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NO SEMISTABILITY AT INFINITY FOR CALABI-YAU METRICS

ASYMPTOTIC TO CONES

SONG SUN AND JUNSHENG ZHANG

Abstract. We discover a “no semistability at infinity” phenomenon for complete Calabi-Yau metrics

asymptotic to cones, which is proved by eliminating the possible appearance of an intermediate K-

semistable cone in the 2-step degeneration theory developed by Donaldson and the first author. It is

in sharp contrast to the setting of local singularities of Kähler-Einstein metrics. A byproduct of the

proof is a polynomial convergence rate to the asymptotic cone for such manifolds, which bridges the

gap between the general theory of Colding-Minicozzi and the classification results of Conlon-Hein.

1. Introduction

Throughout this paper we denote by (X, p, g, J, ω,Ω) a pointed complete Calabi-Yau manifold of
complex dimension n. This means that p ∈ X , (g, J, ω) is a complete Kähler metric, Ω is a holomorphic
volume form and the following complex Monge-Ampère equation is satisfied

ωn = (
√
−1)n

2

Ω ∧ Ω.

We will always impose the following two conditions

• Euclidean volume growth: there exists a κ > 0 such that Vol(Bg(p,R)) > κR2n for all R > 0.

• Quadratic curvature decay: there exists a C > 0 such that |Rmg(q)| 6 Cdg(p, q)−2 for all
q 6= p.

We also denote by (C, O, gC , JC , ωC ,ΩC) a Calabi-Yau cone. This means that O is a distinguished point
called the vertex, C \ {O} is a smooth manifold diffeomorphic to R>0 × L for some compact manifold
L, (gC , JC , ωC ,ΩC) is a Calabi-Yau metric on C \ {O} and gC = dr2 + r2gL is a Riemannian cone. A
Calabi-Yau cone is naturally a normal affine algebraic cone.

It is known by [15, 24] that any X as above is asymptotic to a unique Calabi-Yau cone C at
infinity. Moreover, X is naturally a quasi-projective variety and there is an algebro-geometric 2-step
degeneration from X to C, via a possible intermediate K-semistable cone W . The main result of this
paper is

Theorem 1.1 (No semistability at infinity). W is isomorphic to C as normal affine algebraic cones.

This comes out of our expectation, since the 2-step degeneration theory of [15] works symmetrically
with respect to asymptotic cones at infinity and local tangent cones at a singularity and it is known that
W can not always be eliminated in the local setting. Theorem 1.1 reveals a sharp contrast between the
two cases. Our proof makes a novel use of the Tian-Yau construction of complete Calabi-Yau metrics
and the Bishop-Gromov volume monotonicity in Riemannian geometry. As a byproduct, we also show
that X is polynomially asymptotic to C at infinity:

Theorem 1.2 (Polynomial rate to the asymptotic cone). There exists a diffeomorphism Ψ from the
open subset {r > 1} ⊂ C to the complement of a compact set in X such that for some δ > 0 and for
all k > 0,

∣∣∇k
gC

(Ψ∗g − gC)
∣∣
gC

+
∣∣∇k

gC
(Ψ∗J − JC)

∣∣
gC

+
∣∣∇k

gC
(Ψ∗Ω − ΩC)

∣∣
gC

= O(r−δ−k), r → ∞. (1.1)

Theorem 1.2 bridges the gap between two previous results. On the one hand, on the level of
Riemannian metrics the result of Colding-Minicozzi [6], which uses the  Lojasiewicz-Simon theory,
implies that X is asymptotic to a unique cone at a logarithmic rate. On the other hand, Conlon-Hein
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[11] classified complete Calabi-Yau manifolds asymptotic to a Calabi-Yau cone, however under the
stronger extra assumption of polynomial rate (as given exactly by (1.1)).
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2. Outline of the proof

2.1. 2-step degeneration theory. Fix λ ≡ 1/
√

2. Denote by (Xj , Jj , gj,Ωj , pj) the rescaling of X

by a factor λj . This means that we take Jj = J, pj = p, gj = λ2jg,Ωj = λnjΩ. It follows from the
Bishop-Gromov volume monotonicity that after passing to a subsequence (Xj , pj) converges in the
pointed Gromov-Hausdorff sense to a Calabi-Yau cone. We summarize below the theory developed in
[15] and [24]. In [15] a more general singular setting is considered but under a technical assumption that
X is a rescaled Gromov-Hausdorff limit of polarized Kähler-Einstein manifolds. This assumption was
later removed in [24] for complete Calabi-Yau manifolds with Euclidean volume growth and quadratic
curvature decay, so the results of [15] apply in our setting.

One conclusion of [15, 24] is that the asymptotic cone is unique as a Calabi-Yau cone, i.e., it does
not depend on the choice of subsequences involved in the definition. This may also follow from the
more general result of Colding-Minicozzi [6] (which does not concern the complex structure), but the
complex geometric proof in [15, 24] more importantly gives an algebro-geometric description of the
asymptotic cone. This is crucial for us so below we review some relevant statements.

Let (C, gC, JC , ωC ,ΩC , O) be the unique asymptotic Calabi-Yau cone of X . Since C is a Kähler cone,
there is a Reeb vector field ξ = JC(r∂r), which is holomorphic and Killing. It generates a holomorphic
isometric action of a compact torus T on C. The Kähler form has a simple expression given by

ωC =

√
−1

2
∂JC

∂̄JC
r2. Furthermore, C is naturally a normal affine variety. The coordinate ring R(C)

can be intrinsically characterized as the space of holomorphic functions on C\{O} that have polynomial
growth at infinity. More explicitly, there is a holomorphic embedding Φ∞ : (C, O) → (CN , 0) such that

the Reeb vector field ξ extends to a linear vector field on CN of the form Re(
√
−1
∑

j

djzj∂zj ), where

dj ∈ R>0 for all j. Let Λ : CN → CN be the diagonal linear transformation of CN given by

Λ(z1, · · · , zN ) = (λd1z1, · · · , λdN zN ),

and let Tξ be the one parameter group of linear transformations generated by ξ. Denote by Gξ the
subgroup of GL(N ;C) consisting of elements that commute with Tξ and denote Kξ = Gξ ∩ U(N).
Notice Tξ naturally acts on C.

Denote by Bj the unit ball around pj in Xj , which we can identify with the ball of radius λ−j

around p in X . Denote by B∞ the unit ball around the vertex O in C. Then we know that B∞ is
the Gromov-Hausdorff limit of Bj as j → ∞. Fix a distance function on Bj ⊔ B∞ that realizes the
Gromov-Hausdorff convergence. We have the following

(a). The ring R(X) of holomorphic functions on X with polynomial growth is finitely generated
and Spec(R(X)) defines a normal affine algebraic variety X ′ with isolated singularities. There
is a natural map π : (X, p) → (X ′, p′) which is a crepant resolution of singularities.

(b). For all j > 1, there are holomorphic embeddings Φj : (X ′, p′) → (CN , 0) and Fj ∈ Gξ satisfies
Fj = Λ + τj for linear maps τj → 0, such that
(1). Φj+1 = Fj+1 ◦ Φj .
(2). For any subsequence of {j} tends to infinity, passing to a further subsequence Φj(π(Bj))

converges to h.Φ∞(B∞) in the Hausdorff sense in CN for some h ∈ Kξ. This convergence
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is compatible with the Gromov-Hausdorff convergence in the sense that given any sequence
xj ∈ Bj converging to x∞ ∈ B∞, we have Φj(π(xj)) converges to h.Φ∞(x∞).

(3). We will always identify (X ′, p′) with (Φ1(X ′), 0). Denote Yj ≡ Λj−1.X ′. Then the

weighted asymptotic cone W = lim
j→∞

Yj is a normal affine algebraic variety in CN . In

particular, W is also invariant under the Tξ action. This limit is to be understood in a
strong sense: there exists a generating set {P1, · · · , Pl} of the ideal IX′ of polynomials

on CN vanishing on X ′, such that the leading terms {P̃1, · · · , P̃l} generate the ideal IW .
Here the leading term of a polynomial is defined via the weighted degree associated to Λ.

(4). The coordinate ring R(W ) can be intrinsically described as the graded ring associated to
a filtration on R(X) determined by a degree function associated to the Calabi-Yau metric
g.

(5). C is in the closure of the Gξ orbit of W in a suitable multi-graded Hilbert scheme. In
particular, W has only one isolated singularity.

The motivation in [15] was to relate the metric scaling on X to the algebro-geometric scaling Λ.
The main discovery there is that they are almost but not exactly the same, and one may realize the
asymptotic cone C as a 2-step degeneration from X ′ through the intermediate cone W . From the
technical aspect the central issue is that as j → ∞, even though Fj converges to Λ the accumulated

error in the composition Fj ◦ Fj−1 ◦ · · · ◦ F2 may still diverge away from Λj−1. Notice W does not
inherit any canonical metric from X or C. In [15] a parallel result is also proved for tangent cones at
local singularities of Kähler-Einstein metrics. However there are important distinctions between the
two settings.

One such distinction was already pointed out in [15], which shows that the local setting is more
rigid and the asymptotic setting is more flexible. In the case of local tangent cones, it is conjectured
in [15] that there is a local notion of (K-)stability which characterizes both (W, ξ) and C as invariants
of the underlying algebraic singularity (by analogy with the Harder-Narasimhan-Seshadri filtration for
sheaves, one should think of W as a semistable object and C as a polystable object). Later Li [19]
related this picture to a generalized volume minimization in Sasaki geometry and reformulated this
conjecture using more algebro-geometric terminologies. There has been active research on this topic.
The uniqueness part of the conjecture in [15] was confirmed by Li-Wang-Xu [20]. By way of contrast
as suggested at the end of [15], for asymptotic cones of complete Calabi-Yau metrics one should not
expect either W or C is a canonical object associated to the underlying algebraic variety X . Explicit
examples have been constructed on Cn if we allow W and C to have singular cross sections (see [18,
23, 28, 12]).

The main result of this paper shows that the asymptotic setting is however more rigid from a
different perspective. In the case of tangent cones at singularities of Kähler-Einstein metrics, it is
known that both of the 2 steps are necessary in order to degenerate the singularity to the metric
tangent cone C. In the case of asymptotic cones at infinity we will show that W is always isomorphic
to C, in other words, one can degenerate the variety to C in one step. Theorem 1.1 can be reformulated
as

Theorem 1.1 (No semistability at infinity). W is isomorphic to C as affine varieties with Tξ action.

2.2. Outline of the proof. Now we explain the key ideas in the proof of Theorem 1.1. Theorem 1.2
will be a consequence. Our strategy is to construct a Calabi-Yau metric ωW on W \ {0} so that

(1) the asymptotic cone of ωW at infinity is given by C;
(2) the metric completion of ωW is homeomorphic to W and is a pointed Gromov-Hausdorff limit

of complete Calabi-Yau metrics. Furthermore the argument in [15] can be extended to study
the singular point 0 ∈W .

Now the Bishop-Gromov inequality appling on W yields that the volume ratio

ν(R) =
Vol(B(0, R))

R2n
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is a non-increasing function in R. On a Calabi-Yau cone C we denote by κ(C) = Vol(B(O, 1)) the
volume density of C. Now as R → ∞, ν(R) converges to κ(C), while as R → 0 it converges to the
volume density of the metric tangent cone at 0. By [15] and the generalized volume minimization in
[21] we know the latter is not bigger than κ(C). So ν(R) is constant in R, which implies that (W,ωW )
must be a metric cone hence is isometric to C. With more work one can show that W and C are
Tξ-equivariantly isomorphic.

