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Abstract

Testing is viewed as a critical aspect of any strategy to tackle epidemics. Much of the dia-

logue around testing has concentrated on how countries can scale up capacity, but the

uncertainty in testing has not received nearly as much attention beyond asking if a test is

accurate enough to be used. Even for highly accurate tests, false positives and false nega-

tives will accumulate as mass testing strategies are employed under pressure, and these

misdiagnoses could have major implications on the ability of governments to suppress the

virus. The present analysis uses a modified SIR model to understand the implication and

magnitude of misdiagnosis in the context of ending lockdown measures. The results indicate

that increased testing capacity alone will not provide a solution to lockdown measures. The

progression of the epidemic and peak infections is shown to depend heavily on test charac-

teristics, test targeting, and prevalence of the infection. Antibody based immunity passports

are rejected as a solution to ending lockdown, as they can put the population at risk if poorly

targeted. Similarly, mass screening for active viral infection may only be beneficial if it can

be sufficiently well targeted, otherwise reliance on this approach for protection of the popula-

tion can again put them at risk. A well targeted active viral test combined with a slow release

rate is a viable strategy for continuous suppression of the virus.

Introduction

During the early stages of the United Kingdoms SARS-CoV-2 epidemic, the British govern-

ment’s COVID-19 epidemic management strategy was been influenced by epidemiological

modelling conducted by a number of research groups [1, 2]. The analysis of the relative impact

of different mitigation and suppression strategies concluded that the “only viable strategy at

the current time” is to suppress the epidemic with all available measures, including the lock-

down of the population with schools closed [3, 4]. Similar analysis in other countries lead to

over half the world population being in some form of lockdown by April 2020 and over 90% of
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global schools closed [5, 6]. These analyses have highlighted from the beginning that the even-

tual relaxation of lockdown measures would be problematic [3]. Without a considered cessa-

tion of the suppression strategies the risk of a second wave becomes significant, possibly of

greater magnitude than the first as the SARS-CoV-2 virus is now endemic in the population

[7, 8].

Although much attention was focused on the number of tests being conducted and the

effect that testing could have in supressing the disease [9–11]. Not enough attention has been

given to the issues of imperfect testing, beyondMatt Hancock, UK Secretary of State for Health

and Social Care, stating in a press conference on 2nd April 2020 that “No test is better than a

bad test” [12]. In this paper we will explore the validity of this claim.

The failure to detect the virus in infected patients can be a significant problem in high-

throughput settings operating under severe pressure, with evidence suggesting that this is

indeed the case [13–17]. The public are rapidly becoming aware of the difference between the

‘have you got it?’ tests for detecting active cases, and the ‘have you had it?’ tests for the presence

of antibodies, which imply some immunity to COVID-19. What may be less obvious is that

these different tests need to maximise different test characteristics.

To be useful in ending lockdown measures, active viral tests need to maximise the sensitiv-

ity. High sensitivity reduces the chance of missing people who have the virus who may go on

to infect others. There is an additional risk that an infected person who has been incorrectly

told they do not have the disease, when in fact they do, may behave in a more reckless manner

than if their disease status were uncertain.

The second testing approach, seeking to detect the presence of antibodies to identify those

who have had the disease would be used in a different strategy. This strategy would involve

detecting those who have successfully overcome the virus, and are likely to have some level of

immunity (or at least reduced susceptibility to more serious illness if they are infected again),

so are relatively safe to relax their personal lockdown measures. This strategy would require a

high test specificity, aiming to minimise how often the test tells someone they have had the dis-

ease when they haven’t [18]. A false positive tells people they have immunity when they don’t,

which may be worse than if people are uncertain about their viral history.

Evidence testing is flawed

The successes of South Korea, Singapore, Taiwan and Hong Kong in limiting the impact of the

SARS-CoV-2 virus has been attributed to their ability to deploy widespread testing, with digital

surveillance, and impose targeted quarantines in some cases [13]. This testing has predomi-

nantly been based on the use of reverse transcription polymerase chain reaction (RT-PCR)

testing. During the 2009 H1N1 pandemic the rapid development of high sensitivity PCR assay

were employed early with some success in that global pandemic [19]. These tests, when well

targeted, clearly provide a useful tool for managing and tracking pandemics.

