
 

No-reference video quality measurement: added value of
machine learning
Citation for published version (APA):
Mocanu, D. C., Pokhrel, J., Pablo Garella, J., Seppänen, J., Liotou, E., & Narwaria, M. (2015). No-reference
video quality measurement: added value of machine learning. Journal of Electronic Imaging, 24(6), [061208].
https://doi.org/10.1117/1.JEI.24.6.061208

DOI:
10.1117/1.JEI.24.6.061208

Document status and date:
Published: 29/12/2015

Document Version:
Author’s version before peer-review

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.1117/1.JEI.24.6.061208
https://doi.org/10.1117/1.JEI.24.6.061208
https://research.tue.nl/en/publications/29d8b889-acba-446d-9089-db8ba3770117


No-reference Video Quality Measurement: The Added Value of

Machine Learning

Decebal Constantin Mocanua, Jeevan Pokhrelb, Juan Pablo Garellac, Janne Seppänend, Eirini Liotoue,

Manish Narwariaf

a ECO group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands, e-mail:

(d.c.mocanu@tue.nl)
b Montimage, Paris, France, e-mail: (jeevanpokhrel@gmail.com)
c Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay, e-mail: (jpgarella@fing.edu.uy)
d Network Performance Team, VTT Technical Research Centre of Finland Ltd., Finland, e-mail: (janne.seppanen@vtt.fi)
e GAIN group, National & Kapodistrian University of Athens, Greece, e-mail: (eliotou@di.uoa.gr)
f DA-IICT, Gandhinagar, India, e-mail: (manish narwaria@daiict.ac.in)

Abstract. Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective

and thus there will always be inter-observer differences in the subjective opinion about the visual quality of the same video. Despite this, most

existing works on objective quality measurement typically focus only on predicting a single score, and evaluate their prediction accuracies based

on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in

the subjective scoring process, and as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective

variability. Consequently, the aim of this paper is to analyze this issue and present a machine learning based solution to address it. We demonstrate

the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on Digital Terrestrial Television (DTT), and

proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video

content (including video clips recorded from real DTT Broadcast transmissions) in order to verify the performance of the proposed solution.
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1 Introduction

With the ever increasing demand for video services and applications, real-time video processing is one of the central

issues in multimedia processing systems. Given the practical limitations in terms of resources (bandwidth, computa-

tional power, memory etc.), video signals need to be appropriately processed (e.g. compressed) to make them more

suitable for transmission, storage and subsequent rendering. However, most of the mentioned processing will degrade

the visual quality to varying extents. As a consequence, the end user may view a significantly modified video signal

in comparison to the original source content. It is, therefore, important to measure the quality of the processed video

signal and benchmark the performance of different video processing algorithms in terms of video quality assessment.

Video quality is essentially a component of the larger concept of Quality of Experience (QoE). It is therefore an in-

trinsically subjective measure and can depend on multiple factors including degree of annoyance (related to artifact

visibility), aesthetics, emotions, past experience etc.1 Thus, subjective viewing tests remain the most reliable and

accurate methods, given appropriate laboratory conditions and a sufficiently large subject panel. However, subjective

assessment may not be feasible in certain situations (e.g. real-time video compression, transmission), and an objective

approach is more suitable in such scenarios. While the performance of objective approaches may not accurately mimic

the subjective opinion, it can still potentially provide approximate and relative estimates of video quality, in a given

application.

Objective quality estimation can be classified into three groups, i.e. Full-Reference (FR), Reduced-Reference

(RR) and No-Reference (NR)2 , as detailed in Table 1. Among them, NR estimation is more challenging since it relies

only on the processed signal. As a result, it is more related to detection and quantification of certain irregularities or

absence of specific features which would be typically found in the reference video. It can also exploit application-

specific features (e.g. bit rate) from the video bit stream in order to quantify quality, and there are existing works to

this end, as discussed in the next section. Subjective estimation of video quality, on the other hand, involves a number

of human observers rating the video quality on a fixed pre-defined scale, typically in controlled laboratory conditions.

Excellent treatment of the various factors in video quality assessment is readily available in the form of standards and

recommended practices.3
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Table 1 Description of video QoE objective estimation categories.

Full-Reference (FR) Reduced-Reference (RR) No-Reference (NR)

Reference The reference video Only some information (e.g. metrics) No information from

video is available. extracted from the reference video are required. the reference video is required.

The quality is estimated based The quality is estimated based The quality is estimated based

Methodology on a comparison between the on the information extracted from the just on some information

reference and a processed video. reference video and a processed video. extracted from a processed video.

Accuracy Higher than RR and NR. Higher than NR. Lower than FR and RR.

(in general) Lower than FR.

An important aspect of any subjective study is the underlying variability in the collected ratings. This happens

because the same stimuli typically do not receive the same rating by all the observers. This is of course expected since

the notion of video quality is highly subjective, and this injects certain variability or inter-observer differences in the

stimuli rating. While these are generally reported in subjective studies (in the form of standard deviations, confidence

intervals etc.), a survey of literature reveals that they are not typically accounted for in objective quality prediction. As

a result, a majority of works on objective quality estimation focus only on predicting a single score that may represent

an average of all the ratings per stimuli. Further, the prediction accuracies of objective methods are generally based

on how close the objective scores are to the averaged subjective ratings (this is generally quantified by correlation

coefficients, mean square error, scatter plots, etc.). However, the inherent subjective variability and its impact are not

directly taken into account. This may potentially reduce the reliability of the objective estimates especially when there

is larger disagreement (high variability) among subjects on the quality of a certain stimuli. Therefore, the aim of this

paper is to analyze this issue in more details, and subsequently present a NR video quality assessment method based

on that. The presented approach is based on defining a reasonable measure of subjective data diversity and modeling

it through the paradigm of machine learning.

The remainder paper is organized as follows. Section II first provides a brief review of machine learning based

NR video quality measurement methods, and also outlines their limitations. We also present our contributions in this

section. Analysis of the importance of diversity in subjective rating process is presented in Section III. The proposed

method and its application within a practical scenario is explained in Section IV while its experimental verification has

been reported in Section V. The next section presents relevant discussion about the results while section VII concludes

the paper.