The existence of ωW is therefore the crux of the matter. To achieve this we will make use of
the Tian-Yau construction [30] which produces complete Calabi-Yau metrics out of lower dimensional
compact Kähler-Einstein metrics. In [30] one starts with a Fano manifold X and a smooth divisor D
which is Q-linearly equivalent to K−1

X , then assuming that D admits a Kähler-Einstein metric with
positive Ricci curvature, one can find a complete Calabi-Yau metric on X \D. The rough idea is to
first use the Calabi ansatz to write down a background complete Kähler metric which is approximately
Ricci-flat and then solve the complex Monge-Ampère equation on the noncompact manifold X \ D.
The work of [30] has been extended widely to produce more examples of Calabi-Yau metrics.

In the proof of Theorem 1.1 we will apply the Tian-Yau construction in a non-traditional manner.
That is, we will use the unknown Calabi-Yau metric ω on X as a model at infinity to construct a
Calabi-Yau metric ωW on W . This is achieved by constructing a diffeomorphism between the ends
of X and W , then grafting ω to a Kähler form on W that is slowly asymptotic to the cone C, but
satisfies the complex Monge-Ampère equation with polynomially decaying error. Most of the work
in this paper is devoted to making this strategy rigorous. There is an extra difficulty caused by the
fact that W has an isolated singularity. To get around the issue, we notice that W is the limit of Yj
in CN , and Yj admits a crepant resolution Ŷj (which is isomorphic to X). We will first construct a

family of Calabi-Yau metrics ω̂j,ǫ on Ŷj with uniform estimates, where ǫ roughly measures the size of
the exceptional set, and then take a double limit by first letting ǫ → 0 and then letting j → ∞. The
first limiting step follows similarly the line of argument in [8] which constructs certain asymptotically
conical (in the sense of [10]) Calabi-Yau metrics with singularities, under more restrictive assumptions.
In the course of the proof we will bring in more robust techniques, such as the Hörmander L2 estimate,
which is of independent interest.

In the rest of this paper we will present a detailed proof of the main results. In Section 3 we construct
a family of background Kähler metrics on Ŷj which are asymptotic to the cone C and are approximate
solutions to the complex Monge-Ampère equation at infinity. In Section 4 we solve the complex Monge-
Ampère equation with respect to these background metrics and derive uniform estimates. In Section
5 we complete the proof of Theorem 1.1 and 1.2.

We make a convention on the notations throughout this paper: K will denote a compact set in
some space; C will denote a positive constant; C♯ will denote a constant that depends only on ♯; in
particular when j does not appear in the subscript it means that the constant is uniform in j. The
precise meaning of these objects may vary between lines.

3. Construction of background metrics

3.1. Weak conical approximation at infinity. We denote by r = d(O, ·) the radial function on
the asymptotic Calabi-Yau cone C, by QR the subset {r > R} and by Aa,b the annulus {a 6 r 6 b}.
The following lemma is standard so we only give a sketch of proof.

Lemma 3.1. There exist an R0 > 0, a compact set K ⊂ X and a diffeomorphism Φ : QR0 → X \K
such that for all l > 0, lim

s→∞
sup
∂Qs

sl
(∣∣∇l

gC
(Φ∗g − gC)

∣∣
gC

+
∣∣∇l

gC
(Φ∗J − JC)

∣∣
gC

)
= 0.

Proof. Since C is the unique asymptotic cone of X , for i large we may find a diffeomorphism Φi from
A4i,8·4i onto B(p, 8 · 4i(1 + ǫi)) \B(p, 4i(1 + ǫi)) such that

4il sup
A4i,8·4i

(∣∣∇l
gC

(Φ∗
i g − gC)

∣∣
gC

+
∣∣∇l

gC
(Φ∗

i J − JC)
∣∣
gC

)
6 ǫi,l,
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where ǫi → 0 and for each l fixed, ǫi,l → 0 as i → ∞. Moreover, the rescaled maps Φi ◦ 4i realize the
Gromov-Hausdorff convergence to the cone C. It suffices to glue together Φi’s to get the desired Φ.
This can done in a straightforward way. By a contradiction argument one can prove that for i ≥ i0,
in the intersection Im(Φi) ∩ Im(Φi+1), the composition 4−i−1 ◦ Φ−1

i+1 ◦ Φi ◦ 4i+1 is ǫi (for ǫi → 0) close
to a holomorphic isometric embedding Ψi of the annulus A1,2 into itself with Ψ∗

i r = r. It follows that
Ψi preserves the Reeb vector field on C, hence it extends to a global holomorphic isometry of C which
fixes the vertex. Then we replace Φi+1 by Φi+1 ◦ Ψi ◦ · · · ◦ Ψi0 and perform an obvious interpolation
between Φi and Φi+1. �

Notice that at this point we know the metric Φ∗g is asymptotic to gC at infinity, but without any
quantitative rate of decay. Nevertheless, the difference of the Levi-Civita connections does decay at
the order o(r−1). The general result of Colding-Minicozzi [6] yields a logarithmic decay rate of the
Riemannian metric but we will not need it in this paper. Using the diffeomorphism constructed above,
we may naturally view r as a function on the end of X which satisfies

C−1dg(p, ·) 6 r(·) 6 Cdg(p, ·).

Given a constant R̃ > R0 + 1, we can further replace r by the regularized maximum m̃ax{r, R̃} (see
[13, Chapter 1, Lemma 5.18]), so it can be viewed as a smooth function on X . Moreover, by Lemma

3.1, we can fix an R̃ large so that r2 is a smooth plurisubharmonic exhaustion function on X which is
strictly plurisubharmonic outside a compact set. Then we know that for any sufficiently large number
R, the sublevel set

XR := {r < R} (3.1)

is 1-convex. By the Grauert-Riemenschneider vanishing theorem [16] and triviality of the canonical
bundle KX , we get

H1(XR,O) = H1(XR,KXR
) = 0. (3.2)

This will be used in the proof of Theorem 3.9.

3.2. Weighted elliptic estimates. Here we collect some facts on weighted elliptic theory for ends of
Riemannian manifolds asymptotic to cones. These are not sharp results but suffice for our applications
in this paper.

For any k ∈ Z>0, α ∈ (0, 1), δ ∈ R, R > 0, we define the Banach space Ck,α
δ (QR) using the following

weighted norm on a function f defined on QR ⊂ C:

‖f‖
C

k,α

δ
(QR) ≡ sup

s>R

{ k∑

m=0

s−δ+m‖∇m
gC
f‖C0

gC
(As,2s) + s−δ+k+α[f ]

C
k,α
gC

(As,2s)

}
,

where

[f ]Ck,α(As,2s) ≡ sup
y1,y2∈As,2s,dgC

(y1,y2)<injgC (y1)

{ |∇k
gC
f(y1) −∇k

gC
f(y2)|

dgC (y1, y2)α

}
.

Fix k > 2n+1 and α ∈ (0, 1). The following can be proved in exactly the same way as [27, Proposition
6.7], so we omit the proof here.

Lemma 3.2. There exists a finite set Γ ⊂ (0, 1) such that for all δ ∈ (0, 1) \ Γ and for all R > 1,

one can find a bounded linear map SR : Ck,α
−δ (QR) → Ck+2,α

−δ+2 (QR) with ∆gC ◦ SR = Id and with the
operator norm ‖SR‖ 6 C for some C depending only on C, δ, k, α (but not on R).

Given any R1 > 1 and suppose there is another Riemannian metric g on QR1 such that for all l > 0
and s > R1,

sl sup
∂Qs

|∇l
gC

(g − gC)| 6 el(s) (3.3)

for some function el defined on [R1,∞) with lim
s→∞

el(s) = 0.
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Proposition 3.3. Given δ ∈ (0, 1) \ Γ, there exist R2 > R1 and C > 0 depending only on C, R1,

k, δ, α and the functions e1, · · · , ek+2, and a bounded linear map T : Ck,α
−δ (QR2) → Ck+2,α

−δ+2 (QR2) such
that ∆g ◦ T = Id and ‖T ‖ 6 C.

Proof. One can write ∆g = ∆gC + (g − gC) ∗ ∇2
gC

+ ∇gCg ∗ ∇gC . Then on QR, R > R1, we have

‖∆g − ∆gC‖ 6 C sup
s>R, 06l6k+2

el(s).

The right hand side is small when R ≫ 1. Then the conclusion follows from standard functional
analysis. �

The following is an application of the standard elliptic regularity by a straightforward rescaling
argument. We omit the proof.

Proposition 3.4. Let g be a Riemannian metric on QR1 satisfying (3.3). Suppose u is a func-

tion defined on QR1 such that for some s, s′ ∈ R and for all l > 0,
∣∣∇l

g(∆gu)
∣∣
g
6 Clr

−l−2+s, and
ˆ

QR1

u2r−2s′−2ndVolg 6 Ĉ. Then for any l > 0 and γ > max(s, s′), there exist constants Aγl > 0

depending only on γ, C, R1, C0, C1, · · · , Cl, Ĉ and the functions e1, · · · , el, such that
∣∣∇l

gu
∣∣
g
6 Aγlr

γ−l on QR1 .

3.3. Rough algebraic approximation of the Calabi-Yau metric. We continue to use the no-
tations in Section 2. Recall that X ′ is the affine variety defined by the ring R(X) of holomorphic
functions on X with polynomial growth and we identify it with its image in CN under the holomorphic
embedding Φ1. We also have the crepant resolution map π : X → X ′ ⊂ CN . In the following outside a
compact K of X containing the exceptional set of π, we also identify X with X ′. In particular, X \K
is holomoprhically embedded in CN .

Since the coordinate functions on CN have positive weight with respect to ξ, we can find a Kähler
cone metric ωξ on CN with Reeb vector field ξ. Fix a choice of such ωξ. Then we have Λ∗ωξ = λ2ωξ.

Denote by rξ = dωξ
(0, ·) the radial function on CN defined by ωξ. Notice we are not assuming ωξ

is Calabi-Yau. The following result shows that we may view the restriction of ωξ to X as a rough
approximation of the unknown Calabi-Yau metric ω.

Proposition 3.5. There exists a compact set K ⊂ X such that for all δ > 0 and k > 1, on X \K we
have

C−1
δ r−δω 6 ωξ 6 Cδr

δω, (3.4)
∣∣∇k

ωωξ

∣∣
ω
6 Cδ,kr

δ−k, (3.5)

C−1
δ r1−δ 6 rξ 6 Cδr

1+δ. (3.6)

Proof. Since we identify X ′ with Φ1(X ′) and outside a compact set identify X with X ′ using π, we
have Φj = Fj ◦ · · ·F2 : X → CN . By Item (b) in Section 2 we know that for all j > 1 and k > 0, the
following holds on Bj+1 \Bj :

C−1λ2jr 6 Φ∗
jrξ 6 Cλ2jr, C−1λ2jω 6 Φ∗

jωξ 6 Cλ2jω, |∇k
ω(λ−2jΦ∗

jωξ)|ω 6 Ckλ
kj . (3.7)

By construction we have F−1
j = Λ−1 ◦ σj for a linear map σj ∈ Gξ with ‖σj − Id ‖ → 0, where ‖ · ‖ is

a fixed norm on the space of N ×N matrices. Since σj commutes with Λ we may write

F−1
2 ◦ · · · ◦ F−1

j = Λ1−jσ2 ◦ · · · ◦ σj .

For any σ ∈ Gξ we have Lrξ∂rξ
σ∗ωξ = 2σ∗ωξ. It follows that σ∗ωξ is homogeneous of degree 2 on CN .

So one can find a small neighborhood U of Id such that for all σ ∈ U and all k > 0, the following holds
on CN :

|∇k
ωξ

(σ∗ωξ − ωξ)|ωξ
6 Ckr

−k
ξ ‖σ − Id ‖. (3.8)
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In particular we can also assume

|∇k
ωξ

(∇σ∗ωξ
−∇ωξ

)|ωξ
6 Ckr

−k−1
ξ ‖σ − Id ‖, (3.9)

where as usual we view the difference of the two connections as a tensor.
Since ‖σj − Id ‖ → 0, for j ≫ 1 we have σj ∈ U . We notice the elementary fact that for all δ > 0,

j∏

l=2

(
1 + C‖σl − Id ‖

)
6 Cδλ

−jδ.