These tests form the basis of much of the research into the incidence, dynamics and comor-

bidities of SARS-CoV-2, but few, if any, of these studies give consideration to the impact of

false test results [20–24]. Increasing reliance on lower-sensitivity tests to address capacity con-

cerns is likely to make available data on confirmed cases more difficult to accurately utilise

[19]. It may be the case that false test results contribute to some of the counter-intuitive disease

dynamics observed [25].

There is evidence that both active infection [26–30] and antibody [31–33] tests lack perfect

sensitivity and specificity even in best-case scenarios. Alternative screening methods such as

chest x-rays may be found to have high sensitivity based on biased data [34] or may simply per-

form poorly even compared to imperfect RT-PCR tests [29]. The Foundation for Innovative
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New Diagnostics (FIND) conducted an independent evaluation of five RT-PCR tests which

scored highly out of 17 candidate tests on criteria such as regulatory status and availability

[35]. Even ideal laboratory conditions can produce a specificity which could be as low as 90%,

and the practical specificity is likely to be lower still.

The rapid development and scaling of new diagnostic systems invites error, particularly as

labs are converted from other purposes and technicians are placed under pressure, and varia-

tion in test collection quality, reagent quality, sample preservation and storage, and sample

registration and provenance. Assessing the magnitude of these errors on the performance of

tests is challenging in real time. Point-of-care tests are not immune to these errors and are

often seen as less accurate than laboratory based tests [36, 37].

Introduction to test statistics: What makes a ‘good’ test?

In order to answer this question there are a number of important statistics:

• Sensitivity σ—Out of those who actually have the disease, that fraction that received a posi-

tive test result.

• Specificity τ—Out of these who did not have the disease, the fraction that received a negative

test result.

The statistics that characterise the performance of the test are computed from a confusion

matrix (Table 1). We test ninfected people who have COVID-19, and nhealthy people who do not

have COVID-19. In the first group, a people correctly test positive and c falsely test negative.

Among healthy people, b will falsely test positive, and d will correctly test negative.

From this confusion matrix the sensitivity is given by (1) and the specificity by (2).

s ¼
a

ninfected
ð1Þ

t ¼
d

nhealthy

: ð2Þ

Sensitivity is the ratio of correct positive tests to the total number of infected people

involved in the study characterising the test. The specificity is the ratio of the correct negative

tests to the total number of healthy people. Importantly, these statistics depend only on the test

itself and do not depend on the population the test is intended to be used upon.

When the test is used for diagnostic purposes, the characteristics of the population being

tested become important for interpreting the test results. To interpret the diagnostic value of a

positive or negative test result the following statistics must be used:

• Prevalence P—The proportion of people in the target population that have the disease tested

for.

• Positive Predictive Value PPV—How likely one is to have the disease given a positive test

result.

Table 1. Confusion matrix.

Infected Not Infected Total

Tested Positive a b a + b

Tested Negative c d c + d

Total a + c = ninfected b + d = nhealthy N

https://doi.org/10.1371/journal.pone.0240775.t001
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• Negative Predictive Value NPV—How likely one is to not have the disease, given a negative

test result.

The PPV and NPV depend on the prevalence, and hence depend on the population you are

focused on. This may an entire nation or region, a sub-population with COVID-19 compatible

symptoms, or any other population you may wish to target. The PPV and NPV can be calcu-

lated using Bayes’ rule:

PPV ¼
Ps

Psþ ð1� PÞð1� tÞ
; ð3Þ

NPV ¼
tð1� PÞ

tð1� PÞ þ ð1� sÞP
: ð4Þ

To illustrate the impact of prevalence on PPV, for a test with σ = τ = 0.95, if prevalence

P = 0.05, then the PPV = 0.5. Therefore, a positive result only indicates a 50% chance that an

individual will have the disease given that they have tested positive, even though the test is

highly accurate. Fig 1 shows why, for 1000 test subjects there will be similar numbers of true

and false positives even with high sensitivity and specificity of 95%. In contrast, using the same

tests on a sample with a higher prevalence P = 0.5 we find the PPV = 0.95, see Fig 2. Similarly,

the NPV is lower when the prevalence is higher.