2 Background and Motivation

2.1 Previous work

Even the research in NR video quality assessment is more than a decade old, we are still far from a general purpose

NR quality indicator that can accurately predict video quality in all situations. The authors in4 presented one of the

first comprehensive method for estimating video quality based on neural networks. In this work, a methodology using

Circular Back Propagation (CBP) neural networks is used for the objective quality assessment of motion picture expert

group (MPEG) video streams. The work in5 employed Convolutional Neural Networks (CNN) in order to estimate

video quality. It differs from conventional neural network approach since it relies on the use of CNNs that allows a

continuous time scoring of the video. A NR method was presented in,6 which is based on mapping frame level features

into a spatial quality score followed by temporal pooling. The method developed in7 is based on features extracted

from the analysis of discrete cosine transform (DCT) coefficients of each decoded frame in a video sequence, and

objective video quality was predicted using a neural network. Another NR video quality estimator was presented

in,8 where symbolic regression based framework was trained on a set of features extracted from the received video

bit-stream. Another recent method in9 works on the similar principle of analyzing several features. These are based

on distinguishing the type of codec used (MPEG or H.264/AVC), analysis of DCT coefficients, estimation of the

level of quantization used in the I-frames etc. The next step is to apply Support Vector Regression (SVR) to predict

video quality in NR fashion. The NR method proposed in10 was based on polynomial regression model, where the

independent variables (or features) were based on spatial and temporal quantities derived from video spatio-temporal

complexity, bit rate and packet loss measurements. The works mentioned here by no means constitute the entire list

of contributions on the topic of NR video quality measurement but merely represent the most recent and relevant for

the purpose of this paper. The reader is encouraged to refer to survey papers, for example.11
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2.2 Limitations of existing methods

As mentioned, there has already been significant research work on NR video quality estimation especially for video

compression applications. However, most of these methods share three common limitations related to their design and

validation as enlisted below:

• Most of these methods rely only on mean opinion scores (MOS) or degradation MOS (DMOS) both for training

and validation. This, to our mind is problematic since the MOS or DMOS (obtained by averaging raw scores

for each observer) tend to neglect the variability inherently present in the subjective rating process.

• Most of these methods have been validated only on limited set of videos and lacked a comprehensive method

evaluation from the viewpoint of its robustness to untrained content.

• Lastly, a majority of existing work focus only on video compression. Thus, they would be limited in their

applicability to other applications (e.g. video transmission) where the fully decoded video content may not be

available and so quality must be predicted only from the bit stream information.

2.3 Our contributions

In this paper, we aim to address the limitations mentioned above. Thus, our main contribution is to perform statistical

analysis on the performance of various machine learning methods (e.g. linear regression,12 decision trees for regres-

sion,12 random neural networks,13 deep belief networks14) in predicting video quality on a real-world database.15 More

specifically, in contrast to most of the existing works on NR video quality estimation, we focus on three aspects that

have been largely ignored.

First, we model the diversity that inevitably exists in any subjective rating process, and we analyze statistically

its relation with MOS. Thus, we attempt to take into account inter-observer differences since it will help in a better

interpretation of how reliable the objective quality score is and what it conveys about the user satisfaction levels. Such

an approach also adds significant value from a business perspective when it comes to telecom operators or internet

service providers (ISPs), as will be further analyzed in the next section. Thus, in the proposed approach, we do not

just train our method in an effort to maximize correlations with the average ground truth, but simultaneously allow

the algorithm to learn the associated data variability. To our knowledge, this is the first work towards the design of an

application-specific NR video quality estimator, which can provide additional output that can help to understand the

meaning of the objective score under a given application scenario. The presented analysis will be therefore of interest

to the QoE community, which has largely focused only on MOS as the indicator of subjective video quality.

Secondly, we exploit the promising deep learning framework in our method and demonstrate its suitability for the

said task, while we assess its prediction performance against three widely used machine learning algorithms and two

statistical methods. Specifically, deep networks can benefit from unsupervised learning thus requiring less training

data in comparison to the traditional learning methods. An analysis pertaining to the training of the deep networks

weights is also presented to provide insights into the training process.

Finally, we focus on meaningful verification of the proposed method on several challenging video clips within

the practical framework of DTT, which help to evaluate the proposed method against diverse content and distortion

severities. We highlight that half of the video clips used for experiments (i.e. 200) come from a real-world video

delivery chain with impairments produced by a real video transmission system and not produced by noise added

artificially, thus representing a realistic scenario.

3 Exploring Diversity in Subjective Viewing Tests

It can be seen that a vast majority of objective studies rely only on the mean or average (MOS or DMOS) of the

individual observer ratings. As we know, simple arithmetic mean is a measure of the central tendency but it tends to

ignore the dispersion of the data. Expectedly, simple averaged based ratings have been contested in literature as they

result in an information loss of how opinions of subjective assessment participants deviate from each other. The authors

of16 argue against averaging subjective judgments and suggest that taking into account the diversity of subjective views

increases the information extracted from the given dataset. Authors of17 apply this principle in their QoE study, where

in addition to MOS a standard deviation of opinion scores (SOS) is studied. The mathematical relation between MOS

and SOS is defined, and several databases for various applications are analyzed using SOS in addition to average user

ratings.
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3.1 Scattering of subjective opinions

The subjective tests remain the most reliable approach to assess human factors such as degree of enjoyment (video

quality). Still, expectedly some amount of inherent subjectivity will always be injected into the data collected from

such studies. This can be attributed to several factors including the viewing strategy (some observers make decisions

instinctively based on abstract video features while others may base their decision on more detailed scene analysis),

emotions, past experience etc. For video quality evaluation, this means that while the individual observer ratings may

indicate a general trend about perceived quality, they may still differ/disagree on the magnitude of such an agreement.

Such diversity can provide valuable information that can be exploited for specific applications. However, before that,

it is necessary to quantify the said diversity (scattering) meaningfully and not merely rely on averaged measures such

as MOS.

The deviation of individual ratings from the mean can for instance provide a measure of the spread i.e. standard

deviation (SOS). Another related measure is the confidence interval which is derived from standard deviation and also

depends on the number of observers. These have been often reported in subjective studies involving video quality

measurement. But using these measures to supplement for objective quality prediction is not always interpretable

in a stand alone fashion. For example, simply providing a standard deviation along with a predicted objective score

does not allow a clear interpretation of what it may mean in the context of an application. This is partly due to the

mathematical relation between MOS and standard deviation (high or low MOS always results in small deviation), and

also because standard deviation does not indicate skewness of opinions scattered around the average value. Hence, it

may be desirable to devise a more interpretable measure of quantifying the diversity of subjective opinion and more

importantly what it may mean in the context of a particular application.

3.2 A new measure to quantify subjective uncertainty

It is known that low MOS for a given service indicates bad quality and therefore disappointment to the service, but

even if MOS is high, we cannot know from this single value how many users are actually dissatisfied with the service.

