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ABSTRACT Recent years have seen increasing growth and popularity of gaming services, both interactive

and passive. While interactive gaming video streaming applications have received much attention, passive

gaming video streaming, in-spite of its huge success and growth in recent years, has seen much less interest

from the research community. For the continued growth of such services in the future, it is imperative that

the end user gaming quality of experience (QoE) is estimated so that it can be controlled and maximized

to ensure user acceptance. Previous quality assessment studies have shown not so satisfactory performance

of existing No-reference (NR) video quality assessment (VQA) metrics. Also, due to the inherent nature

and different requirements of gaming video streaming applications, as well as the fact that gaming videos

are perceived differently from non-gaming content (as they are usually computer generated and contain

artificial/synthetic content), there is a need for application-specific light-weight, no-reference gaming video

quality prediction models. In this paper, we present two NR machine learning-based quality estimation

models for gaming video streaming, NR-GVSQI, and NR-GVSQE, using NR features, such as bitrate,

resolution, and temporal information. We evaluate their performance on different gaming video datasets

and show that the proposed models outperform the current state-of-the-art no-reference metrics, while also

reaching a prediction accuracy comparable to the best known full reference metric.

INDEX TERMS Quality assessment, no reference, gaming video streaming, machine learning, regression,

quality of experience, video quality metrics.

I. INTRODUCTION

Gaming video streaming has gained much popularity in

recent years, due to the advances made in the field of both

passive and interactive services. Interactive gaming streaming

applications or cloud gaming, as popularly known, refer to

applications where the user’s gameplay is processed in the

cloud. The user receives the gameplay which is then ren-

dered on a screen based on which users can input game-

play commands. The passive scenario, on the other hand,

refers to Over-The-Top (OTT) services, such as Twitch.tv and

The associate editor coordinating the review of this manuscript and
approving it for publication was Hao Ji.

YouTubeGaming, where a viewer can watch videos of the

gameplay of other players. Such passive OTT gaming video

streaming services have seen tremendous growth, in terms

of both number of viewers and the number of streamers.

For example, Twitch.tv alone currently has over 15 million

streamers and over nine million daily active users and is

ranked 4th in terms of peak Internet traffic in the US, just

behind Netflix, YouTube, and Apple [1].

With the ever increasing demand for multimedia services,

as well as increasing user expectations of content availability

anywhere, anytime, anyplace, there has been a recent shift

from traditional Quality of Service (QoS) based management

towards Quality of Experience (QoE) based management
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of multimedia services. For the continued success of such

services, it is imperative that the end users’ perceived quality

is accurately estimated so that it can be managed optimally so

as to ensure the best possible gaming video quality delivery.

This is usually performed via subjective tests [2]. The

disadvantage of subjective testing is that it is a time con-

suming and expensive process and is not suitable for many

applications such as real-time network monitoring/resource

allocation. To overcome the shortcomings of subjective tests,

there has been a growing interest in objective quality metrics/

models which predict the quality of images and videos as

perceived by the end users (e.g., Peak Signal to Noise Ratio

(PSNR) [3], Structural Similarity (SSIM) [4], Video Multi-

method Assessment Fusion (VMAF) [5]). The performance

of such quality metrics is evaluated based on various mea-

sures, but most importantly based on the correlation between

their estimation of quality with subjective scores obtained

from subjective quality assessment. Despite their poorer per-

formance, objective metrics are preferred due to their speed

and practicality. Image Quality Assessment (IQA) as well

as Video Quality Assessment (VQA) metrics are classi-

fied as Full-Reference (FR), Reduced-Reference (RR) and

No-Reference (NR) depending on the amount of reference

information used in quality estimation [6]. FR metrics com-

pare complete reference information with information from

the distorted signal to provide an estimate of the quality of

the received signal. RR metrics use a part of the reference

information while No-Reference (NR) metrics do not use any

reference information.

Over the past two decades, researchers have investi-

gated methods and techniques to estimate audio, image and

video quality as perceived by the end users. However, gam-

ing videos are generally different from non-gaming con-

tent because they are usually computer generated, contain

artificial/synthetic content and are perceived differently by

users [7]. In fact, the studies in [8] and [7] reported differences

between gaming and non-gaming video quality for the same

encoding process. In [7] the authors found that some of the

most popular and widely used quality assessment metrics

resulted in a lower correlation between predicted quality and

actual quality for gaming videos as compared to that for

natural videos. Most of the IQA and VQA metrics, such as

Blind Image Quality Index (BIQI) [9], Natural Image Qual-

ity Evaluator (NIQE) [10] and Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE) [11]) are designed

taking into account statistics or properties which are inherent

to natural images. To investigate the performance of such

metrics for gaming video quality assessment, the authors

evaluated in [12] the performance of eight widely used and

popular quality assessment metrics (3 FR, 2 RR, and 3 NR)

using the GamingVideoSET dataset proposed in [13]. They

found that VMAF [5] performs best in terms of both Pearson

Linear Correlation Coefficient (PLCC) and Spearman’s Rank

Correlation Coefficient (SROCC). Although NIQE performs

best among the NR metrics such as BIQI and BRISQUE,

its performance is still unsatisfactory for practical applica-

tions and well below the state-of-the-art FR metrics.

While FR quality metrics, in general, perform better than

RR andNRmetrics, there exist some applications where there

is no reference signal available. Gaming video streaming is

one of such applications since, due to the inherent nature of

the service, reference information is not available. Therefore,

for such applications, FR and RR metrics cannot be used to

predict/estimate the quality. Hence, the availability of custom

NR metrics for gaming content with high performance is

necessary for continued success and further improvement of

existing services.

In the absence of any NR gaming video quality metric/

model that meets existing requirements of high accuracy

and low computational complexity to estimate accurately

the quality of gaming videos in real time, in this paper we

present two machine learning based lightweight1 gaming

video quality estimation models. Both models, due to their

low complexity nature, can therefore be used as the first stage

of an optimized online gaming QoE management system,

even on thin clients. The main contributions of the paper are

as below:
1) We propose a Neural Network (NN) based

No-Reference Gaming Video Streaming Quality Index

(NR-GVSQI). The model is designed using subjective

ratings (Mean Opinion Score (MOS)) from two open-

source datasets. The proposed model is shown to out-

perform existing state-of-the-art NR metrics.

2) We also present a Support Vector Regression (SVR)

based model, No-Reference Gaming Video Streaming

Quality Estimator (NR-GVSQE), which is designed

using FR VQA scores from GamingVideoSET. Our

test of the proposed model, NR-GVSQE, on an unseen

dataset shows that the proposed model, although

no-reference, results in almost the same performance as

the state-of-the-art full-reference VQAmetric, VMAF.