SIRmodel with testing

SIR models offer one approach to explore infection dynamics, and the prevalence of a commu-

nicable disease. In the generic SIR model, there are S people susceptible to the illness, I people

Fig 1. If the prevalence of a disease amongst those being tested is 0.05 then with σ = τ = 0.95 the number of false positives will outnumber the true positives,
resulting in PPV = 0.5.

https://doi.org/10.1371/journal.pone.0240775.g001
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infected, and R people who are recovered with immunity. The infected people are able to infect

susceptible people at rate β and they recover from the disease at rate γ [38], Fig 3 shows how
people move between the different states of an SIR model. Once infected persons have recov-

ered from the disease they are unable to become infected again or infect others. This may be

because they now have immunity to the disease or because they have unfortunately died.

R
0
¼

b

g
ð5Þ

dS;I ¼ bIS ð6aÞ

dIR
¼ gI ð6bÞ

DS ¼ �dS;I ð6cÞ

DI ¼ dS;I � dI;R ð6dÞ

DR ¼ dI;R ð6eÞ

To explore the effect of imperfect testing on the disease dynamics when strategies testing

regimes are employed to relax lockdown measures, three new classes were added to the model.

The first is a quarantined susceptible state, QS, the second is a quarantined infected state, QI,

and the third is people who have recovered but are in quarantine, QR, as shown in Fig 4.

Fig 2. If the prevalence of a disease amongst those being tested is 0.50 then with σ = τ = 0.95 the number of true
positives will outnumber the number of false positives, resulting in a high PPV of 0.95.

https://doi.org/10.1371/journal.pone.0240775.g002

Fig 3. Diagram for a basic SIR model. The black arrows show how people move between the different states.

https://doi.org/10.1371/journal.pone.0240775.g003
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The present model is similar to other SIR models that take into account the effect of

quarantining regimes on disease dynamics, such as Lipsitch et al. (2003) [39] or Giordano

et al. (2020) [23]. Lipsitch et al. implement quarantine in their model but do not incorporate

the effects on the dynamics from imperfect testing, nor do they consider how the quality and

scale of an available test affect the spread of a disease. Diagnostic uncertainty plays no part in

the model they present. Likewise, Giordano et al reduce population based diagnostic strategies

to two parameters which confound test capacity, test targeting, and diagnostic uncertainty.

Again, they do not investigate the role that diagnostic uncertainty plays in the spread of a dis-

ease. The intent of this model is not to create a more sophisticated SIR model, but to investi-

gate how diagnostic uncertainty affects the dynamics of an epidemic.

The model evaluates each day’s population-level state transitions. There are two possible

tests that can be performed:

• An active virus infection test that is able to determine whether or not someone is currently

infectious. This test is performed on some proportion of the un-quarantined population (S +

I + R). It has a sensitivity of σA and a specificity of τA.

• An antibody test that determines whether or not someone has had the infection in the past.

This is used on the fraction of the population that is currently in quarantine but not infected

(QS + QR) to test whether they have had the disease or not. This test has a sensitivity of σB
and a specificity of τB.

Each test is defined by a number of parameters. Testing each day is limited by the test

capacity C, the maximum number of tests that can be performed each day. Each day a popula-

tion N will be submitted for testing. The targeting capability of the test, T indicates the proba-

bility that an individual submitted for testing is positive, this is effectively the PPV of the initial

screening effort. This results in a number of individualsM being considered for screening who

are negative, of which K will be tested. Targeting must be imperfect, as if it were perfect there

would be no need for testing. Unless otherwise stated, scenarios consider a default targeting of

T = 0.8, representing an extremely effective screening capability that is nonetheless imperfect.