Moreover, not only do negative experiences affect customers more than positive experiences, but customers are also

prone to share their negative experiences more likely than positive ones. Therefore we could see a negative experience

of a single user to have a risk of avalanche where the negative experience is spread to several other current/potential

customers who will see the service in a more negative light than before, without actually having bad experience with

the service. As already highlighted, a majority of objective methods simply ignore the diversity of user opinions, and

instead focus only on average ratings as their target. To overcome this, we first need to define a plausible way in order

to exploit data uncertainty so that it adds value to the objective quality prediction. To that end, we studied various

methods for expressing the diversity, and considering a business-oriented application, we found that an appropriate

measure of profitability (which is of course the key goal of any business) can be derived from the answer to question

“how many users are unsatisfied with the service”. From service management and business point, satisfied users are

less interesting than dissatisfied users. This is due to the fact that, from quality perspective, satisfied users require no

quality management for their service (although this is not to say that satisfied users should not be considered at all in

overall service marketing).

MOS is a straightforward indicator for expressing the opinion of a majority of users, but as discussed, this is hardly

enough if we want to maintain service reputation and hold on to the current customer base. Therefore we introduce a

new indicator along with MOS - Percentage of Dissatisfied Users (PDU ) against MOS. It indicates the percentage of

users who would give an opinion score less than certain threshold given a certain MOS score, i.e.

PDU =
#(OS < th)

N
× 100 (1)

where OS denotes the opinion score from an individual observer, th is the user-defined threshold, N is the total

number of observers evaluating the given condition (service quality).

As an example, let us consider that 3 independent and random observers evaluated a sample (video stimulus) and

gave scores 2, 5, and 5 (on a scale from 1 to 5, 5 denotes excellent quality). We can quickly calculate the MOS for

this sample as 4, which is a fairly good score considering the defined scale of evaluation in this case. But we note

that one individual gave a score of 2, which is very poor. Consequently, we can conclude that 33% of users were not

satisfied (i.e. PDU = 33%) with this sample, despite the MOS being high. It is therefore easy to realize the limitation

Assuming these tests are conducted in proper viewing conditions (controlled lighting, well defined viewing distance/angles etc. for the consid-

ered application ) and with a sufficiently large subject panel.
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Table 2 MOS scores provided by 25 observers to a particular video clip.

2 5 4 4 4

4 3 3 2 2

3 2 4 2 4

3 5 3 5 4

4 3 5 2 5

of average based ratings (even with this somewhat limited example) where the MOS would conceal the fact that not

all users were happy with the sample (despite a high MOS). We can also observe such effects on real subjective data

shown in Table 2. It represents the individual subjective opinion scores of 25 observers (this was as part of a subjective

study conducted in our lab) for a processed video. We note that the mean of these individual ratings is 3.48 which is

in the higher range (the scale of rating was from 1 to 5), and may lead to conclude that the video quality would be

generally at least acceptable. Still, we note that PDU = 24% (when mean is considered as th) meaning that almost

one-fourth of the customers/observers were dissatisfied with the video quality. This information should then be used

to devise corrective actions. It can also be seen that the definition of PDU depends on the free parameter th, and

hence it can be set by the service provider. This would depend on what quality level is considered intolerable and the

actions required to avoid customer churn. In this paper, we selected a value of 3, i.e. th = 3 (assuming a scale from

1 to 5), but especially for commercial applications where customers pay a monthly fee or pay per view, this number

could be even higher. Hence, it can be customized.

Before we conclude this section, it is important to mention that the proposed measure PDU may not always be

a function of MOS nor it may be directly related to standard deviation of the individual subjective ratings. So one

cannot assume that a higher MOS will imply lower PDU or a lower MOS always implies a larger PDU . The reason

is that different quality degradations may have different impacts on the consistency of user opinions. We can easily

understand this with our previous example, where scores 2, 5, and 5 lead to a MOS of 4. However, we may have the

same MOS in another situation. For instance if the scores were 4, 4, and 4, the resultant MOS would still be 4 but

PDU = 0 in this case. Also, standard deviation may not be a substitute for PDU for two reasons. First, as already

stated the former may not be interpretable in a stand alone manner. Second, standard deviation can be similar for two

very different MOSs in which case it does not provide any information on possible corrective measures. In contrast,

similar PDU for two different MOSs may indicate a course correction (if PDU is high) irrespective of the MOS.

4 Application in NR Video Quality Estimation

In this section we demonstrate the practical utility of the proposed method in a NR scenario, within the framework

of Digital Terrestrial Television. The proposed method follows similar design philosophy as some of the existing

methods but there are some important differences that add value to our proposal. First, we exploit the framework

of deep learning methods, which to our knowledge has not been exploited towards NR video quality measurement.

Specifically, in the considered application, it is assumed that source video data is not available and quality needs to be

predicted only from coded stream information. Secondly, our method is trained to provide PDU values in addition to

objective quality. This allows the user to better interpret the reliability of the objective prediction especially from the

viewpoint of satisfied/dissatisfied user percentage.

A block diagram of the proposed approach is shown in Figure 1. Note that in the DTT scenario there can be

multiple TV channels broadcasting signals over the air and these signals are pre-processed (source and channel coded)

before transmission. Also the wireless channel (air) is ideally not transparent and hence will introduce errors in the

relayed bitstream. All these will show up as spatio-temporal artifacts in the video that will be rendered to the end user.

In order to model what the end user perceives regarding the quality of the rendered videos, we first extract features

from channel streams and then develop a model based on machine learning, in order to provide objective scores as well

as PDU . However, such system development will first require training data to set the model parameters. Therefore,

we developed a simulated video database in which video quality was rated by human observers. In order to train the

proposed method for a wide range of situations, video clips with different content, encoding settings and simulation

of transmission errors were included in the said database. We also used videos captured from ISDB-T broadcast

transmissions to validate and benchmark the proposed model. Hence, the model can be built from simulated data and

applied in practice by extracting features from the code stream and obtain predicted MOS (i.e. objective quality score)

as well as predicted PDU (i.e. % of dissatisfied users as predicted by the objective model).

We now describe the video database, features employed and the machine learning techniques employed for feature

pooling.
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Fig 1 An overview of the proposed idea in practical video transmission network.