3) Additionally, this paper presents an open source

dataset, KUGVD, which consists of both subjec-

tive (MOS) ratings and objective analysis considering

six gaming videos.
The rest of this paper is organized as follows. Section II

describes the previously proposedNRmachine learning (ML)

based QoE models. In Section III we briefly describe the

existing open source dataset, GamingVideoSET, and also

introduce our newly designed dataset, KUGVD. Section IV

describes the extracted features and the feature selection

methods along with the model development methodology.

Section V describes the development, testing and valida-

tion of the NR-GVSQI model to predict the MOS scores

obtained via subjective tests (MOS). Section VI describes

the NR-GVSQE model which is developed using an existing

state-of-the-art FR VQAmetric (VMAF) as the target output.

1By lightweight, we refer to the fact that all the features used in this work
can be extracted in real-time without the need for high computational power
and hence can be used for real-time quality monitoring.
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FIGURE 1. Some of the sample videos used in this work. (a) Counter Strike: Global Offensive. (b) FIFA 2017. (c) H1Z1: Just Kill. (d) League of Legends.
(e) Hearthstone. (f) Overwatch.

Section VIII concludes the paper with a summary of key

findings and possible future work.

II. RELATED WORK

With the advancements in the field of machine learning,

the field of quality assessment in recent years has seen many

proposed quality metrics/models based on machine learning

algorithms, using different types of quality impacting factors,

such as jitter, packet loss, compression artifacts (blockiness,

blurriness, flickering, etc.) and rescaling. Since this study is

focused solely on the design of NR metrics, we provide a

brief review of recent works which have used ML algorithms

to predict image/video quality without using any reference

information.

In one of the earliest works in this direction, the authors

in [14] used a Back-Propagation Artificial Neural Network

(BP-ANN) to estimate the PSNR of H.264/AVC encoded

video and obtained 97.8% correlation between the predicted

and the actual PSNR. However, PSNR has been shown not

to correlate well with QoE [3], [15]. Jiang et al. in [16]

used a three-layer BP-ANN to predict the quality of high

definition video, using features such as image blur, entropy,

blocking artifacts, frequency energy, chroma information,

and temporal information. Choe et al. used a three-layer

BP-ANN to predict subjective quality scores based on fea-

tures that were extracted from the H.264 bit-stream on a

frame-by-frame basis. The proposed method used features

based only on compression impairments and not on net-

work QoS. The authors in [17] used an adaptive network-

based fuzzy inference system based hybridANN to train aNN

to estimate the quality of video transmitted over a wireless

local area network and universal mobile telecommunication

system. The prediction model used content type, frame rate

and sender bitrate as application layer parameters and block

error rate and link bandwidth as physical layer parameters.

Shahid et al. in [18] used a 2-layer BP-ANN to predict the

PSNR, Perceptual Evaluation of Video Quality (PEVQ) and

SSIM based on features such as bits per frame, percentage

of inter blocks, average motion vector length, and average

Quantization Parameter (QP). Although, PSNR and PEVQ

were accurately predicted, the SSIM score is predicted with

less accuracy. Wang et al. in [19] used features such as pic-

ture size, bitrate (BR), frame rate, Group of Pictures (GOP)

structure, picture type, macroblock type, QP, motion vectors,

coded block pattern, and Discrete Cosine Transform (DCT)

coefficient as inputs to a 3-layer BP-ANN for quality assess-

ment of MPEG-2 video streams. However, they did not com-

pare their method with other regression methods and they

did not consider feature selection or Principal Component

Analysis (PCA). Cherif et al. in [20] used features such as QP,

base-layer loss rate, enhancement layer 1 and layer 2 loss

rate as inputs to a 3-layer BP-ANN to estimate the QoE of

H264/SVC bit stream.

Khattabi et al. [21] used a BP-ANN with 3 hidden layers,

and features such as the average of differences, the stan-

dard deviation of discrete Fourier transform differences, the

average and standard deviation of Discrete Cosine Trans-

form (DCT) differences, the variance of color energy, lumi-

nance, and chrominance, to predict both MOS and PSNR.

The complexity was high, due to the high number of features

as well as the NN structure, and the authors did not reduce

the dimensionality. Singh et al. [22] used a 3-layer ANN for

NR QoEmonitoring of H.264/AVC encoded videos streamed

using HTTP/TCP in the context of IPTV. In [23], the authors

used SVR for quality prediction, compared the performance

with different visual quality predictors and reported improve-

ment in prediction accuracy. Sunala and Anurenjan [24]

used bitrate, SSIM, and interframe transformation fidelity as
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inputs to an ANN for video quality estimation. The authors

in [25] used a radial basis function network for QoE estima-

tion of video streamed over wireless networks, using cross-

layer features such as bitrate, frame rate and resolution (RES)

at the application layer, Packet Loss Ratio (PLR) at network

layer, video content features and the screen size of the termi-

nal equipment. Xue et al. in [26] introduced aNRANN-based

video quality metric to predict the quality by considering

the impact of frame freezing due to packet loss and/or late

arrival. They used features based on freezing events such

as the number of freezes, freeze duration statistics, inter-

freeze distance statistics, frame difference before and after

the freeze, normal frame difference, and the ratio of them.

In [27], the authors used a low complexity Multilayer Per-

ceptron (MLP) NN for video quality assessment for mobile

streaming services which can be used in smartphones in

4G-LTE. In [28], delay, jitter, PLR, and mean loss burst size

are used as the inputs to a three-layer BP-ANN to assess the

QoE of video services in LTE networks. In [29], 16 features

including blackout, blockiness, block loss, blur, brightness,

contrast, exposure, flickering, freezing, interlacing, letter-

boxing, noise, pillar-boxing, slicing, spatial activity, and tem-

poral activity are used as the inputs of a BP-ANN for high

definition video quality assessment. In [30], PLR, the per-

centage of damaged frames and the percentage of different

temporal classification frame which loses the packet, are

used to train a feed-forward BP-ANN wireless video quality

assessment model. In [31], first, a 2D convolutional NN

is used to learn the spatial quality features at the frame

level. Then, at the sequence level, the motion information

is extracted as a temporal quality feature. A multi-regression

model is then used for video quality measurement. In [32] the

authors use restricted Boltzmann machine as an unsupervised

deep learning method for video quality assessment. BR, num-

ber of frames, scene complexity, video motion, blur mean,

blockiness, and motion intensity are used as features. They

achieved an average of 78 to 91 percent correlation with well-

known FR degradation assessment model VQM. In terms of

scalability, they reported that only nine samples from the orig-

inal video content types were sufficient to accurately assess

the remaining of 864 videos of the dataset. More recently,

the authors in [33] presented a FR and NR IQA metric

that has a superior performance with respect to the state-

of-the-art NR and FR IQA metrics when its performance

was evaluated using three publicly available databases. The

authors in [34] proposed a NR deep neural network IQA

metric (MEON) consisting of two sub-networks each catering

for two sub-tasks (distortion identification and quality predic-

tion) for quality assessment with dependent loss functions.