If daily testing targets are a goal regardless of the prevalence of the illness, T can be over-

ruled to ensure N� C for example. This condition is referred to as Strict Capacity and is

denoted with boolean parameter G, defaulting to true for all scenarios. Tests can also be con-

ducted periodically by changing the test interval parameter D. These default to 1, i.e. daily

testing.

Fig 4. SIRQmodel used to simulated the effect of mass testing to leave quarantine.

https://doi.org/10.1371/journal.pone.0240775.g004
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Each test has unique parameters, so for example test A (active virus infection test) has a tar-

geting parameter TA whilst test B (antibody test) has TB. The parameters σ, τ, T, C, G and D

define a test.

A person in any category who tests positive in an active virus test transitions into the corre-

sponding quarantine state, where they are unable to infect anyone else. A person, in QS or QR,

who tests positive in an antibody test transitions to S and R respectively. Any person within I

or QI who recovers transitions to R, on the assumption that the end of the illness is clear and

they will know when they have recovered.

For this parameterisation the impact of being in the susceptible quarantined state, QS,

makes an individual insusceptible to being infected. Similarly, being in the infected quaran-

tined state, QI, individuals are unable to infect anyone else. In practicality there is always leak-

ing, no quarantine is entirely effective, but for the sake of exploring the impact of testing

uncertainty these effects are neglected from the model. Other situations may require including

this effect.

The SIR model used in this paper uses discrete-time binomial sampling for calculating

movements of individuals between states. For a defined testing strategy these rates are defined

as follows:

MA ¼ min S;CA � I;max 0;
I

TA

� I;CA � I

� �� �

ð7aÞ

NA ¼ minðCA;MA þ IÞ ð7bÞ

KA ¼ HðMA; I;NAÞ ð7cÞ

dS;QS
¼ BinðKA; 1� tAÞ ð7dÞ

dI;QI
¼ BinðNA � KA; sAÞ ð7eÞ

dS;I ¼ min S� dS;QS
;Bin I;

bðS� dS;QS
Þ

Sþ I þ R� dI;QI
� dS;QS

 ! !

ð7fÞ

dI;R ¼ BinðI � dI;R; gÞ ð7gÞ

MB ¼ min QS;CB � QR;max 0;
QR

TB

� QR;CB � QR

� �� �

ð7hÞ

NB ¼ minðCB;MB þ QRÞ ð7iÞ

KB ¼ HðMA; I;NAÞ ð7jÞ

dQS ;S
¼ BinðKB; 1� tBÞ ð7kÞ

dQI ;R
¼ BinðQR; gÞ ð7lÞ
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dQR ;R
¼ BinðNB � KB; sBÞ ð7mÞ

DS ¼ dQS ;S
� dS;QS

� dS;I ð7nÞ

DI ¼ dS;I � dI;QI
� dI;R ð7oÞ

DR ¼ dI;R þ dQI ;R
þ dQR ;R

ð7pÞ

DQS ¼ dS;QS
� dQS ;S

ð7qÞ

DQI ¼ dI;QI
� dQI ;R

ð7rÞ

DQR ¼ �dQR;R
ð7sÞ

In Eq 7, Bin(n, p) refers to a binomial distribution with count n and rate p, H(n, k,m) refers

to a hypergeometric distribution with populations n and k and a sample sizem.

The model must be initialised with a defined population split between the six states. At each

time step t, the model calculates the number of persons moving between each state in the

order defined above. The use of binomial and hypergeometric sampling was prompted by a

desire to incorporate aleatory uncertainty in each movement. The current approach does not

account for epistemic uncertainty, fixing the model parameters σ, τ, C, T and D. A discrete

time model was selected to allow for comparisons against available published data detailing

recorded cases and recoveries on a day-by-day basis.

If the tests were almost perfect, then we can imagine how the epidemic would die out very

quickly by either widespread infection or antibody testing with a coherent management strat-

egy. A positive test on the former and the person is removed from the population, and positive

test on the latter and the person, unlikely to contract the disease again, can join the population.