4.1 Datasets

We used a recently published database with video clips and raw subjective scores of subjective video quality within

the context of DTT. The database is extracted from15 and is suitable to train, verify and validate video quality objec-

tive models in multimedia broadband and broadcasting operations, under the ISDB-T standard. Specifically under the

Brazilian version of the standard, known as ISDB-Tb that uses H.264/AVC for video compression, Advanced Audio

Coding (AAC) for audio compression and MPEG-2 Transport Stream (TS) for packaging and multiplexing video,

audio and data signals in the digital broadcasting system. The subjective tests in this database were conducted follow-

ing the recommendation ITU-R BT.500-13 3 using the Absolute Category Rating with Hidden Reference (ACR-HR)

method. Subjective score collection was automated by employing a software based system.18 The database includes

two datasets with video clips that are 9 to 12 seconds in duration.

The first dataset consists of videos distorted by simulation of the video delivery chain. For this dataset, five High

Definition (HD, resolution being 1920×1080) source (reference) sequences were used, namely “Concert”, “Football”,

“Golf”, “Foxbird” and “Voile”. Each source video has undergone an encoding process with different encoding settings

according to the ISDB-Tb standard using H.264/AVC and MPEG 2-TS for packaging. Then, a process of individual

TS packet extraction was performed in order to simulate transmission errors. A total of 20 encoding and packet loss

pattern conditions were generated for each source sequence providing 5 × 20 = 100 HD distorted video sequences.

Since resolution is an important aspect in video quality, the same process was applied to down-sampled source video

sequences, thus providing another 100 SD resolution (720× 576) distorted sequences. Thus, the first dataset has 200

(100 HD and 100 SD) distorted video sequences. The encoding settings that have been imposed on the videos are: for

SD (HD) videos: Profile = Main (High), Level = 3.1 (4.1), GOP length = 33, frame rate = 50fps and bit rate from 0.7

to 4 Mbps (3.5 to 14 Mbps). As for the different packet loss patterns, it was used 0% (no losses), 0.3% of losses with

uniform distribution and 0.1% or 10% of packet losses within zero, one, two or three burst errors. For more details on

the creation of this dataset, the interested reader can refer to.15

The second dataset, generated for validation purposes, includes only real recorded video clips from air from two

different DTT Broadcast Channels. In this dataset, different encoding impairments and real packet losses patterns can

be found in both HD and SD resolution (thus, there are 200 sequences, 100 HD and 100 SD). Each of the 200 video

versions were evaluated by a human panel consisting of at least 18 viewers (27 for any HD video and 18 for any SD

video) in a controlled environment. The MOS scale was used for these evaluations. All results were recorded in the

database of15 that is used here as well.

In this paper, both datasets were used, i.e. a total of 400 video sequences distorted by encoding impairments and

transmission errors. Also note that the content types (i.e. source sequences) in both datasets were different.

these were taken from http://www.cdvl.org and IRCCyN IVC 1080i Video Quality Database19
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4.2 Feature set

In DTT the video signal is typically coded in H264/AVC or MPEG-2 and packetized in small packets of 188 bytes

(TS packets) prior to being modulated and transmitted. In MPEG-2 compression the compressed video frames are

grouped into Group of Pictures (GoP). Each GoP usually uses three types of frames, named: I-intra , P-predictive,

and B-bidirectional. I frames are encoded with Intra-frame compression techniques while P and B frames use motion

estimation and compensation techniques. I frames are used as reference frames for the prediction of P and B frames.

The GoP size is given by the number of frames existing between two I frames. In the case of H264/AVC each frame

can be split into multiple slices: I, P or B. Both compression techniques can be packaged in Transport Stream (TS)

packets. Each TS packet contains 4 bytes of header and 184 of payload. The header contains, among other fields, a

4-bit long Continuity Counter that can be used to count the amount of packet losses in the received bit stream.

Our approach to select the features was based on previous no-reference methods such as the one described in.20

For our method, the selected features are the following:

• Bit rate: The obtained video bit rate due to the encoding process (H.264/AVC) and the MPEG-2 TS packaging.

• Percentage of I-frames lost: The I-frames carry the most reliable and important information, compared to P and B

frames. Also I frames help decode non I frames, therefore their partial or total loss due to transmission errors is a

key quality degrading factor.

• Percentage of I,P,B frames lost: In addition to the most crucial I frames, we also use this metric to account for P

and B frames directly hit by transmission errors (without any further distinctions though).

• SAD (Sum of Absolute Differences): The SAD of Residual Blocks is a spatio-temporal metric that for instance

addresses the degree of complexity of a sequence of images to be compressed.

• Number of bursts: Transmission errors normally affect groups of frames. The amount of bursts was selected in

order to quantify the number of sequential frames directly hit by transmission errors in a video transmission (e.g.

first a IIBPP frames are directly hit by transmission errors and then a PBPIPIBBB), we employ the number of bursts

as a factor for objective quality prediction.

These features are used as input to the ML algorithm, as depicted in Figure 1. Otherwise put, they constitute the

key QoE influence factors that we have identified, which will be used to build the ML-based QoE prediction model.

Once a QoE model is built and put into practice, these features will be extracted from data streams and used as input

for the QoE prediction. Of course, additional or different features can be used and hence the described method is

scalable in terms of feature selection.

4.3 Feature pooling

We employed a number of feature pooling methods. These include both linear and non-linear models namely Lin-

ear Regression (LR), Decision Tree based Regression (DTR), Artificial Neural Networks (ANNs), and Deep Belief

Networks (DBN).

4.3.1 Random Neural Networks (RNN)

The first model under scrutiny is Random Neural Network (RNN), which combines classical ANNs with queuing

networks. Similar to ANN, RNN is composed of different layers of interconnected processing elements (i.e. neu-

rons/nodes) that cooperate to resolve a specific problem by instantaneously exchanging signals between each other

and from/to the environment. RNN is well adapted for QoS/QoE learning13 since it takes short training time as com-

pared to ANN, is less sensitive to selection of hidden nodes as compared to ANN and can capture QoS/QoE mapping

functions in a more robust and accurate way. The success of the use of RNN for learning is suggested in a number of

works.13, 21–26
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Fig 2 General architecture of DBN.

4.3.2 Deep Belief Networks (DBN)

The second model studied in this paper is inspired from Deep Learning (DL),14 which makes small steps towards the

mimicking of the human brain.27 Technically, DL can be seen as the natural evolution of ANN.28 Besides that, DL

methods achieve very good results outperforming state-of-the-art algorithms, including classical ANN models (e.g.