Their model is shown to achieve superior performance over

the existing NR IQA metrics including the one proposed

in [33] considering four different publicly available datasets.

Inspired by the MEON model, a deep neural network based

NR VQA model called V-MEON is proposed by the authors

in [35] which provides an estimation of both quality scores as

well as codec type. A comparison with existing NRmetrics is

shown to achieve high performance on two publicly available

datasets.

Although there aremany recent works in the field of quality

assessment - as described above - most of these studies are

limited in one or more of the following: different context

(IPTV, etc.), very high complexity ( [21]), older/different

codecs (SVC, MPEG-2, etc.), evaluation methodology (few

videos/single datasets, no subjective ratings, etc.), design

for image quality assessment, rather than video quality

assessment. Furthermore, all of these studies are limited to

non-gaming content, whereas, as discussed earlier, gaming

content has different streaming requirements and is inherently

different from non-gaming content. Our work, on the other

hand, focuses solely on gaming video content and uses two

different datasets with stimuli representing compression arti-

facts as currently used by various OTT service providers.

III. DATASETS

In this work we use two datasets. One of these is the open

source gaming video dataset GamingVideoSET [13]. Here

we provide a brief discussion of the dataset and refer the

reader to [13] for more details. The dataset consists of a

total of 24 reference videos of 30 seconds duration, encoded

in 24 different resolution-bitrate pairs to obtain 576 distorted

(compressed) video sequences. In addition, MOS ratings for

90 stimuli conditions (six videos, 15 multiple resolution-

bitrate pairs) are provided. MOS values are calculated as the

average of the ratings provided by individual test participants

during a subjective test for a particular video sequence.

TABLE 1. Overview of the two datasets used in this work.

Since only 90 subjective ratings are available in the

GamingVideoSET dataset, which may lead to overfitting of

the data when building the model using subjective ratings,

we created another dataset, Kingston University Gaming

Video Dataset (KUGVD). In order to not include any new

type of impairment to the dataset other than what the model

would be trained on, we used the same encoding settings

as in GamingVideoSET. We selected six gaming videos and

encoded them in the same 24 resolution bitrate pairs as was

done with the GamingVideoSET resulting in 144 stimuli.

For subjective assessment, we selected 90 stimuli with

the same resolution-bitrate pairs as in GamingVideoSET.

Table 1 summarizes the parameters of the two datasets.
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Since the subjective test was carried out at different places

using a different set of participants, we decided to keep one

game, CSGO, across both datasets, which then acts as anchor

conditions (see Section III-C). Four of the games selected

were the same (FIFA17, H1Z1, HS, and LoL) but a different

part (scenario) of the game was considered. Depending on the

stage/scenario of the game, the game content complexity can

vary a lot. Hence, considering the same game but a different

scenario (scene) will allow us to investigate whether the

model designed using one dataset (considering a particular

scenario) is robust enough to predict the quality with reason-

able accuracy when considering a different scenario from the

game. Additionally, we selected the game Overwatch (OW),

a first-person shooting genre game, as it is more popular

on Twitch.tv and is of high complexity. This allows us to

introduce a totally unknown game in either of the datasets:

Project Car (PC), a car racing game being the other one,

with complexity and characteristics which will not be present

during the training phase. This allowed us to design a robust

model which can lead to satisfactory performance even when

evaluating the quality of an unknown game type.

FIGURE 2. SI and TI plot for 12 gaming video sequences, six each from
gaming video SET and KUGVD.

A. DESCRIPTION OF THE DATASETS

Spatial Information (SI) and Temporal Information (TI) as

defined in ITU-T Rec. P.910 [36] are used as indicators of

content complexity. Fig. 2 shows the SI vs. TI plots of the

gaming videos considered for the subjective tests from both

datasets. An interesting point to note is that the SI and TI

for the video sequence from the game H1Z1 are the same

even when the considered scenarios are different. LoL and

FIFA are approximately of the same complexity while the

HS sequence in KUGVD is of higher spatial and temporal

complexity compared to the corresponding HS sequence in

GamingVideoSET.

The videos were encoded at the same 24 resolution bitrate

pairs (same as those used in GamingVideoSET, see Table 2)

resulting in a total of 144 video sequences. Three resolutions

and five bitrates from six videos from each dataset resulting

TABLE 2. Resolution-bitrate pairs of com- pressed video sequences.

in 90 stimuli were considered for subjective quality assess-

ment which are shown in bold text in Table 2.

B. TEST ENVIRONMENT AND SET UP

In line with the procedure followed by authors in [13],

we conducted a subjective quality assessment test at Kingston

University, London, United Kingdom in a test lab adhering to

ITU-R Rec. BT.500 standard [2]. The display monitor used

was a 55′′ Samsung 4K monitor. The 480p and 720p videos

were upscaled and then, together with 1080p videos, decoded

to raw YUV format. These were then put into an .mp4 con-

tainer for playback at 1080p resolution at the center of the

display monitor with the rest of the pixels of the display

fully black. The playlist was randomized in order to avoid

learning effects. For training, we selected 4 videos from two

games which were not part of the test, so as to make the test

participants familiar with the test interface and the rating tool.

The test participants were tested for visual acuity and color

blindness using Snellen charts and Ishihara plates, respec-

tively. After removing the ratings from test subjects who

failed either of the visual tests, a total of 17 valid subjective

test ratings were obtained.

C. ALIGNING SUBJECTIVE TESTS SCORES

Since the subjective tests are conducted across different labs

with different factors such as display, number and demo-

graphics of the test participants, the usual practice is to use

anchor conditions (same test videos) across the different

datasets and then use the MOS scores of these anchor con-

ditions to determine a linear mapping function [37] which is

then used to scale all MOS scores of the dataset(s). In our

study, the gaming video sequence from the game CSGO

is the same across both datasets (a total of 15 conditions

taking into account three resolutions and 5 bitrates for each

resolution). Considering the fact that GamingVideoSET con-

tains MOS scores using more test participants as compared

to KUGVD, we use the 15 MOS scores for CSGO from

the GamingVideoSET as the reference scores for the anchor

conditions and then use the linear mapping function f (x) =

mx + b as proposed in [37] to obtain the mapping between

the anchor conditions. Using MOS scores of the anchor

conditions, the coefficients m and b of the mapping func-

tion are obtained to be 0.9254 and −0.2613 respectively.