From this, iterating (3.8) and using (3.7) yield (3.4). (3.6) follows from a similar argument.
We now prove the case k = 1 in (3.5). The case k > 1 can be proved similarly by induction. Notice

for any σ ∈ U and 2-form γ, we have

∇ωξ
σ∗γ = ∇σ∗ωξ

σ∗γ + (∇ωξ
−∇σ∗ωξ

)σ∗γ

= σ∗(∇ωξ
γ) + (∇ωξ

−∇σ∗ωξ
)σ∗γ.

Therefore,

|∇ωξ
(σ∗

j · · ·σ∗
2ωξ)|ωξ

= |
j∑

l=2

σ∗
j · · ·σ∗

l+1(∇ωξ
−∇σ∗

l
ωξ

)σ∗
l−1 · · ·σ∗

2ωξ|ωξ
.

Using (3.8) and (3.9) we obtain that on the annulus {λ 6 rξ 6 λ−1} ⊂ CN for all δ > 0,

|∇ωξ
(F−1

2 ◦ · · · ◦ F−1
j )∗ωξ|ωξ

6 Cλ−2j

j∏

l=2

(1 + C‖σl − Id ‖) 6 Cδλ
−(2+δ)j . (3.10)

By definition ωξ = Φ∗
j

(
(F−1

2 ◦ · · · ◦ F−1
j )∗ωξ

)
, so we have

|∇ωωξ|ω = |Φ∗
j (∇ωξ

(F−1
2 ◦ · · · ◦ F−1

j )∗ωξ)|ω + |(∇ω −∇Φ∗

j
ωξ

)Φ∗
j (F−1

2 ◦ · · · ◦ F−1
j )∗ωξ|ω.

The first term of the right hand side can be handled using (3.10) and (3.7), and the second term can
be dealt with using (3.7) and (3.4). Together we get (3.5) when k = 1. �

Although not needed in this paper, we remark that the above ωξ is not unique and we can find one
with explicit algebraic formula. We emphasize that from the proof we can not get rid of the δ in the
estimates. In particular, we can not claim the uniform equivalence between ω and ωξ. Nonetheless we
do know the error is smaller than any polynomial order which suffices for our applications. Moreover,
the differences between the covariant derivatives do decay at infinity. Namely,

Corollary 3.6. There exists a compact set K ⊂ X such that on X \ K, for all δ > 0 and k > 0 we
have

|∇k
ω(∇ω −∇ωξ

)|ω 6 Cδ,kr
δ−k−1. (3.11)

Proof. Two Riemannian metrics g1 and g2 on a manifold determine a section T of End(TM) via

g2(·, ·) = g1(T ·, ·),

which is positive and self-adjoint with respect to both g1 and g2. Using Koszul formula, one can check
directly that

∇g2 −∇g1 = T−1 ∗ ∇g1T

where we view both sides as (1,2)-tensors and ∗ denotes some algebraic operations. Therefore to

estimate |∇k
g1

(∇g2−∇g1)|g1 it suffices to estimate T−1 and ∇k
g1
T . Then (3.11) follows from Proposition

3.5. �
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3.4. Plurisubharmonic weight functions. We construct here some plurisubharmonic functions
that will be used later. As mentioned in Section 2 we always identify (X ′, p′) with (Φ1(X ′), 0) in CN .
Then we can naturally restrict functions and forms defined on CN to X ′ and then pull-back to X via
the crepant resolution map π. When there is no confusion we will omit the various pull-back notations.

Lemma 3.7. (1). Let (K, ωK) be a Kähler cone and let ρ denote the distance function from the vertex

of the cone. Then the function ϕ = log(ρ2 + 1) − 1

100
(log(ρ2 + 3))

1
2 is a strictly plurisubharmonic

function and there exists a compact set K ⊂ K such that on K \K,
√
−1∂∂̄ϕ > Cρ−2(log ρ)−

3
2ωK.

(2). The function on X defined by ϕ = log(r2ξ + 1)− 1

100
(log(r2ξ + 3))

1
2 satisfies

√
−1∂∂̄ϕ > 0 away

from the exceptional set of π. Moreover outside a compact set K it satisfies that for all ǫ > 0,

(1 − ǫ) log(r2 + 1) − Cǫ 6 ϕ 6 (1 + ǫ) log(r2 + 1) + Cǫ,√
−1∂∂̄ϕ > C−1

ǫ r−2−ǫω,

|∇ωϕ|ω 6 Cǫr
−1+ǫ.

Proof. (1) follows from a straightforward computation: the first term is strictly plurisubharmonic but is
decaying at the rate ρ−4 along the radial direction; the second term is used to strengthen the positivity
along the radial direction. Applying (1) to the Kähler cone (CN , ωξ) and then using Proposition 3.5,
we obtain (2). �

3.5. Decomposition of the Kähler form. We will use the following version of Hörmander’s L2

estimate, which follows from for example [13, Chapter VIII, Theorem 6.1].

Theorem 3.8. Let M be an n-dimensional complex manifold admitting a complete Kähler metric and
ωM be a Kähler metric on M which is not necessarily complete. Suppose ϕM is a smooth function
with

√
−1∂∂̄ϕM > ΥωM for a continuous non-negative function Υ. Let q be a positive integer. Then

we have

(1). for any (n, q) form η on M with ∂̄η = 0 and

ˆ

M

Υ−1|η|2ωM
e−ϕMωn

M < ∞, there exists an

(n, q − 1) form ζ satisfying ∂̄ζ = η and with estimate
ˆ

M

|ζ|2ωM
e−ϕMωn

M 6

ˆ

M

q−1Υ−1|η|2ωM
e−ϕMωn

M ;

(2). if the Ricci curvature of ωM is non-negative, then the conclusion in (1) holds for (0, q) forms.

The main result of this subsection is

Theorem 3.9. For every ǫ > 0, there exist a Kähler form β and a real-valued smooth function ψ on
X such that

(1). ω = β +
√
−1∂∂̄ψ,

(2). |∇k
ωβ|ω = O(r−2+ǫ−k) for all k > 0,

(3). |∇k
ωψ|ω = O(r2+ǫ−k) for all k > 0.

Proof. Let ϕ be the plurisubharmonic function on X obtained in Lemma 3.7-(2). Fix ǫ > 0.

Step 1. Using the diffeomorphism Φ constructed in Lemma 3.1, for R large we can identify X \XR

with QR and we may assume XR is 1-convex and contains the exceptional set of π. Then one can
write ω = β̃ + dη̃ with |∇k

ω β̃|ω = O(r−2−k) for all k > 0 and η̃ = 0 on XR.

Step 2. We decompose β̃ according to types: β̃ = β̃2,0 + β̃1,1 + β̃0,2. Since dβ̃ = 0, we have
∂̄β̃0,2 = 0. Notice by Step 1, we know that for all τ > 0,

ˆ

X

|β̃0,2|2ωe−(n−2+τ)ϕωn <∞.
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Notice also that β̃0,2 = 0 on XR, so we may apply Theorem 3.8 (with ϕM = (n−1+τ)ϕ) to obtain that

for every τ > 0, there exists a (0,1)-form ζ on X satisfying ∂̄ζ = β̃0,2 and

ˆ

X

|ζ|2ωe−(n−1+τ)ϕωn <∞.

It follows from Proposition 3.4 that |∇k
ωζ|ω = O(r−1+2τ−k) for all k > 0. Choose τ =

ǫ

4
. Then we

obtain ω = β2 + dη2, where

β2 = β̃1,1 − ∂ζ − ∂̄ζ, η2 = ζ + ζ + η̃,

and |∇k
ωβ2|ω = O(r−2+ ǫ

2−k) for all k > 0. Notice β2 and dη2 are both real-valued (1, 1) forms.

Step 3. Let χ be a smooth compactly supported function on X which equals 1 in a neighborhood
of XR. Then η2 = χη2 + η′2, where η′2 vanishes in a neighborhood of XR. Writing dη′2 = dr ∧ α1 + α2,

where ∂ryα1 = ∂ryα2 = 0, we define λ =

ˆ r

R

α1dr. Then λ vanishes in a neighborhood of XR so

extends to a 1-form on X . Moreover, one can check that dη′2 = dλ. The decay of β2 implies |dη2|ω 6 C
on X , so we have |λ| = O(r1+δ) for all δ > 0. It follows that dη2 = dγ, where γ = χη2 + λ, with

|γ| = O(r1+δ) for all δ > 0.

Step 4. Since dγ = ω−β2 is of type (1, 1), we have ∂̄γ0,1 = 0. Since H1(XR,O) = 0 by (3.2), there
exists a smooth function f on XR such that ∂̄f = γ0,1 on XR. Choose a cut off function χ0 which
equals 1 in a neighborhood of the exceptional set of π and 0 outside XR−ǫ′ for some small positive

number ǫ′. We now apply Theorem 3.8 (with ϕM = (n + 2 +
ǫ

2
)ϕ) to obtain a function u satisfying

∂̄u = γ0,1 − ∂̄(χ0f) and
ˆ

X

|u|2e−(n+2+ ǫ
2 )ϕωn <∞.

Then dγ =
√
−1∂∂̄ψ1, where ψ1 =

√
−1(u + χ0f − ū − χ̄0f̄). Again by Proposition 3.4 we see

|∇k
ωψ1|ω = O(r2+ǫ−k) for all k > 0.

Step 5. We have achieved that ω = β2 +
√
−1∂∂̄ψ1 with estimates on both β2 and ψ1. It remains

to modify β2 to be a Kähler form. By the asymptotics for the complex structure and the Riemannian
metric obtained in Lemma 3.1, we know that there exists a large constant R > R such that on the
region {r > R} we have

√
−1∂∂̄rǫ > cr−2+ǫω for some positive number c > 0. Choose a smooth

non-decreasing convex function u : R → R such that u(t) = 1 for t 6 2R
ǫ

and u(t) = t for t ≫ 1
and let h = u ◦ rǫ. Then h can be naturally viewed as a smooth plurisubharmonic function on X and
outside a compact set K ′ we have √

−1∂∂̄h > cr−2+ǫω

for some positive number c > 0. Choose a smooth compactly supported function χ on X which equals
1 on a neighborhood of K ′. Then we define

β = β2 +
√
−1∂∂̄(χψ1 +Ah),

ψ = (1 − χ)ψ1 −Ah,

where A is a constant. One can choose A large so that β is Kähler. Then ω = β+
√
−1∂∂̄ψ. It follows

from the above construction that we have the desired estimates. �

3.6. Construction of background Kähler forms. Recall some notations in Section 2: X ′ ⊂ CN

is the affine variety defined by the ring R(X) of holomorphic functions on X with polynomial growth,
W is the weighted asymptotic cone of X ′ with respect to Λ and Yj = Λj−1.X ′. So in particular away

from 0 we know that Yj converges to W as smooth submanifolds in CN . For notational convenience
we also denote Y∞ ≡W . We denote by Sing(Yj) the singular set of Yj , which consists of finitely many
points, and denote Y ◦

j = Yj \ Sing(Yj). We also define S ≡ ∪16j6∞Sing(Yj).
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Proposition 3.10. There exist a constant δ0 > 0, a compact set K ⊂ CN which contains S, and for
each j ∈ Z>1 ∪ {∞} a diffeomorphism pj : X ′ \K → Yj \K such that for all k > 0

|∇k
ωξ

(pj − Id)|ωξ
6 Ckr

−δ0−k
ξ ,

where we view both pj and Id as maps into CN , and
∣∣∣∇k

ωξ

(
p∗j (JYj

) − JX′

)∣∣∣
ωξ

6 Ckr
−δ0−k
ξ .

Remark 3.11. Here the definite rate δ0 arises from the algebraicity of W . It is of crucial importance
in our argument as it beats all the (arbitrarily small polynomial order) error when we compare X to
the asymptotic cone C using the 2-step degeneration theory (Proposition 3.5).