Multi Layer Perceptron), in different real-world problems such as multi-class classification,29 collaborative filtering,30

transfer learning,31 people detection,32 information retrieval,33 activity recognition34 and so on. Hence, our goal was

to investigate to what extent DL can be applied to the problem of NR video quality prediction. While some prior work

of applying DL for image quality evaluation exists,35–38 a study of its effectiveness for NR video quality estimation

especially in a multi-output scenario, as considered in this paper, has not been reported in literature.

Specifically, in this paper, we employed Deep Belief Networks (DBN) which are stochastic neural networks with

more hidden layers and high generalization capabilities. They are composed by many, much simpler, two-layers

stochastic neural networks, namely Restricted Boltzmann Machines (RBMs)39 which are stacked one above the other

in a deep architecture as depicted in Figure 2. More precisely, a DBN consists of an input layer with real values (i.e.

x), a number of n hidden binary layers (i.e h1,...,hn), and an output layer (i.e. y) with real-values. The neurons from

different layers are connected by weights (i.e. W1, ..., Wn, Wo). Formally, a DBN models the joint distribution

between the input layer x and the n hidden layers, as it is shown next:

P (x,h1, ...,hn) =
(

P (x|h1)

n−2
∏

k=1

P (hk|hk+1)
)

P (hn−1,hn) (2)

, where P (hk|hk+1) is a conditional distribution of the input units conditioned on the hidden units of the RBMk+1,

∀1 ≤ k < n− 1, given by:

P (hk|hk+1) =
∏

j

P (hk
j |hk+1) (3)

P (hk
j = 1|hk+1) =

1

1 + e−
∑

l W
k+1
jl

h
k+1
l

(4)

, and P (hn−1,hn) is the joint distribution of the two layers composing RBMn, computed as:

P (hn−1,hn) =
1

Z(Wn)
e
∑

j,l W
n
jlh

n−1
j

hn
l (5)
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, with Z(Wn) being the partition function of RBMn. For RBM1, P (x|h1) can be computed in a similar manner

with P (hk|hk+1).
The learning of DBNs parameters (e.g. Wk) is made in two phases, as described in.40 The first one is the

unsupervised training phase. Herein, the weights W1, ..., Wn are considered to be bidirectional and the model is

trained in an unsupervised way to learn to reconstruct probabilistically the inputs as well as possible, by using just

the input data. As it is shown in Figure 2, in this phase just the neurons from the input and the hidden layers are

involved. After this training phase, the hidden layers may perform automatically features extraction on inputs (i.e. the

neurons which compose the hidden layers turn on or off when some specific values in a subset of the input neurons set

occur). The second phase is the supervised training and the neurons from all the layers are involved in it. Herein, the

model learns to perform classification or regression. More exactly, the previous learned DBN model is transformed

in a directed neural network from bottom to top. The weights W1, ..., Wn are initialized with the previous learned

values, while Wo are randomly initialized. After that, the DBN model is trained to fit pairs of input and output

data points, as best as possible, by using a standard neural network training algorithm, such as back-propagation.41

However, the above represents just a high level description of the DBNs formalism with the scope of providing to the

non-specialist reader an intuition about the mechanisms behind DBNs. The overview of the deep learning complete

mathematical details do not constitute one of the goals of this paper and the interested reader is referred to14 for a

thorough discussion.

5 Experimental Results and Analysis

This section presents experimental evaluation, and related analysis of the results obtained.

5.1 Test method setup

To assess the performance of our proposed method, we have considered two scenarios. First, we performed content-

independent within dataset cross validation using the first video dataset (recall there are two datasets used in this

study as discussed in the previous section). Since there are 5 different types of content, we performed a 5 fold cross-

validation, where each fold represents one video type. In total, we repeated the experiments five times, each time

choosing a different video to test the models, and the other four to train them. In the second scenario, we employed

cross dataset validation: one dataset was used as training set and the other one as testing set. Hence we ensured that in

both scenarios, train and test sets were content independent. In both scenarios, for all the machine learning algorithms

analyzed, the inputs consist of features described in Section 4.2.

A distinct advantage that DBN offers over other competing methods is that they can be effectively initialized with

unlabeled data in the unsupervised learning phase, and the second phase involves labeled data. As a result, they would

require much less labeled training data to achieve similar or better prediction performance. Clearly, this is desirable

in the context of video quality estimation where the availability of labeled data (i.e. subjective video quality ratings)

is limited for obvious reasons. Thus, we have used two DBN models which employed less labeled training data (i.e.

pairs inputs-outputs) in the supervised learning phase, while in the unsupervised learning phase they were trained with

all the data but without the need of the corresponding label. Besides that, we have analyzed DBN and RNN models

with one output (i.e. the model is specialized to predict just MOS or just PDU ) or with two outputs (i.e. the model

is capable to predict both, MOS and PDU ). More specifically, in all sets of experiments performed, we have used the

following DBN and RNN models: DBN1
100 (it used 100% of the labeled training data and it had 1 output), DBN2

100 (it

used 100% of the labeled training data and it had 2 outputs), DBN1
40 (it used 40% of the labeled training data chosen

randomly and it had 1 output), DBN2
40 (it used 40% of the labeled training data chosen randomly and it had 2 outputs),

DBN1
10 (it used 10% of the labeled training data chosen randomly and it had 1 output), DBN2

10 (it used 10% of the

labeled training data chosen randomly and it had 2 outputs), RNN1 (it had 1 output), and RNN2 (it had 2 outputs).

For the DBN models, we used 3 hidden layers with 10 hidden neurons on each of them. The learning rate (i.e. the

factor which applies a greater or lesser portion of the weights adjustments computed in a specific epoch to the older

weights computed in the previous epochs) was set to 10−3, momentum (i.e. the factor which allows to the weights

adjustments made in a specific epoch to persist for a number of epochs with the final goal to increase the learning speed)

to 0.5, the weight decay (i.e. the factor which reduces overfitting to the training data, and shrinks the useless weights)

to 0.0002, and the weights were initialized with N (0, 0.01) (i.e. Gaussian distribution). The number of training epochs

in the unsupervised training phase was set to 200, while the number of training epochs in the supervised training phase

using back-propagation was set to 1600. To ensure a smooth training, the data have been normalized to have zero mean

9



Table 3 Performance evaluation with 5-fold cross-validation.
Videos Concert Foot Golf Ntia Voile Average

Metrics
MOS PDU MOS PDU MOS PDU MOS PDU MOS PDU MOS PDU

RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

PSNR 0.30 0.93 n/a n/a 0.42 0.91 n/a n/a 0.53 0.87 n/a n/a 0.47 0.90 n/a n/a 0.47 0.86 n/a n/a 0.44±0.08 0.89±0.03 n/a n/a