Fig. 3 shows the scatter plot for the MOS scores and the

linear fit. The goodness of fit scores obtained are as follows:

SSE: 0.7114, R-square: 0.9443, Adjusted R-square: 0.94 and

RMSE: 0.2339, indicating a good fit between the anchor

MOS scores. The correlation between the anchor MOS con-

ditions is obtained as 0.9875. As the fit is linear, there is

no effect of the scaling of the MOS scores of KUGVD on

VOLUME 7, 2019 74515



N. Barman et al.: NR Video Quality Estimation Based on Machine Learning

FIGURE 3. Scatter plot of MOS scores and the linear fit corresponding to
the anchor conditions (15 conditions of CSGO sequence).

the correlation scores with various metrics. Considering the

fact that future work with third-party datasets may not have

anchor conditions and that using linear scaling to adjust the

MOS scores does not affect the performance of the VQAmet-

rics in terms of their correlation with MOS scores, we finally

decided to use the MOS scores from both datasets without

any fitting.

As discussed by the authors in [13], since an open dataset

is of great use and interest to the research community,

we have released the reference and distorted video sequences

along with the scores for eight VQA metrics (3 FR, 2 RR

and 3 NR) and subjective assessment scores (MOS rat-

ings) as an open source dataset called KUGVD available

at https://kingston.box.com/v/KUGVD. Henceforth, we will

occasionally use Dataset 1 (D1) and Dataset 2 (D2) to refer

to GamingVideoSET and KUGVD respectively.

IV. METHODOLOGY

Fig. 4 shows the methodological framework that is used

in this study to develop, test and validate the ML based

gaming video quality estimation models. The key blocks

of the methodology are feature extraction, feature selection,

model development, and performance evaluation and valida-

tion. Datasets D1 and D2 were used in the development of

NR-GVSQI and NR-GVSQE. For each model, we extracted

features and identified the best subset of features to use in

model development. After training, validation was performed

and each model was further tested on an external dataset

which was not used in the model development process.

A description of each individual step in the methodological

framework is discussed next.

A. FEATURE EXTRACTION

The performance of supervised ML-based predictive models

is highly dependent on the features used in model devel-

opment. Extracting relevant features for supervised learning

is therefore critical. Previous statistical analysis has shown

that video quality, as perceived by end users, is impacted

by the combined influence of many factors such as the ini-

tial encoded video quality, content type, and the encoding

parameters (e.g., frame rate, RES, BR and the QP) [38], [39].

Besides encoding, which determines the original encoded

video quality, network QoS and client-side contexts, such as

device type and resolution, further degrade the video quality.

Since passive gaming video streaming applications such as

Twitch.tv, YouTubeGaming, etc. use HTTPAdaptive Stream-

ing (HAS) technology, which is TCP based, they do not suffer

from transmission-related impairments such as packet loss,

bit error, etc. Hence, in this work we did not consider the

impact of network and user context on the predicted quality.

Since our goal is to build a NR model for quality estimation,

FIGURE 4. Methodological framework used in this work.
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TABLE 3. Summary of the fifteen nr features used in this work. the description of some of the features (those extracted using the tool [40]) is based on
the description in [41] and [42].

we extracted features from only the distorted sequences, not

relying on any reference information. We extracted 16 NR

features for both datasets (GamingVideoSET and KUGVD)

based on the encoding process and on content. Hence, each

sample of the dataset used in this study is described by

16 NR features based on content (spatial information (SI),

temporal information (TI), spatial activity (SA), temporal

activity (TA), exposure and contrast) and encoding process

(RES, BR, blockiness, blockloss, blur, interlace, noise).

Additionally, we used the output scores of the follow-

ing three NR metrics as input features for our model

development:

1) BIQI, a modular NR metric based on natural scene

statistics (NSS).

2) BRISQUE, a NR IQA metric which quantifies the pos-

sible loss of naturalness in an image by using the locally

normalized luminance coefficients.

3) NIQE, a learning-based NR IQA metric which uses

statistical features based on the space domain NSS

model.

Table 3 summarizes all the 15 NR features considered in this

work. The first eleven NR features were computed using the

tool provided by the authors in [40]. The tool provides per-

frame scores for each video. We calculated the average of

each of these 11 features, which are then used together with

the other four features (SI, TI, RES and BR) and three NR

metric outputs (which we consider as three features), to select

a subset of features that was subsequently used for developing

a model that maps these features onto an estimation of the

video quality. Although some of these features are related and

dependent (e.g., slicing and block loss; exposure and noise

metrics; SI and SA; TI and TA), their combinationsmay result

in improved prediction quality, as will be evident later. For a

better understanding of these features, we guide the reader to

the work in [41] and [42].

In addition, we also use the FR metric VMAF as an esti-

mation of QoE because our earlier works in [7] and [12]

have shown that it estimates the subjective quality with high

prediction accuracy for gaming videos. It should be noted that

due to the reasons mentioned in [12], the three NR metrics

were calculated on the downscaled encoded videos, whereas

the rest of the features were calculated on upscaled, decoded

raw videos.

B. FEATURE SELECTION

The nature of the data used to characterize the relationship

between example data and the outcome measure may signifi-

cantly affect the performance of predictive models. Noisy and

unreliable data increase the difficulty of training machine-

learning models. Removing redundant features to reduce the

dimensionality of the data results in faster and more effective

training and reduces the computational costs and the chance

of overfitting [43]. The aim of feature selection is to select

a subset XS of the input features, X = {x1, x2, ..., xN },

so that this subset can predict the outcome measure with a

comparable performance with the case when the whole set of

featuresX is used, but with less computational cost [44].With

N features, there are 2N − 1 possible subsets of features that

should be tested if we want to use exhaustive search.

In order to reduce the complexity, different wrapper and

filter feature selection methods [45] can be used to select

a subset of the features discussed in Section IV-A. In the

forward feature selection method, first the feature with the

highest correlation with video quality is selected and pro-

gressively more features are added to create a larger subset

of features with higher predictive power. Only features that

increase the predictive power of the subset are retained. In the

backward feature elimination method, all the features are

selected as the starting subset and progressively the least

promising feature that did not add any predictive power to the
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subset of features is eliminated [46]. The steps are repeated

until a certain number of features remains or a certain per-

formance level is reached. This reduces the complexity of the

feature selection process by reducing the possible number of

subsets from 2N − 1 to N (N + 1)/2.