Proof. By definition we can find finitely many holomorphic polynomials F1, · · · , Fm on CN which
generate the ideal of X ′, such that G1, · · · , Gm generate the ideal of W . Here Gα is the leading term
of Fα with respect to the Λ action. Then we know that for all l ∈ N we have

Fα(Λ−l.z) = λ−lcα(Gα(z) + λlδαEαl(z))

for some constants δα, cα > 0 and some polynomials Eαl whose coefficients are uniformly bounded
independent of l. Denote Fα,l = (Λ−l)∗Fα, then Fα,1 · · · , Fα,l generate the ideal of Yl. Let δ0 = min

α
δα.

We define p∞ to be the normal projection map from X ′ to W , i.e., for x ∈ X ′, we let p∞(x) to
the unique point in W that is closest to X ′ with respect to the metric ωξ. We need to show this is
well-defined outside a compact set in X and satisfies the desired properties. For l > 1 we denote by Al

the annulus in CN defined by λ−l+1 6 rξ 6 λ−l−1. Then Λl maps X ′ ∩ Al to Yl ∩ A1. By the conical
nature of ωξ, it suffices to consider the normal projection from Yl ∩ A1 to W for l ≫ 1.

Claim. there is a covering of W ∩A1 by finitely many open sets of the form Uγ ∩W where Uγ ⊂ CN

such that for l large there are holomorphic functions hγ,l : Uγ∩W → CN with |∇k
ωξ

(hγ,l−Id)| 6 Ckλ
lδ0

for all k > 0 and Yl ∩ A1 ⊂ ∪γIm(hγ,l).

To prove the Claim, we fix a point w ∈ W ∩ A1. Then we can find a neighborhood U ⊂ CN ,
such that W ∩ U is given by the zero set of N − n number of Gα’s (in the scheme-theoretic sense).
For simplicity of notation we may assume these are G1, · · ·GN−n. Shrinking U if necessary we may
find local holomorphic coordinates {ζ1, · · · , ζN} such that ζα = Gα for α = 1, · · ·N − n. Now we
have Fα,l = λ−lcα(Gα(z) + λlδαEαl(z)). It follows that for l large the common zero set of Fα,l(α =
1, · · · , N − n) is a smooth complex submanifold in U , so in particular it agrees with Yl ∩U . Using the
local coordinates {ζ1, · · · , ζN} it is easy to see that Yl ∩ U is contained in the image of a holomorphic
function hl : U → CN such that |∇k

ωξ
(hl − Id)|ωξ

6 Ckλ
lδ0 for all k > 0. Since A1 is compact the

Claim follows.

Since the normal injectivity radius of W ∩A1 is uniformly bounded, there is a tubular neighborhood
N of W ∩A1 such that the normal projection map Π : N →W is smooth. It follows from the Claim

that for l large, Yl ∩ A1 ⊂ N . So p∞ is well-defined and smooth outside a compact set in X ′. It is
straightforward to check that it satisfies the desired derivative bounds. The estimates on the complex
structures follow from the fact that hγ,l is holomorphic.

Now for each j < ∞ we can perform the above arguments uniformly (noticing that the closeness
between Yj and W gets improved as j gets larger) to construct the corresponding projection maps

qj : Yj \K →W with uniform estimates. Then we let pj = q−1
j ◦ p∞.

�

Now we fix ǫ0 ≪ δ0 and apply Theorem 3.9 with ǫ = ǫ0 to get a decomposition on X

ω = β +
√
−1∂∂̄ψ. (3.12)

Let ψ′
j = ψ ◦ p−1

j and rj = r ◦ p−1
j . Denote γj ≡

√
−1∂∂̄ψ′

j . By Lemma 3.1, Proposition 3.5, Corollary
3.6 and Proposition 3.10, we have
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Corollary 3.12. There exists a compact set K ⊂ CN such that for all j ∈ Z>1 ∪ {∞}, γj is a Kähler
form on Yj \K. Moreover,

(1). for all k > 0 and δ > 0,

C−1
δ r1−δ

j 6 rξ 6 Cδr
1+δ
j and |∇k

γj
(γj − ωξ)|γj

6 Cδ,kr
δ−k
j ,

(2). for all k > 0 and δ < δ0 − ǫ0,

|∇k
ω(p∗jγj − ω)|ω 6 Cδ,kr

−δ−k
j . (3.13)

Next we extend γj to a global Kähler form on Y ◦
j in a uniformly controlled way. In the following,

we denote by ω0 =

√
−1

2
∂∂̄r20 the Kähler form corresponding to the standard Euclidean metric on CN ,

where r0 is the radius function for the Euclidean metric.

Lemma 3.13. There exist compact sets K0 ⊂ K1 ⊂ CN containing a neighborhood of S, a constant
A0 and Kähler forms ωj =

√
−1∂∂̄ψj on Y ◦

j , such that for all j ∈ Z>1 ∪ {∞},
(1). ωj = A0ω0 on K0 ∩ Y ◦

j ,

(2). ψj = ψ′
j on Yj \K1.

Proof. By Proposition 3.5 and Proposition 3.10, we know that there exist constants c, T1 > 0 such that√
−1∂∂̄ψ′

j > cr
− 1

2

ξ ωξ on {rξ > T1/2}∩Yj. Using a cut-off function on CN we may extend ψ′
j smoothly

to Y ◦
j , so that it vanishes when rξ 6 T1/2, equals ψ◦p−1

j when rξ > T1 and satisfies
√
−1∂∂̄ψ′

j > −A
2
ω0

on {rξ 6 T1} ∩ Yj for some constant A > 0 independent of j.

Choose a smooth increasing and convex function u : R → R such that u(t) = T 2
1 /3 for t 6 T 2

1 /2 and

u(t) = t for t > T 2
1 . Define the function r21 = u ◦ r2ξ on CN . Then

√
−1∂∂̄r21 is globally non-negative

and equals ωξ on {rξ > T1}. Choose a cutoff function ρ : R → R which equals 1 when t 6 2T 2
1 and

equals 0 when t > 4T 2
1 . Then it is straightforward to check that there exists a small positive constant

ǫ such that φ = ǫ(ρ◦ r2ξ) · r20 + r21 satisfies that
√
−1∂∂̄φ is a Kähler form on CN . By construction there

exists a constant T > 1 such that {rξ 6 2T1} ⊆ {φ 6 T }.
It is easy to find a smooth function χ : [0,∞) → R such that the following hold

• χ(t) = A0t if t 6 T , where A0 is a constant bigger than Aǫ−1;
• χ(t) = 0 for t≫ 1;

• for all t > 0 we have χ′′
> − c

8
t−

3
2 and χ′

> − c

8
t−

1
2 .

Then ψj = χ ◦ φ+ ψ′
j satisfies the desired properties. �

Recall that we have the crepant resolution map π : X → X ′, thus for j ∈ Z>1 the composition map

Λj ◦ π is a crepant resolution of Yj . We denote the latter by πj : Ŷj = X → Yj . For all j ∈ Z>1 and

ǫ ∈ (0, λ4j) (we emphasize here that the domain of ǫ depends on j), we have the following family of

Kähler forms on Ŷj

ω̃j,ǫ ≡ ǫβ + π∗
jωj = ǫβ +

√
−1∂∂̄π∗

jψj ,

where β is given in (3.12). Notice that β and ω̃j,ǫ can also be naturally viewed as forms on Y ◦
j

via (π−1
j )∗. The following lemma (together with Corollary 3.12-(2)) shows that they are uniformly

asymptotic to the cone C.

Lemma 3.14. There exists a compact set K ⊂ CN such that for all j ∈ Z>1 and k > 0 on Yj \K we
have

λ4j
∣∣∣∇k

ωj
(π−1

j )∗β
∣∣∣
ωj

6 Ckr
− 1

2−k

j .

Proof. Outside a compact set, we identify X with X ′ and therefore we may just view πj as Λj . Let
us first prove the case k = 0. By Corollary 3.12 and the fact Λ∗ωξ = λ2ωξ, we know that for any



12 SONG SUN AND JUNSHENG ZHANG

ǫ1, ǫ2 > 0, there exists constants Cǫ1 and Cǫ2 such that
∣∣(Λ−j)∗β

∣∣
ωj

6 Cǫ1

∣∣(Λ−j)∗β
∣∣
ωξ
rǫ1ξ 6 Cǫ1(Λ−j)∗(|β|(Λj)∗ωξ

)rǫ1ξ

6 Cǫ1λ
−2j(Λ−j)∗(|β|ωξ

)rǫ1ξ 6 Cǫ1Cǫ2λ
−2j(Λ−j)∗(|β|ω rǫ2ξ )rǫ1ξ

6 Cǫ1Cǫ2λ
−2j−ǫ2j(Λ−j)∗(r−1)rǫ1+ǫ2

ξ ,

(3.14)

where for the last inequality we used the estimate of β with respect to the metric ω obtained in
Theorem 3.9. By choosing ǫ1 and ǫ2 small enough, one can directly show that there exists a positive
constant C0 such that

λ4j
∣∣(Λ−j)∗β

∣∣
ωj

6 C0r
− 1

2

j .

This proves the case k = 0. Note that suppose we have two Riemannian metrics g1 and g2 then for
any tensor η and another fixed background metric g0, we have

∣∣∇k
g1
η
∣∣
g0

6Ck

∑

k1+k2=k
ki>0

|∇g1 −∇g2 |k1

g0

∣∣∇k2
g2
η
∣∣
g0

+ Ck

∑

k1+k2+k3=k−1
ki>0,k1>1

∣∣∇k1
g2

(∇g1 −∇g2)
∣∣
g0
|∇g1 −∇g2 |k2

g0

∣∣∇k3
g2
η
∣∣
g0
,

(3.15)

where we view ∇g1 −∇g2 as a tensor and make a convention that ∇0
g2
η = η. Then the proof for k > 1

follows from the same argument as we did in (3.14) by using (3.15) together with Corollary 3.6 and
Theorem 3.9. �

Recall that Ω is the given holomorphic volume form on X . Since Ω is holomorphic and satisfies the

equation ωn = (
√
−1)n

2

Ω∧Ω, we obtain ∇ωΩ = 0. We can view Ω naturally as a holomorphic volume
form on X ′ = Y1 (notice the canonical bundle of each Yj is trivial).

Lemma 3.15. For any j ∈ Z>1, there exists a nowhere vanishing holomorphic volume form Ωj on Yj
satisfying:

(1). there exist a constant δ1 > 0 and a compact set K ⊂ CN such that on Yj \K, for all k > 0 the

function hj = log

(
Ωj ∧ Ωj

(p−1
j )∗(Ω ∧ Ω)

)
satisfies

|∇k
ωj
hj | 6 Ckr

−δ1−k
j .

(2). for every compact set K1 ⊂ CN we have

sup
j∈Z>1

ˆ

K1∩Yj

(
√
−1)n

2

Ωj ∧ Ωj <∞.

Remark 3.16. It follows from the proof that for j ∈ Z>1, Ωj coincides with (Λ−j)∗Ω up to a nonzero
multiplicative constant depending on j. For our purpose we need the precise asymptotics of Ωj and the
stated properties of hj essentially determine this constant. Moreover from the proof, we also obtain

∣∣∣∇k
ωj

((p−1
j )∗Ω − Ωj)

∣∣∣
ωj

≤ Ckr
−δ1−k
j on Yj \K, for all k > 0. (3.16)

Note that (1) and (2) in the proposition are invariant if we multiply Ωj by a complex number with
norm 1 and the estimate (3.16) can be used to eliminate this freedom.