LR 0.60 0.76 0.26 0.70 0.60 0.77 0.25 0.71 0.55 0.82 0.22 0.80 0.70 0.79 0.24 0.78 0.70 0.71 0.26 0.71 0.63±0.08 0.77±0.04 0.25±0.01 0.71±0.04

DTR 0.61 0.79 0.34 0.57 0.54 0.81 0.27 0.69 0.77 0.71 0.31 0.67 0.68 0.80 0.25 0.78 0.60 0.79 0.34 0.67 0.64±0.08 0.78±0.03 0.30±0.04 0.67±0.07

RNN1 0.4 0.85 0.23 0.79 0.52 0.83 0.23 0.76 0.45 0.86 0.20 0.84 0.57 0.88 0.17 0.86 0.59 0.81 0.21 0.80 0.51±0.08 0.85±0.02 0.21±0.03 0.81±0.04

RNN2 0.54 0.84 0.23 0.78 0.54 0.82 0.23 0.75 0.49 0.87 0.19 0.84 0.61 0.88 0.17 0.86 0.61 0.79 0.21 0.80 0.56±0.06 0.84±0.04 0.21±0.03 0.80±0.05

DBN1
100 0.49 0.83 0.21 0.79 0.52 0.82 0.21 0.78 0.54 0.83 0.21 0.82 0.60 0.84 0.19 0.84 0.66 0.78 0.22 0.77 0.56±0.06 0.82±0.02 0.21±0.01 0.80±0.02

DBN2
100 0.47 0.85 0.20 0.82 0.54 0.82 0.22 0.77 0.50 0.85 0.20 0.83 0.64 0.81 0.21 0.81 0.61 0.80 0.22 0.79 0.55±0.06 0.83±0.02 0.21±0.01 0.80±0.02

DBN1
40 0.44 0.83 0.20 0.81 0.54 0.83 0.22 0.78 0.53 0.83 0.21 0.82 0.58 0.85 0.19 0.84 0.63 0.80 0.22 0.78 0.54±0.06 0.83±0.02 0.21±0.01 0.81±0.02

DBN2
40 0.52 0.82 0.23 0.78 0.52 0.83 0.22 0.78 0.55 0.84 0.21 0.81 0.59 0.84 0.20 0.82 0.57 0.82 0.19 0.81 0.55±0.02 0.83±0.01 0.21±0.01 0.80±0.02

DBN1
10 0.49 0.82 0.23 0.80 0.56 0.83 0.22 0.78 0.59 0.82 0.20 0.83 0.61 0.84 0.22 0.84 0.80 0.79 0.19 0.78 0.61±0.10 0.82±0.02 0.21±0.01 0.81±0.02

DBN2
10 0.46 0.86 0.22 0.82 0.66 0.82 0.24 0.75 0.57 0.81 0.26 0.72 0.68 0.80 0.23 0.80 0.70 0.80 0.26 0.77 0.61±0.08 0.82±0.03 0.24±0.01 0.78±0.03

FixSig n/a n/a 0.20 0.83 n/a n.a 0.28 0.72 n/a n/a 0.28 0.78 n/a n/a 0.22 0.84 n/a n/a 0.39 0.73 n/a n/a 0.27±0.06 0.78±0.05

FitSig n/a n/a 0.19 0.84 n/a n.a 0.27 0.73 n/a n/a 0.28 0.77 n/a n/a 0.22 0.84 n/a n/a 0.38 0.75 n/a n/a 0.26±0.06 0.79±0.04

and one unit variance as discussed in.42 For the RNN models we used the implementation offered by Changlin Liu

and Luca Muscariello. For the LR and DTR implementations we have used the scikit-learn library.43

Besides that, to assess the quality of the PDU predictions using the various machine learning techniques under

scrutiny (which are applied directly on the features extracted from the videos), we tried to estimate also the PDU

values by using two simpler statistical approaches in which we have exploited the sigmoid-like relation between MOS

and PDU . Formally, for each video i from the testing set, we have estimated its PDU value, P̂DUi, from a Gaussian

probability density function, as follows:

P̂DUi = P (1 ≤ x ≤ th) =

∫ th

1

1

σi

√
2π

e
−(x−µi)

2

2σ2
i (6)

, where th represents the selected threshold for PDU, µi represents the MOS for the video i, and σi means the standard

deviation of all individual subjective scores associated with video i. However, due to the fact that in a real video

service it is impossible to obtain µi and σi in real-time, in our experiments we set µi to the MOS value predicted for

the video i by the best performer among the machine learning techniques used. At the same time, we have estimated

σi considering two cases: (1) a fixed value given by the mean value of all standard deviations, computed each of them

on the individual subjective scores associated with each video from the training set (method dubbed further FixSig);

(2) a variable value given by a Gaussian curve fitted on the MOS values of the videos from the training set and their

corresponding standard deviation (method dubbed further FitSig) and the previous discussed µi.

The performance was assessed using Pearson (PCC) and Spearman (SRCC) correlation coefficients, and the root

mean squared error (RMSE) values. Note that we employed the mentioned performance measures for both MOS

and PDU prediction accuracies. To serve as a benchmark, we also computed the results using peak-signal-to-noise

(PSNR), which is still a popular FR method. The results (correlations, RMSE) for PSNR were computed after the non-

linear transformation recommended in.44 The reader will however recall that in the considered application, decoded

video data is assumed to be unavailable, and hence objective methods that require pixel data cannot be employed in

practice.

5.2 Test results

The results for the first scenario i.e. 5-fold cross validation are presented in Table 3, in which we have reported

the RMSE and correlation values for each fold as well as the average over the 5 folds. We can observe that while

all the methods achieve statistically similar performances for MOS prediction accuracies, DBNs perform better in

predicting PDU . To obtain further insights, we have plotted in Figure 3 the outcomes of DBN2
10 on two content types

namely “Concert” and “Voile”. In these plots, the blue dots show the locations of subjective MOS vs the predicted

MOS (obviously they will lie on the 45◦ in case of perfect prediction) while the error bars represent PDU . We have

shown the results only for DBN2
10 due to the fact that it is probably the most interesting model because it uses only

10% labeled training data and hence is practically more robust against the amount of labeled training data available.