More interesting are the effects of incorrect test results on the disease dynamics. If someone

falsely tests positive in the antibody test, they enter the susceptible state. Similarly, if an

infected person receives a false negative for the disease they remain active in the infected state

and hence can continue the disease propagation and infect further people.

What part will testing play in relaxing lockdownmeasures?

In order to explore the possible impact of testing strategies on the relaxation of lockdown mea-

sures several scenarios have been analysed. These scenarios are illustrative of the type of

impact, and the likely efficacy of a range of different testing configurations.

• Immediate end to lockdown scenario: This baseline scenario is characterised by a sudden

relaxation of lockdown measures.

• Immunity passports scenario: A policy that has been discussed in the media [40–42]. Anal-

ogous to the International Certificate of Vaccination and Prophylaxis, antibody based testing

would be used to identify those who have some level of natural immunity.

• Incremental relaxation scenario: A phased relaxation of lockdown is the most likely policy

that will be employed. To understand the implications of such an approach this scenario has

explored the effect of testing capacity and test performance on the possible disease dynamics
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under this type of policy. Under the model parameterisation this analysis has applied an

incremental transition rate from the QS state to the S state, and QR to R.

Whilst the authors are sensitive to the sociological and ethical concerns of any of these

approaches, the analysis presented is purely on the question of efficacy.

For the purpose of the analysis we have selected a population similar in size to the United

Kingdom, 6.7 × 107 people, β and γ were set to 0.32 and 0.1 respectively, this was ensure that
R0 value of the model was broadly in line with other models [43, 44].

Immediate end to lockdown scenario

Under the baseline scenario, characterised by the sudden and complete cessation of lockdown

measures, we explored the impact of infection testing. Under this formulation the initial con-

ditions of the model in this scenario is that the all of the population in QS transition to S in the

first iteration. The impact of infection testing under this scenario was analysed in Fig 5 using

the parameters shown in Table 2.

These scenarios consider the impact of attempts to control the disease through increased

testing capacity and a more sensitive test. A test capacity range between 1 × 105 and 2 × 105

was considered as representative of the capabilities of a country such as the UK. To illustrate

the sensitivity of the model to testing scenarios an evaluation was conducted with a range of

infection test sensitivities, from 50% (i.e of no diagnostic value) to 98%. The specificity of these

tests has a negligible impact on the disease dynamics in these scenarios. A false positive would

mean people are unnecessarily removed from the susceptible population, but the benefit of a

reduction in susceptible population is negligibly small.

As would be expected the model indicates a second wave is an inevitability and as many as

20 million people could become infected within 30 days. A high-sensitivity test has little impact

Fig 5. A comparison of different infection test sensitivities σA shown from red to blue. Three different infection test
capacities are considered. Left: test capacity = 1 × 105. Centre: test capacity = 1.5 × 105. Right: test capacity = 2 × 105.
Top: The number of infected individuals (I +QI population) over 100 days. Bottom: The proportion of the population
that has been released from quarantine (S + I + R population) over 100 days. Model parameters are shown in Table 2.

https://doi.org/10.1371/journal.pone.0240775.g005
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beyond quarantining a slightly higher percentage of the population if capacities are low. At

higher capacities this patterns remains, though peak infection counts are marginally reduced.

Overall it is clear that reliance on infection testing, even with a highly sensitive test and high

capacities, is not enough to prevent widespread infection.

Immunity passports scenario

The immunity passport is an idiom describing an approach to the relaxation of lockdown mea-

sures that focuses heavily on antibody testing. Wide-scale screening for antibodies in the gen-

eral population promises significant scientific value, and targeted antibody testing is likely to

have value for reducing risks to NHS and care-sector staff, and other key workers who will

need to have close contact with COVID-19 sufferers. The authors appreciate these other moti-

vations for the development and roll-out of accurate antibody tests. This analysis however

focuses on the appropriateness of this approach to relaxing lockdown measures by mass testing

the general population. Antibody testing has been described as a ‘game-changer’ [45]. Some

commentators believe this could have a significant impact on the relaxation of lockdown mea-

sures [41], but others note that there are severe ethical, logistical and medical concerns which

need to be resolved before antibody testing could support a strategy such as this [46].