Proof. Let ϕ = log(r2ξ + 1) − 1

100
(log(r2ξ + 3))

1
2 and denote ϕj = ϕ|Yj

. Then by Lemma 3.7-(1) and

Corollary 3.12, we know that outside a compact set K for every ǫ > 0, there is a positive constant cǫ
such that

√
−1∂∂̄ϕj > cǫr

−2−ǫ
j ωj . Let pj be given in Proposition 3.10. For all δ ∈ (0, δ0 − ǫ0) we have

∣∣∣
(
(p−1

j )∗Ω
)n,0∣∣∣

ωj

− 1 = O(r−δ
j ), (3.17)
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and for all k > 1,
∣∣∣∇k

ωj

(
(p−1

j )∗Ω
)n,0∣∣∣

ωj

6 Cδ,kr
−δ−k
j since ∇ωΩ = 0.

Fix T large so that K ⊂ {rξ 6 T }, and fix a cut off function χ on CN which equals 0 when
rξ 6 T , equals 1 when rξ > 2T . Recall that we use Y ◦

j = Yj \ Sing(Yj) to denote the smooth locus
of Yj . Since Yj is affine and Sing(Yj) consists of finitely many points, we know Y ◦

j admits a complete
Kähler metric. Then for any τ > 0 small, we can apply Theorem 3.8 on M = Y ◦

j , with ωM = ωj and

ϕM = (n− 1 + τ)ϕj , to obtain an (n, 0) form vj satisfying ∂̄vj = ∂̄
(
χ · ((p−1

j )∗Ω)n,0
)
, such that

ˆ

Y ◦

j

e−(n−1+τ)ϕj(
√
−1)n

2

vj ∧ vj 6 C.

By Proposition 3.4, when rξ > 2T , we have |∇k
ωj
vj | 6 Ckr

−δ1−k
j for some constant δ1 > 0 and all

k > 0.
Now let Ωj = χ((p−1

j )∗Ω)n,0 − vj . It is holomorphic on Y ◦
j and is non-zero by (3.17) and the decay

of vj . Notice that the function
(Λj)∗Ωj

Ω
is a holomorphic function on X which is O(rǫ) for all ǫ > 0,

so must be a nonzero constant. In particular, Ωj is a nowhere vanishing holomorphic volume form on
Yj . The desired estimates follow from straightforward computation. �

In the following proposition, we omit the notation (π−1
j )∗ and view ω̃j,ǫ as a Kähler form on Y ◦

j ⊂
CN . We also view rj (which is a priori only defined on the end of Yj using r◦p−1

j ) as a positive smooth

function on Yj which is a constant on K0 ∩ Yj where K0 ⊂ CN is a fixed compact set independent of
j, containing S = ∪16j6∞Sing(Yj).

Proposition 3.17. There exist a δ2 > 0, a compact set K ⊂ CN containing a neighborhood of S and
for all j ∈ Z>1 and ǫ ∈ (0, λ4j) a smooth function uj,ǫ on Y ◦

j satisfying

(1). for all k ≥ 0,
∣∣∣∇k

ω̃j,ǫ
uj,ǫ

∣∣∣
ω̃j,ǫ

6 Ckr
−δ2+2−k
j on Yj \K,

(2). let e−fj,ǫ =

(
ω̃j,ǫ +

√
−1∂∂̄uj,ǫ

)n

(
√
−1)n2Ωj ∧ Ωj

, then on Yj \K for all k ≥ 0,
∣∣∣∇k

ω̃j,ǫ
fj,ǫ

∣∣∣
ω̃j,ǫ

6 Ckr
−δ2−2−k
j ,

(3). uj,ǫ is supported on Yj \K,

(4). ωj +
√
−1∂∂̄uj,ǫ >

1

2
ωj and for all k > 0,

∣∣∣∇k
ωj
uj,ǫ

∣∣∣
ωj

≤ Ck(rj + 1)−δ2+2−k on Y ◦
j .

Proof. We first identify the end of X ′ differentiably with QR0 via Lemma 3.1. Then using the maps
pj constructed in Proposition 3.10 we may identify the end of all Yj with QR1 for some R1 > R0. In
particular we may view the metrics g̃j,ǫ (associated to ω̃j,ǫ) on Y ◦

j as a family of Riemannian metrics
on QR1 . By Lemma 3.1, Corollary 3.12 and Lemma 3.14 we know that for all j,

sl sup
∂Qs

|∇l
gC

(g̃j,ǫ − gC)|gC 6 el(s)

for some el(s) with lim
s→∞

el(s) = 0. Then we can apply Proposition 3.3 to solve the Poisson equation

with uniform estimates for the metric g̃j,ǫ on QR2 , where R2 > R1 is given in Proposition 3.3. More
precisely, we solve the equation in a fixed Hölder space for k large and then apply elliptic regularity
as Proposition 3.4 to gain the decay for all derivatives. Next we can argue as in [10, Section 2.4]
to obtain functions uj,ǫ defined only on the end of Yj satisfying item (1) and (2) in the proposition.
Fix a smooth function H(t) : [ 0,∞) → [ 0, 1 ], which equals 0 for t 6 1 and equals 1 for t > 2.
Combining the estimate in (1) with Lemma 3.13 and Lemma 3.14, it is direct to show that we can
choose R3 sufficiently large independent of j and ǫ, such that H(

rj
R3

)uj,ǫ is a global defined function

on Yj satisfying all (1)-(4) in the proposition. �

For all j ∈ Z>1 and ǫ ∈ (0, λ4j), we define Kähler forms on Ŷj

ωj,ǫ ≡ ω̃j,ǫ +
√
−1∂∂̄π∗

juj,ǫ,
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and we denote by gj,ǫ and Jj,ǫ the corresponding Riemannian metric and complex structure. It follows
from Lemma 3.1, Proposition 3.10, Corollary 3.12, Lemma 3.14 and Proposition 3.17 that (gj,ǫ, Jj,ǫ)
are still uniformly asymptotic the cone C. More precisely, we have

Proposition 3.18. There exist a compact set K ⊂ CN and a large positive number R2 such that for
all j ∈ Z>1, the diffeomorphism Pj = pj ◦ Φ : QR2 → Yj \K satisfies that for all l > 0,

lim
s→∞

sup
j>1

sup
∂Qs

sl
(
|∇l

gC
(P ∗

j gj,ǫ − gC)|gC + |∇l
gC

(P ∗
j Jj,ǫ − JC)|gC

)
= 0,

where we omit (π−1
j )∗ again and view gj,ǫ and Jj,ǫ as tensors on Yj.

4. Uniform estimates for the complex Monge-Ampère equation

From now on for j ∈ Z>1 we will abuse notations and identify ωj , Ωj and rj with their pull-backs

under πj : Ŷj → Yj . We now look for Calabi-Yau metrics on Ŷj which are asymptotic to ωj,ǫ. To do

this we need to solve on Ŷj the equation
(
ωj,ǫ +

√
−1∂∂̄ϕj,ǫ

)n
= (

√
−1)n

2

Ωj ∧ Ωj . (4.1)

Let µj denote the volume form (
√
−1)n

2

Ωj ∧ Ωj which is also equal to efj,ǫωn
j,ǫ. It is proved in

Proposition 3.17 that there exist a δ2 > 0 and a compact set K ⊂ CN such that on Ŷj \ π−1
j (K ∩ Yj)

for all k > 0, ∣∣∣∇k
ωj,ǫ

fj,ǫ

∣∣∣
ωj,ǫ

6 Ckr
−δ2−2−k
j . (4.2)

The following theorem can be derived from Tian-Yau [30, Section 4]. See also Hein [17, Section 4].

Theorem 4.1 ([30, 17]). For fixed j and ǫ, (4.1) admits a smooth solution ϕj,ǫ on Ŷj such that

(1) there exists a constant p0 depending only on δ2 such that ‖ϕj,ǫ‖Lp0(µj) < ∞ and ϕj,ǫ(x) → 0
as rj(x) → ∞.

(2)
∥∥∥∇k

ωj,ǫ
ϕj,ǫ

∥∥∥
L∞(ωj,ǫ)

<∞ for all k > 0.

Remark 4.2. The proof of the L∞ bound of ϕj,ǫ is via the Moser iteration, thus indeed we know that

‖ϕj,ǫ‖Lp(µj)
<∞ for all p≫ 1. In the following, we fix a large p0 such that q0 =

n(p0 + 1)

n+ p0
satisfies

(2 + δ2)q0 > 2n. (4.3)

Since the background metrics ωj,ǫ are asymptotic to the cone metric on C, by the method in [30,

Section 5] and using rj
−2δ as a barrier to apply the maximum principle, we can prove the following

decay estimates for ϕj,ǫ. We remark that alternatively, one can also use the method of [10, 8] to solve
the complex Monge-Ampère equation in a suitable weighted space (since we have Lemma 3.2), then
the decay property will be a direct by-product.

Lemma 4.3. There exist a constant δ3 > 0 depending only on δ2, compact sets Kj,ǫ ⊂ CN depending
only on ‖ϕj,ǫ‖L∞ and constants Qk,j,ǫ depending only on k and ‖ϕj,ǫ‖L∞ such that on Yj \Kj,ǫ for all
k > 0, ∣∣∣∇k

ωj,ǫ
ϕj,ǫ

∣∣∣
ωj,ǫ

6 Qk,j,ǫrj
−δ3−k.

Proof. We focus on the C0 decay property since the higher order estimates follow from a standard
rescaling argument and elliptic estimates (see [30, Proposition 5.1]). Fix a positive constant δ <

min

{
δ2
2
,

1

2

}
and then we can prove the lemma holds for δ3 = 2δ.

Claim. there is a large constant R∗ independent of j and ǫ such that for every R > R∗, on the region
{rj > R} we have

(
ωj,ǫ +R

√
−1∂∂̄r−2δ

j

)n
< efj,ǫωn

j,ǫ and
(
ωj,ǫ −R

√
−1∂∂̄r−2δ

j

)n
> efj,ǫωn

j,ǫ.



NO SEMISTABILITY AT INFINITY FOR CALABI-YAU METRICS ASYMPTOTIC TO CONES 15

The decay of ϕj,ǫ follows from this claim by applying the maximal principle to the region {rj > Rj,ǫ}
with Rj,ǫ = max{R∗, ‖ϕj,ǫ‖

1
1−2δ

L∞ }. Let us prove the Claim. We only prove the first inequality since
the second inequality follows from the same argument. By (4.2) and Proposition 3.18, we know that
outside a compact set K0, there exists a constant C0 > 0 such that

1 − C0r
−2−δ2 6 efj,ǫ 6 1 + C0r

−2−δ2 ,
∣∣√−1∂∂̄r−2δ

j

∣∣
ωj,ǫ

6 C0r
−2(δ+1)
j ,

∆ωj,ǫ
r−2δ
j 6 −δr−2(δ+1)

j .

(4.4)

The last inequality here is due to the fact that on the cone C, for the radial function r we have

∆ωC
r−2δ = 4δ(−n+ δ + 1)r−2(δ+1).

Choose R∗ large such that K0 ⊆ {rj 6 R∗} and by the second inequality in (4.4) and the choice of δ
we may also assume that for all R > R∗, on {rj > R} we have

(
ωj,ǫ +R

√
−1∂∂̄r−2δ

j

)n

ωn
j,ǫ

6 1 +R∆ωj,ǫ
r−2δ
j +

δ

2
r
−2(δ+1)
j , (4.5)

and (
−Rδ +

δ

2

)
r
−2(δ+1)
j 6 −2C0r

−2−δ2
j . (4.6)

Then the claim follows from (4.4), (4.5) and (4.6). �

Denote
ω̂j,ǫ = ωj,ǫ +

√
−1∂∂̄ϕj,ǫ.