Moreover, recall that DBN2
10 outputs both MOS and PDU simultaneously from single training unlike other models

which need to be trained twice on subjective MOS and actual PDU . Hence, it is able to predict both values at the same

time. It can be observed in both plots that the blue dots lie close to the main diagonals (which represent the perfect

predictions for the MOS values). Moreover, predicted PDU is close to the actual PDU , although the accuracy is less

in case of “Voile” sequence at higher subjective MOS.

https://code.google.com/p/qoe-rnn/, Accessed on March 7th, 2015.

Please recall that in this paper th is set to 3.
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Fig 3 Cross-validation results snapshot. The real MOS and PDU values plotted against the predicted MOS and PDU values using DBN2

10
on the

best performers (i.e “Concert” videos) and on the worst performers (i.e. “Voile” videos). Each point represents an impaired video.
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Fig 4 Results for the second dataset (note that the system was trained using only the first dataset). The real MOS and PDU values plotted against

the predicted MOS and PDU values using DBN2

10
. Each point represents an impaired video.

The results for the second test scenario (cross-dataset validation) are presented in Tables 4 and 5. One can again

see that DBNs tend to perform better considering both MOS and PDU predictions. Note that PSNR results cannot

be computed in case of Table 4 because the videos were registered from air and hence the source (reference) video

is unavailable. Hence, these results are relevant for a practical end-to-end video delivery chain where FR methods

cannot be employed. Finally, the MOS-PDU plot for the scenario considered in Table 4 is shown in Figure 4 (for

DBN2
10). This allows the reader to judge the scatter around the diagonal as well as compare the actual and predicted

PDU values.

In both test scenarios, we may observe that DBNs perform better for PDU predictions that any other methods in

terms of the all evaluation metrics. Besides that, it is interesting to note that even the two simpler statistical methods

performs quite well, being able to predict PDUs with a good correlation factors, but having some flaws in the case

of the RMSE metric. Moreover, we would like to highlight that in our experiments FitSig proven to be more robust
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Table 4 Cross dataset validation. The system was trained with sequences from the first dataset (200 sequences, 100 HD and 100 SD), and the test

set consisted of 200 videos taken from air (the second dataset).

Metrics
MOS PDU

RMSE PCC SRCC RMSE PCC SRCC

LR 0.70 0.82 0.81 0.24 0.81 0.82

DTR 0.62 0.83 0.80 0.24 0.80 0.81

RNN2 0.77 0.84 0.85 0.18 0.90 0.84

DBN2
100 0.58 0.87 0.85 0.20 0.87 0.83

DBN2
40 0.61 0.88 0.83 0.19 0.90 0.84

DBN2
10 0.60 0.86 0.82 0.19 0.88 0.83

FixSig n/a n/a n/a 0.27 0.83 0.81

FitSig n/a n/a n/a 0.28 0.84 0.81

Table 5 Cross dataset validation. The system was trained with 200 videos taken from air (second dataset), and the test set consisted of 200 sequences

(100 HD and 100 SD) from the first dataset.

Metrics
MOS PDU

RMSE PCC SRCC RMSE PCC SRCC

LR 0.75 0.75 0.77 0.27 0.72 0.77

DTR 0.77 0.69 0.65 0.31 0.66 0.68

RNN2 1.25 0.78 0.76 0.24 0.77 0.77

DBN2
100 0.60 0.81 0.81 0.23 0.76 0.80

DBN2
40 0.63 0.79 0.78 0.25 0.74 0.77

DBN2
10 0.65 0.80 0.78 0.24 0.76 0.79

FixSig n/a n/a n/a 0.29 0.62 0.71

FitSig n/a n/a n/a 0.29 0.75 0.77

than its counterpart FixSig, especially when the subjective studies came from different datasets, due to its better

representational power given by a better fitted standard deviation σi. For a better insight into the differences between

DBNs and the statistical approaches in Figure 5 we plot the results of DBN2
10 and FitSig in the case of the cross dataset

validation scenario. Herein, it is interesting to see that at small MOS values FitSig performs better than DBN2
10, while

at MOS values usually higher than 2.5, DBNs perform much better. Similarly, we have observed the same behavior

also for the other DBN models on one side and FixSig and FitSig on the other side in both test scenarios, the 5-fold

cross validation and the cross dataset validation. These, corroborated with the fact that FixSig and FitSig still need an

external prediction method to estimate µi, make DBNs the most suitable method to predict PDU .

Fig 5 Comparison of the real PDU with the predictions made by DBN
2

10
and FitSig. Each PDU bar represents the mean values of the PDUs

situated in the light gray or in the white areas, respectively. In the left plot, the system was trained with the 200 sequences (100 HD and 100 SD)

from the first dataset, and the test set consisted of the 200 videos taken from air (second dataset), while in the right plot the training and the testing

sets were reversed.

12



Table 6 Analytic study of the relations between the DBNs weights in different learning phases. The assessment metrics are computed between the

weights of the DBN under scrutiny after the supervised learning phase and their corresponding values obtained after unsupervised learning phase

and before the supervised one.

Training Set Model
W

1
W

2
W

3

RMSE PCC SRCC RMSE PCC SRCC RMSE PCC SRCC

First Dataset

DBN
2

100 0.17 0.98 0.96 0.49 0.93 0.93 0.30 0.97 0.98

DBN
2

40 0.20 0.97 0.95 0.54 0.92 0.91 0.36 0.96 0.97

DBN
2

10 0.22 0.96 0.94 0.56 0.91 0.90 0.38 0.96 0.96

Second Dataset

DBN
2

100 0.11 0.99 0.99 0.23 0.99 0.98 0.26 0.98 0.98

DBN
2

40 0.15 0.99 0.98 0.26 0.98 0.98 0.29 0.98 0.97

DBN
2

10 0.14 0.99 0.98 0.26 0.98 0.97 0.27 0.98 0.98

5.3 Learning of weights in DBN

To understand better how deep learning works, in Figure 6, the behavior of DBN2
10 during the training on the first

video dataset is plotted. It can be observed that in the unsupervised learning phase the model learns to reconstruct

the inputs well after approximately 50 training epochs, and after roughly 100 training epochs it reconstructs them

very precisely, independently of the RBM under scrutiny (RBM1,RBM2,RBM3). More than that, the same plot

suggests a clear correlation between the three performance metrics used over the training epochs to assess the learning

process, such that when the averaged RMSE and P-value tends to get closer to zero, the averaged PCC value tends to

get closer to one, showing overall a perfect correlation between them. Further on, in the supervised learning phase,

DBN2
10 learns with back-propagation to predict the training outputs with a very small error after about 800 training

epochs. We would like to highlight, that all the DBN models discussed in this paper, independently on the scenario,

had a similar behavior as the one described previously for DBN2
10.
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Fig 6 The behavior of DBN2

10
during the training on the first video dataset. The first three plots depict the unsupervised training phase for each

RBM belonging to the DBN2

10
, while the last one presents the supervised training phase in which the DBN2

10
was trained using back-propagation.