C. MODEL DEVELOPMENT

In this work, we propose twoML based models. The first one

aims at estimating the MOS scores obtained via subjective

testing, while the second aims at estimating the scores of

a well-known objective quality metric (VMAF), that our

previous studies identified as the best objective quality met-

ric for gaming video streaming among the state-of-the-art

ones analyzed. The first model, presented in Section V,

was designed using the MATLAB machine learning tool-

box [47] while the second one, presented in Section VI, was

designed using Waikato Environment for Knowledge Analy-

sis (WEKA) [48]. As machine learning techniques, we used

SVR, Gaussian Process (GP) regression, NN, and Random

Forest (RF), which are representative machine learning algo-

rithms that have been used in the domain of video quality

prediction and modeling [49]. For an easier understanding

of the presented models, we briefly describe the machine

learning algorithms used in this work and for a more detailed

discussion, we refer the reader to the individual references

and to the work of Vega et al. [32] where a detailed descrip-

tion of the machine learning algorithms and their application

in VQA is presented.

1) Neural Networks [50], commonly referred to as ‘‘arti-

ficial’’ neural networks is an information processing

framework which is modeled after the biological ner-

vous system such as the brain. They usually consist

of a large number of interconnected elements (neu-

rons) which work together to solve specific problems.

In Section V, we use a two-layer feed-forward network

with sigmoid hidden neurons and linear output neurons

that is able to fit multi-dimensional mapping problems.

The Levenberg-Marquardt backpropagation algorithm

is used to train the network. In Section VI, we use

MLP which is a class of feed-forward artificial neural

network consisting of at least three layers of nodes: an

input layer, a hidden layer and an output layer which

uses an iterative algorithm based on gradient descent as

the backpropagation algorithm for supervised training.

Using multiple layers and given the fact that all nodes

except the input nodes is a neuron that uses a nonlinear

activation function, it is different from a linear percep-

tron and hence able to distinguish data which is not

linearly separable.

2) Support VectorMachines (SVMs) are supervised learn-

ing models which use learning algorithms for clas-

sification and regression analysis of the input data.

Support-vector regression (SVR) is the version of SVM

for regressionwhich relies on a kernel function to fit the

training data to a function with the error rate within a

certain threshold.

3) A Gaussian Process [51] is a stochastic process where

any finite subset of the range follows a multivari-

ate Gaussian distribution. Gaussian process regression

models are non-parametric kernel based probabilistic

models.

4) Random forests are a combination of tree predictors

such that each tree depends on the values of a random

vector sampled independently and with the same dis-

tribution for all trees in the forest [52]. Random forests

are based on the fact that while predictions made by a

decision tree may not be accurate, using a combination

of them will result in improved prediction accuracy.

The ML techniques used in this work have been selected

due to their simplicity: one of the main goals of this work is

to propose a light-weight NR metric, which is simple enough

to be used in real-world applications. During the design of

the metrics we have restricted ourselves to features which

are of low complexity and can be extracted in real-time. The

same low-complexity criterion is used during the selection

of models so that the end metric can be used even on low

computational power and energy constrained devices such as

smartphones. Our initial work showed promising result with

these simple models, hence more complex solutions such

as deep learning approaches are not investigated. The major

objective of this paper is to investigate different approaches

for the selection of appropriate NR features and model design

methodologies which can help build a NR quality model with

high accuracy of subjective quality prediction specifically for

gaming video streaming applications.

V. NO-REFERENCE ESTIMATION OF

SUBJECTIVE SCORES (MOS)

A. FEATURE SELECTION AND MODEL DEVELOPMENT

For feature selection we used the backward elimination

method explained in Section IV-B for feature selection,

and started with all of the 18 features (15 features men-

tioned in Table 3 and the three NR metrics) discussed in

Section IV-A. At the first round of feature selection, to further

reduce the complexity, the performance of all the combina-

tions with 17 out of 18 features were examined by SVR,

and it was observed that in eight cases the performance

of MOS prediction is not significantly worse than the case

with all of the 18 features. Then, these eight features were

eliminated and the rest of the ten features (TI, RES, BR,

BIQI, BRISQUE, NIQE, Blockiness, SA, Blockloss, and TA)

remained for further feature reduction.

We also evaluated feature derivation from existing features

by PCA method and a mixed method (a combination of

the selected features and derived features); however, feature

selection using the backward elimination method showed

better results. The subset that achieved the best prediction

performance was selected for model development. The PLCC

score was used to quantify the predictive power of subsets of

features.

Table 4 summarizes the correlation scores (PLCC)

between the remaining 10 features as well as with MOS
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TABLE 4. Correlation (PLCC) between the various features and MOS.

TABLE 5. Performance of various feature subsets for different training and test dataset combinations. the best performing cases are shown in bold.

scores (GamingVideoSET and KUGVD combined). For the

feature selection part, both datasets (180 samples) were used,

and then the model was trained and validated on Gam-

ingVideoSET, and its scalability (generalization) tested on

KUGVD (and vice versa). The anchor conditions were used

only during the training phase and were removed during the

testing phase (since we had 15 anchor conditions in total,

we had 90 samples for training and 75 samples for test-

ing). Since TI and TA are calculated almost identically (see

Table 3), it can be seen that they have a high correlation score

of 0.85. As the videos are encoded at different resolutions,

there is a high correlation between blockiness and RES,

as expected. Also, since all three NR metrics are based on

Natural Scene Statistics (NSS), they have a high correlation

among themselves. Also, Blockloss is found to have a high

correlation with SA.

We evaluated the performance of both SVR and NN with

all feature subset combinations for the two different training

and test dataset combinations. Table 5 shows the performance

results in terms of Mean Square Error (MSE), PLCC and

SROCC scores of the best performing algorithm (NN) for

various feature subsets. Here we have used the backward

elimination method to reduce the number of features from

10 to 4 in 6 consecutive steps. It can be observed that for

all feature subsets and training and test dataset combinations,

NN performs better than SVR. ForNN regression, the number
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of layers is 2 and the number of hidden neurons is 10.

Levenberg-Marquardt is chosen as the training algorithm.

In order to avoid over-fitting, the error is checked on vali-

dation; if it keeps increasing beyond a fixed known limit (set

here to 6), then the training will stop. The result of the trained

network at the point of increasing error on validation is used

for the test.

FIGURE 5. PLCC (%) variation with different number of features, for
different training and test scenarios.

Fig. 5 shows the performance of the model in terms of

PLCC scores with respect to the different number of features,

considering two different training and test dataset combina-

tion scenarios as follows:

• ‘Trained on D1, Tested on D2’: Under test scenario,

D1 and D2 were used as the ‘‘training’’ and ‘‘test’’ parts

respectively consisting of 90 and 75 samples, respec-

tively. This was repeated for 100 iterations for each

feature subset combination.

• ‘Trained on D2, Tested on D1’: Same as ‘Trained on D1,

Tested on D2’ scenario but with D1 and D2 inter-

changed.