Below we will derive uniform estimates on ϕj,ǫ. Then we will take a double limit, first as ǫ → 0 and
then as j → ∞, to obtain a Calabi-Yau metric on W \ {0}. The following arguments are essentially
standard, given the large body of literature in this field; see for example the recent work by Collins-
Guo-Tong [8] which deals with the case when the background metric is asymptotically conical in the
stronger sense (with polynomial decay rate). Notice that we do not need uniform estimates for all j
and ǫ ∈ (0, λ4j). Instead we first fix j and derive uniform estimates as ǫ→ 0, which allows us to take
a limit ϕj . Then we will derive uniform estimates for ϕj as j → ∞. Notice we are free to pass to
subsequences when taking limits and we do not need uniqueness of the limits.

Let
Aj,ǫ = sup

q>q0

‖e−fj,ǫ − 1‖Lq(µj), Aj = lim sup
ǫ→0

Aj,ǫ

By (4.2) and (4.3) we know for each j, ǫ, Aj,ǫ < ∞. The following lemma shows that Aj < ∞ and
moreover we have a uniform bound on Aj .

Lemma 4.4. There exists a constant C > 0 such that Aj 6 C for all j.

Proof. Let K be the union of the compact sets obtained in Lemma 3.15-(1) and Proposition 3.17, then
by (4.2), (4.3) and Lemma 3.15, we obtain there exists a constant C independent of j and ǫ such that

Aj,ǫ 6 C
(∥∥e−fj,ǫ

∥∥
L∞(π−1

j (K))
+ 1
)
. (4.7)

By the construction in Lemma 3.13 and Proposition 3.17, ωj +
√
−1∂∂̄uj,ǫ 6 C1ωj 6 C2ω0 on Y ◦

j ∩K,

where ω0 denotes the Kähler form for the Euclidean metric on CN , for some constants C1 and C2

independent of j and ǫ. Therefore by the definition of fj,ǫ we obtain

lim sup
ǫ→0

∥∥e−fj,ǫ
∥∥
L∞(π−1

j (K))
6 Cn

2

∥∥∥∥
ωn
0

(
√
−1)n2Ωj ∧ Ωj

∥∥∥∥
L∞(K∩Y ◦

j )

. (4.8)

By the Gauss-Codazzi equation we know the Ricci curvature of ω0|Yj
is non-positive, it follows that

the function
ωn
0

(
√
−1)n2Ωj ∧ Ωj

is plurisubharmonic on Y ◦
j = Yj \ Sing(Yj). Pulling back to Ŷj it is a
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smooth plurisubharmonic function. By the maximal principle and Lemma 3.15, we conclude that the

supremum of
ωn
0

(
√
−1)n2Ωj ∧ Ωj

on K ∩ Y ◦
j has a uniform upper bound independent of j. Then the

lemma follows from (4.7) and (4.8). �

As observed by [8] (following an earlier idea of Tosatti) it is more convenient to use the Calabi-Yau
metrics ω̂j,ǫ as background metrics when we do Moser iteration. By Lemma 4.3 each ω̂j,ǫ is weakly
asymptotic to the cone C, so by Bishop-Gromov inequality we know the volume of a metric ball of
radius R in (Ŷj , ω̂j,ǫ) is bounded below by κ(C)R2n, where κ(C) is the volume density of C. So we
have a uniform Sobolev inequality, namely, there exists S > 0 independent of j and ǫ such that for all
v ∈ C∞

0 (Ŷj),

‖v‖2
L

2n
n−1 (Ŷj ,ω̂j,ǫ)

6 S
∥∥∇ω̂j,ǫ

v
∥∥2
L2(Ŷj ,ω̂j,ǫ)

.

Lemma 4.5. There exists a continuous function P : (0,∞) → (0,∞) such that for all j ∈ Z>1 and

ǫ ∈ (0, λ4j),

(1). ‖ϕj,ǫ‖L∞ 6 P(Aj,ǫ).

(2). P(Aj,ǫ)
−1ωj 6 ω̂j,ǫ 6 P(Aj,ǫ)

µj

ωn
j

ωj .

Proof. The proof is standard, see for example [8, Section 4]. For completeness, we include some details.

(1). We have ω̂n
j,ǫ − ωn

j,ǫ =
√
−1∂∂̄ϕj,ǫ ∧

n−1∑

k=0

(
ω̂k
j,ǫ ∧ ωn−1−k

j,ǫ

)
. For any exponent p > p0, multiplying

both sides by |ϕj,ǫ|p−1ϕj,ǫ and integrating by parts (the estimates obtained in Theorem 4.1 justify
this), we get

ˆ

X

|ϕj,ǫ|p−1ϕj,ǫ(e
−fj,ǫ − 1)µj =

4p

(p+ 1)2

ˆ

X

√
−1∂|ϕj,ǫ|

p+1
2 ∧ ∂̄|ϕj,ǫ|

p+1
2 ∧

n−1∑

k=0

(
ω̂k
j,ǫ ∧ ωn−1−k

j,ǫ

)
.

In the following C always denote a constant depending only on n and p0. By Sobolev inequality, we
get

(
ˆ

X

|ϕj,ǫ|(p+1) n
n−1µj

)n−1
n

6 CSp

ˆ

X

|ϕj,ǫ|p|e−fj,ǫ − 1|µj .

Applying the Hölder’s inequality to the right hand side, we obtain

‖ϕj,ǫ‖
L

n(p0+1)
n−1 (µj)

6 CS
∥∥e−fj,ǫ − 1

∥∥
Lq0(µj)

,

‖ϕj,ǫ‖p+1

L
n(p+1)
n−1 (µj)

6 CSp
∥∥e−fj,ǫ − 1

∥∥
Lp+1(µj)

‖ϕj,ǫ‖pLp+1(µj)
for all p > p0.

Then a standard Moser iteration argument completes the proof.
(2). Note that the second inequality follows from the first one and the elementary inequality that

trβ(α) 6
αn

βn
(trα(β))

n−1
for any two positive (1, 1)-forms α and β. The first inequality here is a

consequence of Chern-Lu’s inequality. More precisely, by construction the bisectional curvature of
ωj has a uniform upper bound independent of j. Then Chern-Lu’s inequality implies that there is a
constant B independent of j and ǫ such that,

∆ω̂j,ǫ
log(trω̂j,ǫ

ωj) > −B trω̂j,ǫ
ωj.

By the definition of ω̂j,ǫ and the estimates for uj,ǫ in Proposition 3.17, we have

trω̂j,ǫ
(
√
−1∂∂̄ϕj,ǫ) 6 n− 1

2
trω̂j,ǫ

ωj .

Therefore,

∆ω̂j,ǫ

(
log(trω̂j,ǫ

ωj) − 2(B + 1)ϕj,ǫ

)
> trω̂j,ǫ

ωj − 2(B + 1)n.
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Now we apply the maximum principle to the function F = log(trω̂j,ǫ
ωj)−2(B+1)ϕj,ǫ. Since ϕj,ǫ tends

to zero at infinity, F converges to logn at infinity. Notice π∗
jωj is degenerate along the exceptional

set, so F tends to −∞ on π−1
j (Sing(Yj)). If the supremum of F is attained at infinity, then we

automatically have a uniform upper bound for log(trω̂j,ǫ
(ωj)). If the maximum is achieved on Ŷj ,

Then log(trω̂j,ǫ
(ωj)) 6 C, where C depends only on ‖ϕj,ǫ‖L∞ . �

Using this we can also improve Lemma 4.3, namely, we can make the dependence of Kj,ǫ and Qk,j,ǫ

on j and ǫ to be through Aj,ǫ. Since we are free to pass to subsequences when taking limits and we
do not need uniqueness of the limits, we may assume in the following that Aj = lim

ǫ→0
Aj,ǫ for every

j. For fixed j since as ǫ → 0 we have Aj,ǫ → Aj , passing to a subsequence ǫj,l, as l → ∞ we can
make ϕj,ǫj,l converge locally smoothly to a limit ϕj and uj,ǫj,l converge locally smoothly to a limit

uj on Y ◦
j . The metric ω̂j = ωj +

√
−1∂∂̄(uj + ϕj) defines a Calabi-Yau metric on Yj \ Sing(Yj), i.e.

ω̂n
j = (

√
−1)n

2

Ωj ∧ Ωj . Moreover, we have

• On Y ◦
j ,

|ϕj | 6 P(Aj). (4.9)

This implies ω̂j extends as a closed positive (1, 1) current on Yj .
• On Y ◦

j ,

ω̂j > P(Aj)
−1ωj. (4.10)

• There exist compact sets Kj depending only on Aj and continuous functions Qk : (0,∞) →
(0,∞) for all k > 0 such that on Yj \Kj

|∇k
ωj
ϕj | 6 Qk(Aj)r

−δ3−k
j .

• there exists a compact set K ⊂ CN such that uj is a constant on K ∩ Yj and on Y ◦
j

∣∣∣∇k
ωj
uj

∣∣∣
ωj

≤ Ck(rj + 1)−δ2+2−k.

Moreover, a standard argument using the Bishop-Gromov volume comparison (see [8, Lemma 4.14])
implies that for any compact set K ⊂ CN , there is a constant CK > 0 independent of j and ǫ such
that

diam(π−1
j (K ∩ Yj), ω̂j,ǫ) 6 CK .

So the diameter of K ∩ Y ◦
j with respect to ω̂j is also uniformly bounded independent of j.

By construction we know that as j → ∞, ωj converges smoothly to ω∞ =
√
−1∂∂̄ψ∞ on W \ {0},

and ψ∞ is continuous across 0. Using the above estimates and Lemma 4.4 by passing to a subsequence
we may assume that ϕj converges locally smoothly to a smooth function ϕ∞ and uj converges locally

smoothly to a smooth function u∞ and on W \{0}, such that ω̂∞ = ω∞+
√
−1∂∂̄(u∞+ϕ∞) is a Kähler

Ricci flat metric on W \ {0}.Moreover u∞ is a constant near 0, ϕ∞ is globally bounded, ω̂∞ > C−1ω∞

and there exists a compact set K such that on W \K
|∇k

ω∞
u∞| 6 Ckr

−δ2+2−k
∞ , |∇k

ω∞
ϕ∞| 6 Ckr

−δ3−k
∞ , (4.11)

where we recall r∞ = r ◦ p−1
∞ . Notice that since Ωj is parallel with respect to ω̂j, we may assume Ωj

converges to a holomoprhic volume form Ω∞ on W \ {0} such that ω̂n
∞ = (

√
−1)n

2

Ω∞∧Ω∞. Moreover
the metric ω̂∞ has finite diameter on K ∩W , and it is asymptotic to the cone C at infinity.

5. Proof of the main results

We now investigate the singular behavior of ω̂∞ at 0. To this end we need to study the singular
behavior of ω̂j , so we first fix j and consider the family ω̂j,l ≡ ω̂j,ǫj,l as l → ∞. Passing to a further

subsequence we let (Zj , dZj
) be a pointed Gromov-Hausdorff limit of (Ŷj , ω̂j,l, pj) (where pj is a point

on the exceptional set of πj) as l → ∞. As mentioned before, the metrics ω̂j,ǫ are uniformly volume
non-collapsing, so the general convergence theory leads to a decomposition Zj = R ∪ S, where the
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regular set R is a smooth open manifold with dZj
|R induced by a Calabi-Yau metric (ωR, JR), and

the singular set S is closed and has Hausdorff codimension at least 4.

Proposition 5.1. Zj agrees with the metric completion of (Y ◦
j , ω̂j) and is naturally homeomorphic to

Yj.