The straight lines represent the mean and the shaded areas reflect the standard deviation computed for all the data points.

Furthermore, we have analyzed the most important free parameters (i.e. the weights W1, W2, W3, and Wo) of

the DBN models used in this experiment. The relations between these parameters are exemplified visually in Figure 7,

and presented in Table 6. In both, it can be observed, that practically the weights learned during the unsupervised

training phase do not change too much after the supervised training phase, independently if we study DBN2
100, DBN2

40,

or DBN2
10. This probably explains why in the literature, the latter one is called “fine tuning”. At the same time,

the fact that the weights of the three fine tuned DBNs end up in a region very close to the one discovered by the

initial unsupervised learning procedure reflects also why a DBN which uses just 10% of the labeled data for the back

propagation training has a similar performance with one which uses 100% of the labeled data. Besides that, the sparsity

patterns of the weights reflect which input neurons contribute more to any hidden neurons. As an example, we can

observe that the neuron number 8 from h1 is affected just by neurons 3 (i.e. % of total frames lost) and 5 (i.e. # of

bursts) from x, or in other words the DBNs models automatically find a correlation between % of total frames lost

and # of bursts. Similarly, we can deduce that the 10th hidden neuron from h1 represents a relation between all the 5

input features used. It is worth highlighting, that using similar cascade deductions, one might discover why the neuron

number 9 from h3 has such a strong impact on both neurons (i.e. MOS and PDU) from the output layer y.
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Fig 7 The values of the weights in the DBNs models when the training was done on the first data set. The values on the x-axis and y-axis represent

the index of neurons from that specific layer. The neurons from the input layer x represent the following features: real bit rates (i.e. 1st neuron), %

of I-frames lost (i.e. 2nd neuron), % of total frames lost (i.e. 3rd neuron), SAD (i.e. 4th neuron), # of bursts (i.e. 5th neuron). The first column

reflects the weights of the DBN2

unsupervised
obtained after the unsupervised training phase, while the last three columns represent the weights of

the DBNs obtained after the supervised training phase. Moreover, on rows, the bottom one represents the DBNs inputs, while the top one represents

the DBNs outputs. The dark red in the heat maps represents weights values closer to -11, while the white depicts weights values around 0 and the

dark blue shows weights values towards 6.

6 Discussion

One of the main aims of this paper has been to demonstrate how objective quality prediction can be augmented by

considering variability of subjective data. Particularly, we have shown how machine learning can add value to objective

video quality estimation by considering a two-output DBN model. Hence, we train the model not only to predict MOS

but also to put subjective variability into observation. Consequently, we are able to deepen our understanding of the

service in question from two perspectives: overall service quality and the satisfaction of the customer base. Utilizing

percentage below threshold instead of standard deviation or other typical mathematical scattering indicators unveils

the answer to the question “how many users are not happy with the service” instead of “are users on average happy

with the service”. These two perspectives have a profound difference when it comes to quality management, as quality

does not translate directly into business success: slightly bad quality does not mean slightly decreased market share.

In some cases it can be the differentiating factor between success and failure. Meeting the needs of all customers and

detecting and dealing with customer dissatisfaction are key components in service quality management, especially

when we consider things of high abstraction level such as quality of experience.

During the course of the study we learned that there is a rough sigmoid-like correlation between MOS and un-

certainty of MOS for this dataset. This observation cannot be generalized for all datasets and selected features, but it
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is nonetheless notable that when MOS drops around the selected threshold of satisfaction, the number of dissatisfied

users increases the fastest. Different features may pose different kind of relations depending on how opinions of sub-

jects vary due to particular feature. This phenomenon becomes more apparent if participants of subjective assessment

are selected from different regions, age groups, cultures and backgrounds. This was noted for example in45 where

authors studied website aesthetics and discovered a major difference between Asian and non-Asian users in percep-

tion of website visual appeal. We propose that this may also apply to certain quality aspects where some user groups

perceive some quality degradation as much worse than other users.

User dissatisfaction information can be utilized in many ways in practice. Traditional management mechanisms

such as traffic shaping, admission control or handovers can be further enhanced to also include a “risk threshold”

for user dissatisfaction in addition to MOS threshold. For instance, let us assume a QoE managed service where

a provider is able to automatically monitor the service per-user level. The provider uses a machine-learning model

which outputs two values, objective MOS and probability that the user is not satisfied. The management mechanism

can step in to improve the user experience if either the estimated MOS drops below a certain threshold, or if the

estimated dissatisfaction level rises above a certain value (for example, MOS is required to remain above 3 and risk

that the user opinion is below 3 must be less than 5%).

But what may be even more useful for the service provider is the overall MOS and dissatisfaction percentage

throughout the service. This also helps providers to reflect how the service is doing competition-wise and if they

can expect user churn in the near future. Holistic, real-time monitoring may also help to indicate serious faults and

problems either with the service or the transfer network and help to act accordingly. Operators can therefore react to

user dissatisfaction before customers either terminate their service subscription or burden customer service.

7 Concluding Thoughts

While the problem of objective video quality assessment has received considerable research attention, most existing

works tend to focus only on averaged ratings. As a result, valuable information generated as a result of inter-observer

differences (i.e. subjective variability) is simply lost in objective quality prediction. This paper attempted to introduce

and analyze one such instance of how the scattering of subjective opinions can be exploited for business-oriented

video broadcasting applications. This was accomplished by first analyzing and formulating interpretable measure of

user dissatisfaction which may not always be reflected in averaged scores. To put the idea into practice, we then

explored the deep learning framework and jointly modeled the averaged scores and user dissatisfaction levels so

that the predicted objective video quality score is supplemented by user satisfaction information. At the same time

we showed that by using deep belief networks the amount of subjective studies required to learn to make accurate

predictions, which outperform clearly the other machine learning models considered for comparison in this paper (i.e.

linear regression, regression trees, and random neural networks), may be reduced up to 90%. This will be useful

in a typical video broadcasting system where customer (user) churn needs to be continuously monitored. We also

demonstrated a practical implementation of our ideas in the context of video transmission. We designed the system so

that video quality and user dissatisfaction can be predicted from data bit stream with out the need of the fully decoded

signal. This greatly facilitates real time video quality monitoring since objective quality can be predicted from the

code stream.
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