CORNIA obtained the best per-

formance with LIVE VQA, and it performed better than our best proposed method by

0.06 in terms of PLCC and 0.045 in terms of SROCC. It should be noted that except

for the FC model [17] and the STFC model [18], the previous methods were trained

with or optimized for artificially distorted sequences, which explains why the ranking of

the methods was different based on KoNViD-1k [9] and LIVE VQA [28]. However, our

method still obtained state-of-the-art results on LIVE VQA [28]. Therefore, the experimen-

tal results confirmed the effectiveness and generalizability of the proposed approach for

NR-VQA.

4.3 Implementation Details

The introduced algorithm was implemented in MATLAB R2018b mainly relying on the

functions of Deep Learning Toolbox (formerly Neural Network Toolbox) and Statistics and

Machine Learning Toolbox. Furthermore, it was trained and tested on a personal computer

containing 8-core i7-7700K CPU and an NVidia Titan X GPU. In this environment, the

evaluation of a video from KoNViD-1k (length is 7 or 8 s) lasts for on average 13.105–

13.323 s from which the loading of network the trained network to the GPU lasts for 1.8 s,

11.3 s is the frame-level feature extraction, video-level feature vector compilation takes

0.003 s, and SVR regression takes 0.002–0.22 s depending on the applied kernel func-

tion.
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Table 1 Comparison to state-of-the-art NR-VQA algorithms applied on KoNViD-1k [9] and LIVE VQA [28]

databases

KoNViD-1k [9] LIVE VQA [28]

PLCC SROCC PLCC SROCC

Video BLIINDS [24] 0.565 0.572 0.752 0.737

VIIDEO [19] − 0.015 0.031 0.651 0.624

Video CORNIA [40] 0.747 0.765 0.768 0.740

FC Model [17] 0.492 0.472 – –

STFC Model [18] 0.639 0.606 – –

STS-MLP [43] 0.407 0.420 – –

STS-SVR [43] 0.680 0.673 – –

Inception-V3 + max pooling (*) 0.717 0.676 0.554 0.502

Inception-ResNet-V2 + average pooling (*) 0.707 0.678 0.548 0.499

Inception-V3 + average pooling 0.853 0.849 0.718 0.705

Inception-ResNet-V2 + average pooling 0.833 0.846 0.704 0.696

The correlation values for KoNViD-1k [9], except those of our method, were measured by Men et al. [18]

or were taken from the literature. The correlation values for LIVE VQA [28] database, except those of our

method, were taken from the literature. We indicated by ‘–’ if the data is not available. The (*) marking denotes

that transfer learning was not carried out on the CNN. The best value is typed bold

Fig. 8 Scatter plots showing the ground-truth MOS values against the predicted MOS values

5 Conclusions

In this study, we developed a novel framework for NR-VQA based on the features obtained

from pretrained CNNs (Inception-V3 [32] and Inception-ResNet-V2 [31]), transfer learning,

temporal pooling, and regression. The main novel aspect and contribution of this study is

that we developed a possible architecture for NR-VQA that depends on temporally pooled

frame-level deep feature vectors and it does not require manually derived features. Further-

more, we showed that the deep features extracted from a fine-tuned, pretrained CNN can
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provide effective and rich representations for video quality tasks. Thus, our architecture can

be considered as a proof of concept regarding the successful application of deep features

extracted from pretrained CNNs in NR-VQA. Our approach was trained and tested based

on KoNViD-1k, which is a natural video quality database containing 1200 sequences with

quality scores, and it performed better than the best state-of-the-art solution by approximately

0.1 in terms of both the PLCC and SROCC. Our method was also tested with the LIVE VQA

database and it achieved state-of-the-art results, although the best state-of-the-art technique

performed slightly better.
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