This would likely follow from the arguments of J. Song [26] (and its generalization in [8]). We outline
a different and more direct proof here, which may be of independent interest. It is not hard to see
that we can naturally view (Y ◦

j , ω̂j) as embedded in (R, ωR) as an open Kähler manifold. Moreover,
since ωj 6 P(Aj)ω̂j,l, by passing to a further subsequence, one can take the limit of the holomorphic

maps πj : (Ŷj , ω̂j,l) → Yj ⊂ CN and obtain a surjective continuous map π∞ : Zj → Yj ⊂ CN , which
is the identity on Y ◦

j and holomorphic on R. It then follows that R \ Y ◦
j is a complex analytic set in

R, given by π−1
∞ (Sing(Yj)) ∩R. By the discussion in Section 4, on Y ◦

j we may write ω̂j =
√
−1∂∂̄ϕ̂j ,

where ϕ̂j is locally bounded across Sing(Yj). A key point is the following

Lemma 5.2. The function ϕ̂j extends smoothly to R. Moreover, for any compact set K ⊂ Zj we have

sup
K∩R

|∇ωR
ϕ̂j |ωR

<∞.

Proof. On Y ◦
j , the form

√
−1∂∂̄ϕ̂j = ω̂j = ωR is smooth. Since R\Y ◦

j is a closed pluripolar set and ϕ̂j

is locally bounded across Sing(Yj), by well-known removable singularity theorem for plurisubharmonic
functions (see [13, Chapter I, Theorem 5.24]), we obtain that the same equation holds on R in the
sense of currents, so elliptic regularity gives a smooth extension of ϕ̂j to R.

To prove the gradient bound we fix an open subset U ⊂ Yj containing Sing(Yj) and with ∂U

smooth. Denote Û = π−1
j (U). Its boundary ∂Û is naturally identified with ∂U . We can solve the

Poisson equation ∆ω̂j,l
ηl = n on Û with boundary condition given by ϕ̂j |∂U . Then by the standard

Moser iteration and Cheng-Yau gradient estimate we have |∇ω̂j,l
ηl| 6 C for all l. So passing to a

subsequence ηl converges uniformly to a limit η on π−1
∞ (U) ⊂ Zj , with |∇ω̂j

η| 6 C, ∆ω̂j
η = n on

π−1
∞ (U) ∩R and η|∂U = ϕ̂j |∂U .

Now consider the function f = ϕ̂j−η on π−1
∞ (U)∩R. It is harmonic and f |∂U = 0. One can conclude

that f is identically zero from the standard removable singularity theorem for harmonic functions on
Ricci limit spaces. For example, using the fact that the Hausdorff codimension of S is at least 4, for
ǫ > 0 small, one can construct (see [14, Proposition 3.5]) a cut-off function χǫ : Zj → R which is equal

to 1 when dZj
(x,S) > ǫ and vanishes in a neighborhood of S, such that

ˆ

Zj

dZj
(·,S)−1|∇ωR

χǫ|ωn
R < ǫ.

By the local Cheng-Yau gradient estimate we have |∇ωR
ϕ̂j | 6 CdZj

(·,S)−1. Then by a straightforward
integration by parts argument one sees that f ≡ 0. �

Given this Lemma, one can follow the strategy of [14, 15] to construct holomorphic functions by
the Hörmander L2 technique (see a related observation in [29] for studying the asymptotic cone of

complete
√
−1∂∂̄-exact Calabi-Yau manifolds with Euclidean volume growth). Here one can work on

the trivial holomorphic line bundle L over Y ◦
j endowed with the hermitian metric | · |ϕ̂j

≡ e−ϕ̂j . Notice
Y ◦
j admits a complete Kähler metric, so one can apply Theorem 3.8 here. Let ∇L be the corresponding

Chern connection on L. For k > 1, denote by Vk the space of holomorphic sections f of Lk over Y ◦
j

with

‖f‖2k ≡
ˆ

Y ◦

j

|f |2kϕ̂j
(kω̂j)

n <∞.

Since Yj is normal it is clear that any holomorphic function f on Y ◦
j extends to a holomorphic function

on Yj . In particular, for any compact set K ⊂ CN , |f | and |df |ωj
are uniformly bounded over Y ◦

j ∩K.
By (4.9), (4.10) and Lemma 5.2, we know that |f |kϕ̂j

and |∇Lf |kϕ̂j
are also uniformly bounded over

Y ◦
j ∩K. Viewed in Zj , it follows that f extends to a holomorphic function on R and the above norms

are locally bounded near S.
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To apply the idea in [14] we need to show that for any compact set K ⊂ Yj , there exist constants
K0,K1 > 0 depending on K such that for all k > 1 and any f ∈ Vk, we have

sup
K

|f |kϕ̂j
6 K0‖f‖k, sup

K

|∇Lf |kϕ̂j
6 K1‖f‖k. (5.1)

These were proved by applying the Moser iteration to the corresponding differential inequalities

∆kω̂j
|f |kϕ̂j

> −C|f |kϕ̂j
, ∆kω̂j

|∇Lf |kϕ̂j
> −C|∇Lf |kϕ̂j

,

which a priori only hold on R, but again using the existence of a good cut-off function as in [14,
Proposition 3.5], and noticing that there is a Sobolev inequality on Zj (since Zj is a volume non-
collapsing Ricci limit space), one can make the usual arguments go through.

Using the existence of tangent cones at points in Zj , it is straightforward to adapt the arguments in
[14, 15] to construct holomorphic functions in Vk that separate points. Namely, given any x1 6= x2 ∈ Zj,
one can find k > 1 and f1, f2 ∈ Vk such that |fα(xα)|kϕ̂j

> 1, and |fα(xβ)|kϕ̂j
6 1/10 for α 6= β.

Proof of Proposition 5.1. We first prove π∞ is injective (hence is a homeomorphism). Suppose x1 6=
x2 ∈ Zj. Then we can construct the functions f1, f2 as above. But both can be viewed as holomorphic
functions on Yj , so it follows that π∞(x1) 6= π∞(x2).

Since Sing(Yj) consists of finitely many points, we see Zj \ Y ◦
j = π−1

∞ (Sing(Yj)) is also a finite set.
Clearly this implies that Zj is indeed the metric completion of (Y ◦

j , ω̂j). �

Now we further let j → ∞. Passing to a subsequence we may take a pointed Gromov-Hausdorff
limit (Zj , dZj

) → (Z∞, d∞). The same argument as above combined with the uniform estimates in
Section 4 gives

Proposition 5.3. Z∞ agrees with the metric completion of (W \ {0}, ω̂∞) and is naturally homeo-
morphic to W .

In particular, we may naturally identify Z∞ with W .

Proof of Theorem 1.1. As is proved in Section 4, Z∞ has a unique asymptotic cone given by C. From
the above discussion it is straightforward to extend the arguments of [15] to show that there is a unique
metric tangent cone C′ at 0. Furthermore, by the minimizing property of K-semistable valuations
proved by Li-Xu [21], we know the volume densities satisfy κ(C′) 6 κ(C), where the right hand side
can be interpreted as the normalized volume associated to the natural valuation of W at 0. Notice Z∞

is a pointed Gromov-Hausdorff limit of complete Ricci-flat manifolds, so the Bishop-Gromov inequality
applies to Z∞, which gives that κ(C′) > κ(C). Hence the equality holds and then Z∞ must be a Kähler
cone itself, hence is isomorphic to C as a Kähler cone. Denote by ξ′ the Reeb vector field on Z∞ and
by r̃ the radial function on Z∞.

It remains to show that ξ′ = ξ. For this we need to use some results in [15]. The algebraic
structure of Z∞ can be intrinsically characterized in terms of the ring R(Z∞) holomorphic functions
on Z∞ of polynomial growth (measured using the Kähler cone metric). The cone structure yields a
decomposition

R(Z∞) =
⊕

µ>0

Rµ(Z∞), (5.2)

where Rµ(Z∞) consists of f which are of homogeneous of degree µ, i.e., LJξ′f = −µf . Conversely, ξ′

can be recovered from this decomposition.
The above decomposition is determined by a filtration associated with a degree function. For any

nonzero f ∈ R(Z∞), the following is well-defined (see [15])

dZ∞
(f) ≡ lim

R→∞

supr̃(x)=R log |f(x)|
logR

<∞.

Then the decomposition in (5.2) is determined by the filtration of R(W ) with respect to dZ∞
.
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On the other hand, the coordinate ring R(W ) of W consists of restrictions of polynomial functions
on CN . We define

dW (f) ≡ lim
R→∞

suprξ(x)=R log |f(x)|
logR

.

There is a decomposition R(W ) =
⊕

µ>0

Rµ(W ), where Rµ(W ) is the space of polynomials f with

LJξf = −µf . It can be checked that this decomposition is also determined by the filtration of R(W )
with respect to dW .

Notice that by the construction of ω̂∞ we know for all ǫ > 0 ,C−1
ǫ r1−ǫ

ξ 6 r̃ 6 Cǫr
1+ǫ
ξ on W \K for

a fixed compact set K. It follows that R(Z∞) = R(W ) and dW (f) = dZ∞
(f) for any f ∈ R(W ). So

we must have Rµ(Z∞) = Rµ(W ) for all µ > 0. In particular, ξ′ = ξ. Hence we have constructed a Tξ
equivariant isomorphism between W and C. This completes the proof of Theorem 1.1.

�

Proof of Theorem 1.2. We simply notice that by the estimate of ϕ∞ and u∞ in (4.11), the background
metric ω∞ is polynomially asymptotic to the Calabi-Yau cone metric ω̂∞ on W (which is the same
as C). Moreover by the construction of ω∞ (see Corollary 3.12 and Lemma 3.13), it is polynomially
asymptotic to ω under the diffeomorphism p∞ . Then p∞ provides the diffeomorphism that shows ω
and J are asymptotic to ω̂∞ and JW in a polynomial rate. The asymptotics of Ω follows from (3.16)
by letting j → ∞.

�

Remark 5.4. Using the same proof one can weaken the Calabi-Yau condition in Theorem 1.1 and
1.2 to be Ricci-flat Kähler. Alternatively, one can show this by working on the universal cover since
it is well known [2, 22] that Riemannian manifolds with non-negative Ricci curvature and Euclidean
volume growth have finite fundamental groups.

6. Discussions

We point out some further related directions that one can explore. The guiding problem is

Problem 6.1 (Algebraization for complete Calabi-Yau metrics). Give an algebro-geometric charac-
terization of all complete Calabi-Yau metrics with Euclidean volume growth.

Remark 6.2. Without the volume growth condition, the situation is more complicated and extra as-
sumptions are needed in order to make connections with algebraic geometry. In complex dimension 2
under a natural finite energy condition, the models at infinity are completely classified by Sun-Zhang
[27], and there is a complete classification of the Calabi-Yau metrics in terms of algebro-geometric
data by the work of many people; see [27] for references.

Given Theorem 1.2, the results of Conlon-Hein [11] provide an answer to Problem 6.1 under the
extra quadractic curvature decay condition. Namely, such Calabi-Yau metrics are always constructed
as follows (ignoring uniqueness issues for the moment), where each step is essentially algebro-geometric.

(1) Choose a Calabi-Yau cone (C, ξ). This is equivalent to choosing a K-polystable Fano cone [7].
(2) Choose a nomal affine variety X ′ with (C, ξ) as a weighted asymptotic cone at infinity.
(3) Choose a crepant Kähler resolution π : X → X ′.
(4) Choose a Kähler class on X . This is a numerical condition according to [9, 11].

We want to ask how much of the above picture holds in general, if we allow singularities in the
relevant objects. There are several technical obstacles to realize this program, mostly related to the
possible appearance of singularities on the asymptotic cone. First one needs to extend the 2-step degen-
eration theory of [15] to this setting. In particular, we would like to construct abundant holomorphic
functions with polynomial growth on X . This is related to a special case of Yau’s compactification
conjecture, which we reiterate as follows



NO SEMISTABILITY AT INFINITY FOR CALABI-YAU METRICS ASYMPTOTIC TO CONES 21

Conjecture 6.3 (Yau’s Compactification conjecture). A complete Calabi-Yau manifold with Euclidean
volume growth is naturally a quasi-projective variety.