It can be observed that for both scenarios the prediction accu-

racy increases when the number of features is reduced from

ten to seven. Further reduction in the number of features then

reduces the prediction accuracy. The scalability (generaliza-

tion) of the model is really tested when different datasets are

used for training and testing. This is not considered in many

research methodologies in QoE modeling and has resulted in

optimistic performance results. Based on the results presented

in Table 5 for the two different training and test scenarios,

we consider that the NN model using 7 features results in the

optimal performance which we refer to as NR-GVSQI.

Based on the results presented in Table 5 and Fig. 5,

it can be observed that the performance results do not vary

much when different datasets are used for training and testing

(‘Trained on D1, Tested on D2’, ‘Trained on D2, Tested

on D1’) which leads us to the following conclusions:

• The proposed model, NR-GVSQI trained on a gaming

video of a particular gameplay scene from a game is

robust enough to predict the quality of another gaming

video of another gameplay scene of the same game.

• When trained on a set of gaming videos from one

dataset, NR-GVSQI is robust enough to predict the

quality of a gaming video from a totally new game

belonging to a different genre and complexity (both

datasets consist of a game from a totally different genre;

Project Cars in D1 and Overwatch in D2, see Fig. 2).

TABLE 6. VQA metrics performance on the two datasets. the proposed
metric’s performance is shown in bold.

Table 6 shows the performance of nine state-of-the-art

VQAmetrics on the two datasets along with the performance

of the proposed metric, NR-GVSQI. In addition to the three

NR metrics considered during model development, we also

compare the performance of our proposed metric with the

recently proposed deep NN based metric MEON discussed

in Section II which has been shown to outperform existing

learning based as well as traditional NR metrics. Due to

the use of proprietary SSIMplus in V-MEON, its the model

implementation is no longer available publicly and hence

could not be evaluated on our datasets. For the evaluation of

MEONwe have used the implementation and default settings

as provided by the authors in the respective publication. The

scores were computed on a per-frame basis and averaged

over the whole video to obtain a final score. Due to non-

availability of ground truth scores for our datasets, the model

could not be re-trained and was evaluated using the trained

weights provided by the authors.

It can be observed that the proposed metric NR-GVSQI

results in the best performance on both datasets when com-

pared to the four NRmetrics. Considering GamingVideoSET,

the proposed metric NR-GVSQI achieves a correlation

of 0.87, which is almost the same as that achieved by the

state-of-the-art FR metric, VMAF. For KUGVD, the metric

achieves almost similar performance to SSIM, a widely used

FR VQA metric. Comparing the performance across both

datasets, it can be observed that while the performance of

the state-of-art NR metric NIQE varies quite a lot, the per-

formance achieved by NR-GVSQI is more stable across the

two datasets. Among the four NR metrics, MEON results

in the worst performance across both datasets (consider-

ing all 90 stimuli each) which is surprising given its high

performance on different IQA datasets. This indicates that

a machine learning based NR metric designed and tested

on non-gaming videos does not necessarily perform well

on gaming datasets and vice versa, hence establishing the

need for customized NR metrics for gaming videos. Given

the limited amount of training data we had, we expect that

the proposed metric NR-GVSQI, when trained on a much
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bigger dataset, will result in an improved and more stable

performance across different gaming videos and hence will

be more generalizable to be used for quality estimation of

gaming video streaming applications.

B. DISCUSSION ON FEATURE SELECTION

Based on the correlation values presented earlier in Table 4 it

can be observed that the correlation between the features

BIQI (4) and SA (8) with MOS is 0.51 and the correlation

between the TI (1) and TA (10) with MOS is 0.09 and 0.08,

respectively, which is very low. This implies that the selected

features do not necessarily have a high correlation with the

predicted entity. More interestingly, if we consider the corre-

lation between the selected features, we can see for example

that the correlation between TI (1) and TA (10) is 0.85, which

as expected, is quite high. Hence, if feature selection would

have been performed just based on the correlation values

in Table 4, feature TI(1) and TA(10) both would not have

been included in the same feature subset. Therefore, it can

be concluded that the prediction performance of the features

when considered individually and in a group can vary a lot.

Feature selection using just domain knowledge or based on

correlation with the prediction entity, as we saw here, is not

enough and needs to be supplemented by feature selection

methods such as backward elimination method as used in this

work.

VI. NO-REFERENCE ESTIMATION OF FULL REFERENCE

OBJECTIVE METRIC (VMAF)

In the previous section, we proposed a machine learning

based no reference model which was trained and evaluated

in terms of its capability to estimate MOS. The limit of this

approach is that the training and test data available consist

of only 165 stimuli (90 stimuli from each dataset minus

the 15 common conditions). Yet, conducting more subjective

tests is time consuming, expensive and impractical, especially

when creating a large dataset consisting of a large number of

videos and encompassing various distortions. Hence, in this

section we explore the possibility of developing a ML-based

model to predict, rather than MOS, the best performing

objective VQA score (still using NR features); a dataset

covering a wide range of content and conditions is more

practical and easier to create with VQA scores. We use the

GamingVideoSET, which consists of a total of 576 distorted

sequences, for model development and 120 sequences from

KUGVD (excluding the 24 anchor conditions) for testing pur-

poses. Since VMAFwas found to have a very high correlation

with MOS for both datasets [7], [12], we calculated for both

datasets the VMAF scores, which are then used as the ground

truth for the ML algorithms. Fig. 6 shows that the distribution

of encoded video quality - in terms of VMAF - is well spread

from low to high.

A. FEATURE REDUCTION AND MODEL DEVELOPMENT

The Waikato Environment for Knowledge Analysis was

adopted for feature reduction and model design for

FIGURE 6. Histogram showing the distribution of the quality (VMAF) of
the encoded video sequences from gaming video SET used for training of
the model.

this metric. Based on our domain knowledge, as well as

based on the results from our work in the previous section,

we used 14 candidate predictors from the encoding process

(BR, RES), content (SI, TI, SA, TA, Noise, Exposure and

Contrast), compression artifacts (blur and blockiness) and no

reference video quality metrics (BIQI, BRISQUE and NIQE)

as the initial feature set. Four features considered for the

earlier work (Blockloss, Interlacing, Flickering and Slicing)

were not considered as they are not valid for the encoding

conditions considered in the datasets used in this work.

Table 7 shows the correlation of features with VMAF

and with different features in terms of PLCC scores. The

features with the best correlation with VMAF are BR (0.68),

SA (0.65), BLUR (−0.62), RES (0.55) and SI (0.51). No sin-

gle feature is robust enough to predict the encoded video

quality with acceptable accuracy. However, the correlation

between BR with SA, BLUR, RES and SI is relatively low.

