No Silver Bullet: Essence and Accidents of

Software Engineering
Frederick P. Brooks

f all the monsters that fill the
O nightmares of our folklore, none

terrify more than werewolves,
because they transform unexpectedly
from the familiar into horrors. For these,
one seeks bullets of silver that can magic-
ally lay them to rest.

The first step toward the management
of disease was replacement of demon
theories and humours theories by the germ
theory. That very step, the beginning of
hope, in itself dashed all hopes of magical
solutions. It told workers that progress
would be made stepwise, at great effort,
and that a persistent, unremitting care
would have to be paid to a discipline of
cleanliness. So it is with software engi-
neering today.

9/14/10

Proposed Silver Bullets

Structured programming
Modularity

Data Abstraction

Software Verification
Object oriented

Agile or Xtreme programming
Aspect oriented programming

Complexity. Software entities are more
complex for their size than perhaps any
other human construct because no two
parts are alike (at least above the statement
level). If they are, we make the two similar
parts into a subroutine—open or closed.
In this respect, software systems differ
profoundly from computers, buildings, or
automobiles, where repeated elements
abound.

9/14/10

9/14/10

Requirements refinement and rapid
prototyping. The hardest single part of
building a software system is deciding
precisely what to build. No other part of
the conceptual work is as difficult as
establishing the detailed technical re-
quirements, including all the interfaces to
people, to machines, and to other software
systems. No other part of the work so crip-
ples the resulting system if done wrong.
No other part is more difticult to rectity
later.

e ———
T'LL NEED TO KNOW FIRST OF ALL,

YOUR REQUIREMENTS WHAT ARE YOU
BEFORE I START TO TRYING TO

DESIGN THE SOFTWARE. ACCOMPLISH?

(T MEAN WHAT ARE
‘ YOU TRYING TO
| ACCOMPLISH WITH
| THESO

I™M TRYING TO
MAKE YOU DESIGN
MY SOFTWARE.

T WONT KNOW WHAT
I CAN ACCOMPLISH
UNTIL YOU TELL ME
WHAT THE SOFTWARE
CAN DO.

CAN YOU DESIGN
IT TO WELL YOU
MY REQUIREMENTS?

WHATEVER I DESIGN
1T TO DO!

Some years ago Harlan Mills proposed
that any software system should be grown
by incremental development.!? That is,
the system should first be made to run,
even if it does nothing useful except call
the proper set of dummy subprograms.
Then, bit by bit, it should be fleshed out,
with the subprograms in turn heing devel-
oped—into actions or calls to empty stubs
in the level below.

Advocates:
- Incremental development

Cleanroom
Incremental Development of a Small System
Customer Customer
) tm CustomerUser Customer/User Customer/User
Requirkments Feedback Feedback Feedback
Top-tevel H H
Spedi fi cation Complete Sypstem
]
Incremental lﬁ_*
yoehns £E* S35
Flan
Increment 2 Increment 3 Increment 4
Szg n 0’3/ oﬁ Szgrz onfoff Szgn onfoff Sign onfoff
O New Set-up 2-itp Set-up Set-up
= Rensed Pcmee' navigation Panel navigation FPane!l navigaition
B Stubbed Frimary functions Erimary functions
Secon functions

9/14/10

Benefits of Incremental Development
* Early feedback

* on part of the system, at least
* Improves morale
» Something tangible is working
» Improves chances of releasing on time
* Incorporate high priority capabilities first
* Low priority capabilities may miss release
* Detect problems with high priority capabilities early
* More time to react
» Often the requirements are not fully known

* Provides an approach for incrementally learning the
requirements (if done well)

High-level Goals of Software Engineering

improve productivity

» reduce resources
e.g., time, cost, personnel

improve predictability
improve maintainability
improve quality
improve security

* Most security problems would be eliminated by
using good SE practices

9/14/10