There has been partial progress towards this. For example, it is known that any asymptotic cone is
naturally a normal affine variety [25]. It is also observed in [29] that the results of [15] automatically
extend to the setting when the Calabi-Yau metric is ∂∂̄-exact so Conjecture 6.3 holds in this case.
Now suppose the 2-step degeneration theory works. The following is natural to expect

Conjecture 6.4 (No semistability at infinity, the general version). Theorem 1.1 holds without the
quadratic curvature decay assumption.

Remark 6.5. One can also formulate a conjectural general version of Theorem 1.2, where one uses
the Gromov-Hausdorff distance to measure the rate of convergence to the asymptotic cone.

One difficulty in proving Conjecture 6.4 using the strategy of this paper is related to the gener-
alization of the Tian-Yau construction, which is itself an interesting question. A first step would
be

Question 6.6 (Prescribing asymptotic cone). Given a singular Calabi-Yau cone (C, ξ) and a normal
affine variety X ′ with (C, ξ) as a weighted asymptotic cone at infinity, when does X ′ admit a (possibly
singular) Calabi-Yau metric asymptotic to (C, ξ) in the Gromov-Hausdorff sense?

There are some recent extensions of the Tian-Yau construction with singular asymptotic cones for
special examples; see [18, 23, 28, 12, 4].

As mentioned in Section 2 the classification of complete Calabi-Yau metrics with Euclidean volume
growth on a fixed underlying algebraic variety is a subtle problem. Even on Cn(n > 3) the situation
can be complicated; the recent works by Székelyhidi [29] and Chiu [4] make progress in this direction.
We make an attempt here to formulate some general questions. To minimize technical issues we
restrict to the case of ∂∂̄-exact metrics on smooth affine varieties. As mentioned above the results of
[15] apply here. Fix a smooth affine variety X with the coordinate ring R(X). A complete ∂∂̄-exact
Calabi-Yau metric ω on X with Euclidean volume growth is said to be a compatible metric if the space
of holomorphic functions on X with polynomial growth with respect to ω coincides with R(X). A
compatible Calabi-Yau metric ω defines a degree function dω : R(X) → R≥0 ∪ {∞} satisfying

• dω(f) = ∞ if and only if f = 0;
• dω(f) = 0 if and only if f is a nonzero constant;
• dω(fg) = dω(f) + dω(g);
• dω(f + g) 6 max(dω(f), dω(g)).

Furthermore, dω gives rise to a filtration of R(X) whose associated graded ring is the coordinate ring
R(W ) of the intermediate K-semistable cone W , and W degenerates to the unique asymptotic cone C
as affine algebraic cones. The result of Li-Wang-Xu [20] implies that (C, ξ) is uniquely determined by
dω. Clearly, if ω is compatible, then for any λ > 0 and any algebraic automorphism F of X , λF ∗ω is
also compatible. Furthermore, dω = dλω and dF∗ω = F ∗dω.

In terms of algebro-geometric language one notices that vω ≡ −dω is a valuation on R(X) with
values in R60∪{−∞}. We call such a valuation a negative valuation. We say a negative valuation v is
semistable (resp. polystable) if it defines a filtration whose associated graded ring is finitely generated
and defines a K-semistable (resp. K-polystable) Fano cone Cv (in the sense of [7]). Geometrically,
the cone is a weighted asymptotic cone at infinity of X under some affine embedding. Conjecture
6.4 implies that the negative valuation induced by a compatible Calabi-Yau metric on X is always
polystable.

Given a semistable valuation v on X , we define Gv as the group of algebraic automorphisms of X
that preserve v and define G̃v as the group of algebraic automorphisms of Cv that fixes the vertex
and preserves the cone structure. Both groups are finite-dimensional. Notice that G̃v contains the
algebraic torus Tv generated by the cone vector field. There is a natural homomorphism ϕ : Gv → G̃v.
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To classify the space of all compatible Calabi-Yau metrics on X , assuming Conjecture 6.4, one can
proceed as follows:

Step 1. Determine the space V of all possible polystable negative valuations on X up to algebraic
automorphism. This is essentially an algebro-geometric question. One can also study the related
question with polystability replaced by semistability. In general there may be infinitely many polystable
negative valuations on a given X . Indeed, given any polystable cone V in Cn which is a hypersurface,
one can find a polystable negative valuation v on X = Cn with Cv = C × V . Indeed, the result of
Székelyhidi [28] implies that if V has only isolated singularities, then the associated negative valuation
actually arises from a compatible Calabi-Yau metric on Cn. Still, it seems interesting to investigate
the structure of the space V .

Step 2. Now we fix a polystable negative valuation v on X . Denote by Mv the space of all
compatible Calabi-Yau metrics ω on X with v = vω. Is Mv nonempty? This is related to Question
6.6.

Step 3. Suppose Mv 6= ∅. We know that all ω ∈ Mv have the same asymptotic cone at infinity
given by Cv. But we should expect more and one would like to have

Conjecture 6.7 (Uniform equivalence). There exists a constant C > 0 such that for all ω1, ω2 ∈ Mv,
we have C−1ω1 6 ω2 6 Cω1.

It is easy to see the converse is true: if two compatible Calabi-Yau metrics ω1 and ω2 are uniformly
equivalent, then vω1 = vω2 . We remark that one can also ask an analogous question for local singu-
larities of Kähler-Einstein metrics (on algebraic varieties with klt singularities), that is, whether any
two such metrics are indeed locally uniformly equivalent. The answer to this question, currently not
known, is also related to Conjecture 6.7. The recent work by Chiu-Székelyhidi [5] made progress in
understanding local singular behavior of polarized Kähler-Einstein metrics.

Step 4. Denote by Nv the space of Calabi-Yau cone metrics on Cv (with the given Reeb vector
field determined by v). Notice Cv can be realized as a weighted asymptotic cone at infinity for some
embedding X ⊂ CN . One is attempted to define a natural map C : Mv → Nv given by taking the
(appropriate) rescaled limit of the Kähler form under the weighted asymptotic cone construction.

Conjecture 6.8 (Generalized uniqueness). The map C is well-defined and is bijective.

We explain Conjecture 6.7 and 6.8 indeed hold if we assume Cv has only an isolated singularity
at the vertex. In this case any Calabi-Yau metric in Mv has quadratic curvature decay so we may
apply the arguments of this paper. Since we have fixed the negative valuation v, this fixes the algebro-
geometric degeneration from X to Cv, in terms of a weighted asymptotic cone. Then by Section 3.6
we can fix the diffeomorphism between the end of X and the end of Cv. For every ω∞ ∈ Nv, by [10]
(or the arguments in Section 4 of this paper) one gets a compatible Calabi-Yau metric on X which is
asymptotic to ω∞ at a polynomial rate. Conversely, given a compatible Calabi-Yau metric ω ∈ Mv,
using the arguments in this paper, we can get a Calabi-Yau cone metric on Cv which is the asymptotic
cone of ω at a polynomial rate. One can see this is exactly the C map that we want. Furthermore,
it is independent of the auxiliary data chosen. The uniqueness theorem [10, Theorem 3.1] proved by
Conlon-Hein implies that C is bijective.

Notice even in this case it is not clear that the action of Gv is transitive on Mv (modulo scaling):

we know that the action of G̃v on Nv is transitive by the generalized Bando-Mabuchi theorem (see for

example, [15, Proposition 4.8]). Indeed, Nv can be identified with the homogeneous space G̃v/Kv for

a maximal compact subgroup Kv whose complexification is G̃v. But the map ϕ : Gv → G̃v could be
complicated in general: neither the injectivity nor the surjectivity seems obvious. It seems to us that
Conjecture 6.8 is a more natural formulation than a naive uniqueness statement. We mention that



NO SEMISTABILITY AT INFINITY FOR CALABI-YAU METRICS ASYMPTOTIC TO CONES 23

the above conjecture is compatible with the result and conjecture in [29, 4] for complete Calabi-Yau
metrics on C3 with specific asymptotic cones.

The above four steps altogether would lead to a satisfactory classification of compatible Calabi-Yau
metrics on a fixed smooth affine variety. More generally, when the metrics are not necessarily ∂∂̄-exact,
one needs to further involve Kähler classes in the discussion.

From another perspective, one can also try to classify complete Calabi-Yau metrics asymptotic to
a given Calabi-Yau cone, without fixing the underlying algebraic variety. Notice again this should
contrast with the local situation. As is well known (see [15, 18, 28]), there is no boundedness of local
singularities of Calabi-Yau metrics with a given tangent cone if the latter has nonisolated singularities.
One example is given by the Ak singularities in dimension n > 3 for k > 4, whose local tangent cones
are all given by the product of an n− 1 dimensional A1 singularity with C. However, for asymptotic
cones, there are more constraints. For example, the Bishop-Gromov inequality ensures a strong uniform
non-collapsing condition, which gives a preliminary compactness in this situation. In particular, one
would expect a well-behaved moduli space when the volume density of the asymptotic cone is bounded
away from zero.

Problem 6.9 (Moduli problem). Given a positive number λ > 0, study the structure of the moduli
space of (possibly singular) ∂∂̄-exact Calabi-Yau metrics on affine varieties whose asymptotic cones
have volume density at least λ.

It is straightforward to formulate an algebro-geometric counterpart of the above problem. That is,
one can study the moduli space M>λ of pairs (X, v), where X is an affine variety and v is a polystable
negative valuation on X with Cv having volume density at least λ. It seems to be an approachable
question given recent advances in birational algebraic geometry. However, as pointed out by Yuji Odaka
there are some complications. For simplicity we fix a K-polystable cone C, then the deformation space
Def(C) of C as affine varieties is in general infinite dimensional, but it is natural to expect that the
subspace Def−(C) which consists of those deformations to the above pairs (X, v) with Cv = C is finite

dimensional, and there is an action of G̃v on Def−(C). Now since G̃v is noncompact the quotient is in
general not Hausdorff, so any meaningful construction of such moduli space will have to address this
issue. On the other hand, if we accept the above picture, then the space of ∂∂̄-exact Calabi-Yau metrics
asymptotic to C (up to isomorphism) is given by the quotient Def−(C)/Kv. It seems an interesting
question to us to explore the structure here in more detail.

Finally, we point out that while Theorem 1.2 is a Riemannian geometric statement, our proof in
this paper hinges on complex geometry. One can ask whether the polynomial convergence rate is a
more general phenomenon in geometric analysis, or is it only special in the complex geometric world.
Notice this is a question involving global geometry, not only the end at infinity. Indeed, we expect
that the technique of Adams-Simon [1] can be used to show that given a Calabi-Yau cone C with
obstructed deformations in an appropriate sense, one can produce an end of Calabi-Yau metric which
is asymptotic to C at only a logarithmic rate; see [3] for a related work on isolated singularities of
G2 metrics. Such an end is also interesting in terms of complex geometry since it can not be filled
in as a complete Kählerian manifold – otherwise using the Tian-Yau construction one would get a
contradiction with Theorem 1.2.

Question 6.10 (Polynomial rate to the asymptotic cone). Is a complete Ricci-flat Riemannian man-
ifold with Euclidean volume growth always asymptotic to a unique metric cone at a polynomial rate
(in the Gromov-Hausdorff distance)?

Even the uniqueness of asymptotic cones is not known to date without the quadratic curvature decay
condition. An answer to Question 6.10, either in the positive or the negative, would be interesting.
A special setting is given by manifolds with special holonomy, i.e., G2 and Spin(7) manifolds. One
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can also explore similar questions for global solutions of other geometric PDEs, such as minimal
submanifolds and Yang-Mills connections. These will be important in classifying singularity models.
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