A combination of BR and the three quality metrics may not

yield high predictive power given that the correlation between

BR and BIQI, BRISQUE and NIQE is relatively high. Com-

bining BIQI, BRISQUE and NIQE to predict VMAFmay not

yield high prediction value due to the high inter-correlation

between them, but as observed in results from model design

in Section V, this may not always be the case. Hence, as

done previously in Section V, it is necessary to conduct a

feature selection process to determine a subset of features

from the considered initial 14 features. Towards this end,

we extracted the above mentioned initial 14 features for

the full GamingVideoSET and KUGVD datasets using the

same approach as was used previously. For model design

and validation we used the extracted features from Gam-

ingVideoSET for feature selection purposes to determine

subsets of features for model development. We used the

WEKA correlation based feature selection (CFS) function

to select subsets of features [53]. This allowed us to reduce

data dimensionality without having to manually evaluate all
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TABLE 7. Correlation (PLCC) between the various features considering all 576 sequences from GamingVideoSET.

TABLE 8. Results of model development for different sub-features using GP, MLP, SVR and RFML algorithms. The best performing result is shown in bold
italics.

possible combinations of features. CFS evaluates the predic-

tive worth of a subset of features by considering the predictive

power of each feature together with the amount of redun-

dancy between features. Preference is given to subsets that

are highly correlated with VMAF whilst also having a low

correlation between them. We selected subsets of features

with the number of features in each subset increasing from

1 to 14 features. While this might not always be the optimal

method for testing different feature set combinations, it works

with reasonable accuracy considering our feature subset and

model design as will be shown later. Each subset was then

used as variables to develop four regression models using

four differentML-based algorithms (GP,MLP, SVR andRF).

These are some of the popular and frequently used ML algo-

rithms in image/video quality prediction [27].

Using the extracted features from GamingVideoSET,

we developed prediction models using the 10-fold cross val-

idation methodology. The data were randomly divided into

10 sub-datasets. Nine sub-datasets were used for training

a machine learning model and one was left out to test the

model. This is repeated ten times until all sub-datasets have

been used for training and testing. This methodology has

the advantage that all data are used for training and testing.

It is commonly used in machine learning to avoid overfit-

ting [54]–[56], as was also used in the previous section. The

performance of each model was averaged over the testing

processes in order to determine the general performance.

Table 8 shows the performance of each subset of features

in predicting video quality in terms of PLCC, mean absolute

error (MAE) and RMSE. Increasing the number of features

increases the prediction accuracy for all ML algorithms.

However, there is an optimum number of features that pro-

vides an optimum balance between accuracy and complexity

in terms of the number of features needed to achieve accept-

able performance. Increasing the number of features beyond

this number minimally improves the performance. However,

this improvement is at the expense of increased complexity

and increased computational requirement, which may limit

usability in real time especially for thin clients.

For example, increasing the number of features used in the

SVR model from 3 to 7 features increases PLCC by 12.5%.

Yet doubling the number of features from 7 to 14 for the

same algorithm increases PLCC by only 0.6%. Doubling the

number of features does not improve the performance sig-

nificantly, and only increases the model complexity (mainly

due to increased feature extraction tasks as well as model
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FIGURE 7. Impact of number of features on prediction accuracy for GP,
MLP, SVR, and RF learning algorithms.

computation time). Fig. 7 shows the relationship between

the number of features and the performance for the four

learning algorithms. The results clearly show saturation in

performance with an increased number of features for all

algorithms. SVR obtained superior performance over all the

other algorithms, with 7 features being optimal (RES, BR, SI,

TI, Contrast, Blur and Exposure). We refer to this prediction

model as NR-GVSQE. This is similar to our observation

reported in Section V during our NR-GVSQI model design

and evaluation using MOS ratings as the labels where also

7 features resulted in the optimum prediction model. The

subset of features is different from those used in NR-GVSQI,

which is not surprising as the relationship between the various

features and MOS is not exactly the same as for VMAF.

Henceforth, the VMAF scores as obtained from the distorted

video sequences will be referred to as (true) VMAF while the

VMAF scores as predicted usingNR-GVSQEwill be referred

to as predicted VMAF.

Fig. 8 shows the performance of the models in terms

of prediction accuracy during model development. The fig-

ure clearly shows that the quality prediction model based on

SVR is of superior quality. We, therefore, selected this model

for testing using the KUGVD dataset.

The selected SVR model was inherently validated during

development due to the nature of 10-fold cross validation

methodology. In practice, this is not usually enough and the

final testing is usually conducted on an external dataset that

was not used in model development. We externally validated

and tested the model on KUGVD which is an unseen dataset

and was not used in model development. The dataset has

120 samples (excluding the anchor video conditions) and

has the same features as the training dataset. Fig. 9 shows

the predicted VMAF by the model plotted against the (true)

VMAF of KUGVD. The predicted VMAF is highly corre-

lated with (true) VMAF, with a PLCC of 0.98.

FIGURE 8. Prediction performance of GP, MLP, RF and SVR prediction
models on the training dataset (GamingVideoSET).

FIGURE 9. NR-GVSQE (Predicted VMAF) scores vs. (true) VMAF scores
considering KUGVD dataset.

Table 9 presents a comparative performance evaluation

of our proposed metric versus popular FR (PSNR, SSIM),

RR (STRREDopt, SpEED-QA) and NR (BIQI, BRISQUE,

and NIQE) metrics to predict the VMAF of the KUGVD

dataset. It can be observed that the proposed model out-

performs these quality metrics by a huge margin in terms

of correlation with VMAF. Since the ultimate goal of any

IQA/VQAmetric is to be able to predict the subjective quality

as presented in Section V, we evaluate the performance of the

model presented here - developed based on VMAF scores -

in terms of correlation with respect to MOS scores from the

subjective dataset.

Table 10 compares the performance of (true) VMAF and

predicted VMAF scores vs. MOS on the KUGVD dataset,

considering 75 stimuli (excluding anchor conditions). It can

be observed that our proposed model, which was trained

using VMAF scores from GamingVideoSET, when tested on
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TABLE 9. Correlation (PLCC) of various VQA metrics and the proposed
model, NR-GVSQE, W.R.T VMAF scores for KUGVD dataset. The best
performing model is shown in bold.

TABLE 10. Performance evaluation in terms of PLCC and SROCC of (true)
VMAF and NR-GVSQE (PREDICTED VMAF) scores W.R.T MOS scores from
KUGVD dataset (excluding 15 anchor conditions).

an unknown dataset results in similar performance as (true)

VMAF scores with respect to MOS ratings. It is important

to note here that our trained model utilizes NR features and

hence is a NR metric, compared to VMAF which is a FR

metric.

Compared to NR-GVSQI which was trained on MOS

scores, the performance of NR-GVSQE is approximately

1.5% better on KUGVD in terms of PLCC scores.

The improved performance of NR-GVSQE compared to

NR-GVSQI can be attributed to the fact the model design

was performed using a much larger dataset due to the avail-

ability of objective VQA scores. The gain of 1.5% might

not look a major improvement, considering the fact that

both NR-GVSQI and NR-GVSQE use seven input features.

It must, however, be noted that while NR-GVSQI uses the NR

metrics BRISQUE and BIQI as input features, NR-GVSQE

does not use any NR metric scores and uses only very

basic NR features such as contrast, blur, and exposure along

with basic features such as resolution, bitrate, SI and TI

values. Hence, NR-GVSQE is of much lower complexity

as compared to NR-GVSQI, with the added advantage that

such model design can be performed on a huge dataset

with multiple distortion artefacts without the need for any

subjective (MOS) ratings.

VII. DISCUSSION

Wewill discuss in this Section the specificity of the model for

gaming video and the comparison with other gaming video

quality models.

The model design and performance on the gaming video

datasets benefit from the inherent characteristics of the gam-

ing videos (less variation in SI due to repetitive game ele-

ments [57], a difference in subjective opinions, etc. [7], which

is not true for ordinary videos). For example, as discussed

in [57], video games have special content characteristics in

that they share the spatial and temporal features between

different scenes of the same game. In fact, each game has

a special motion pattern and a quite constant spatial com-

plexity, as games are made of a pool of reused objects,

which can be exploited by the machine learning algorithms,

with possible increased performance for such gaming videos.

In light of these factors, we argue that the while the proposed

models are shown to work with high accuracy on the gaming

video datasets considered in this work, it does not necessarily

hold true for other non-gaming datasets (currently an ongoing

work).

As discussed before, gaming video streaming applications

have so far not gained much attention from the research com-

munity. So far, in parallel to our work, there are two similar

works carried out by the authors in [58] and [59] who also

proposes machine learning based NR models: NR-GVQM

and nofu, respectively.

NR-GVQM [58] is a SVR based model with Gaussian ker-

nel which uses nine frame level input features and is trained

and validated on an open-source gaming video dataset,

GamingVideoSET (see Section III). The model is trained

using per-frame scores from 408 distorted video sequences

(369000 frames) using VMAF scores as the target out-

put, similar to the approach used in our proposed model

NR-GVSQE (see Section VI). The model, when tested on the

rest 144 distorted sequences, resulted in a correlation score

of 0.98 with VMAF, while our proposed model NR-GVSQE

achieves a correlation of 0.97 with VMAF. On the subjective

dataset (90 video sequences), themodel achieves a correlation

of 0.89 with MOS. Compared to NR-GVQM, our model,

NR-GVSQE achieves a higher correlation of 0.905withMOS

on an unknown dataset (KUGVD) using a lower number

of features (seven compared to nine) and is of much lower

complexity, as NR-GVSQE uses input features per video

unlike NR-GVQM which uses per-frame scores for the final

quality prediction.

Nofu [59] considers 12 different NR feature values per

frame which are then divided into three equidistant groups,

independent of the duration of the video. For each group,

three values for each feature - the first value, the mean and

standard deviation for each group is calculated, which results

in a total of nine values per feature and a total of 108 pooled

features values (considering the 12 selected features). The

features are extracted from 360p center crop of the rescaled

input video (irrespective of the native video resolution) after

which the ExtraTreeRegressor method is used for feature

selection using 0.5×mean as the threshold value and Random

Forest as the choice of their regression algorithm. Similar

to the aforementioned model, this model also uses VMAF

scores (rescaled to 1-5) as target output. The model, when

trained and tested on the GamingVideoSET via 10-fold cross

validation, is shown to achieve a correlation of 0.96 as com-

pared to 0.97 for our proposed model, NR-GVSQE. The

proposed model, when tested on the subjective dataset part

of GamingVideoSET (90 videos) via 10-fold cross valida-

tion, is shown to achieve a correlation of 0.91. In addition,
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the authors performed a source video based train and vali-

dation fold approach for subjective score prediction. For the

6 different video sources, they use 5 sources for training and

1 for validation, for which they achieved a correlation of 0.77.

As discussed earlier, such an evaluation is hard because of

the fact that each gaming video is from a different gaming

genre and hence such an evaluation of a metric when tested on

an unknown video(s) offers a more critical evaluation of the

proposed model’s performance for real-world applications.

In contrast, our proposedmodel NR-GVSQEwhen trained on

GamingVideoSET and tested on KUGVD containing differ-

ent videos from the same as well as different games, achieves

a correlation of 0.905.

Although both NR-GVQM and nofu appear to be promis-

ing models, due to lack of a second test dataset for the evalua-

tion of the model performance, as discussed above, the actual

performance of the models for real-world applications is not

established. This also establishes the necessity of another

open-source gaming dataset, such as KUGVD as presented

in this paper, which can be used for proper validation of

proposed models for gaming streaming applications.

VIII. CONCLUSION

Subjective quality assessment of encoded gaming video is

a necessity, yet it is time consuming, expensive, and not

applicable in real time quality assessment scenarios. As a

consequence, the development of objective quality assess-

ment metrics is necessary. For some applications, such as

passive gaming video streaming, FR and RR metrics are

not suitable due to the unavailability of source information.

On the other side, it has been shown that No-Reference (NR)

quality metrics developed for natural video content are not

suitable for compressed gaming video. Towards this end,

we presented in this paper two machine learning based NR

metrics, NR-GVSQI and NR-GVSQE for gaming video qual-

ity prediction. Our proposed models, which are designed

using supervised learning algorithms using MOS and FR

Metric (VMAF) scores as the target output, are shown to per-

form better than the current state-of-the-art NRmetrics, in the

latter case achieving performance close to the state-of-the-

art FR metric (VMAF). One of the major advantages of the

proposed models is that they use a small number of features

which can be extracted in real-time, hence the models can

be used for real-time quality estimation of encoded gaming

videos for live gaming video streaming applications.

Due to the inherent nature of the available datasets, the pro-

posed models are limited to only compression and scal-

ing artefacts. Also, currently both datasets are limited in

scope considering the number of different games and the

resolution-bitrate pairs considered. Since the datasets consist

of videos compressed with the H.264 encoder, their perfor-

mance on videos encoded with other newer encoders such as

HEVC, VP9, or AV1 is an open question which we plan to

explore in our future work, along with the creation of open-

source datasets with an increased variety of games.
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