Much of the discussion around antibody testing in the media has focused on the perfor-

mance and number of these tests. The efficacy of this strategy however is far more dependent

on the prevalence of antibodies (seroprevalence) in the general population. Without wide-

scale antibody screening it is impossible to know the seroprevalence in the general population,

so there is scientific value in such an endeavour. However, the seroprevalence is the dominant

factor to determine how efficacious antibody screening would be for relaxing lockdown

measures.

Presumably, only people who test positive for antibodies would be allowed to leave quaran-

tine. The more people in the population with antibodies, the more people will get a true posi-

tive, so more people would be correctly allowed to leave quarantine (under the paradigms of

an immunity passport).

The danger of such an approach are false positives. We demonstrate the impact of people

reentering the susceptible population who have no immunity. We assume their propensity to

contract the infection is the same as those without the false sense of security a positive test may

engender. On an individual basis, and even at the population level, behavioural differences

between those with false security from a positive antibody test, versus those who are uncertain

about their viral history could be significant. The model parametrisation here does not include

this additional confounding effect.

To simulate the seroprevalence in the general population the model is preconditioned with

different proportions of the population in the QS and QR states. This is analogous to the pro-

portion of people that are currently in quarantine who have either had the virus and developed

some immunity, and the proportion of the population who have not contracted the virus and

Table 2. Fixed parameters used for Fig 5 analysis. Antibody tests were disabled for this analysis.

Model Parameters

σA τA TA CA GA β γ

- 0.9 0.8 - True 0.32 0.1

Initial Population split

Population S I R QS QI QR

6.7 × 107 0.984 0.01 0.001 0 0.004 0.001

https://doi.org/10.1371/journal.pone.0240775.t002
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have no immunity. Of course the individuals in these groups do not really know their viral his-

tory, and hence would not know which state they begin in. The model evaluations explore a

range of sensitivity and specificities for the antibody testing. These sensitivity and specificities,

along with the capacity for testing, govern the transition of individuals from QR to R (true posi-

tive tests), and from QS to S (false positive tests).

Figs 6 and 7 show the results of the model evaluations, the parameters for these runs are

shown in Tables 3 and 4. The top row of each figure corresponds to the number of infections

in time, the bottom row of each figure is the proportion of the population that are released

from quarantine and hence are now in the working population. Maximising this rate of reentry

into the population is of course desirable, and it is widely appreciated that some increase in the

numbers of infections is unavoidable. The desirable threshold in the trade-off between societal

activity and number of infections is open to debate.

Each of the plots in Figs 6 and 7 show the effect of different seroprevalence in the popula-

tion. To be clear, this is the proportion of the population that has contracted the virus and

recovered but are in quarantine. The analysis has explored a range of seroprevalence from

0.1% to 50%. Fig 6 explores the impact of a variation in sensitivity, from a test with 50% sensi-

tivity to tests with a high sensitivity of 98%.

It can be seen, considering the top row of Fig 6, that the sensitivity of the test has no dis-

cernible impact on the number of infections. The seroprevalence entirely dominates. This is

possibly counter intuitive, but as was discussed above, even a highly accurate test produces a

very large number of false positives when seroprevalence is low. In this case that would mean a

large number of people are allowed to re-enter the population, placing them at risk, with a

false sense of security that they have immunity.

The bottom row of Fig 6 shows the proportion of the entire population leaving quarantine

over a year of employing this policy. At low seroprevalence there is no benefit to better

Fig 6. A comparison of different antibody test sensitivities σB, with varying levels of seroprevalence (P0). Top: The
number of infected individuals (I +QI population) over one year. Bottom: The proportion of the population that has
been released from quarantine (S + I + R population) over one year. Model parameters are shown in Table 3.

https://doi.org/10.1371/journal.pone.0240775.g006
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performing tests. This again may seem obscure to many readers. If you consider the highest

seroprevalence simulation, where 50% of the population have immunity, higher sensitivity

tests are of course effective at identifying those who are immune, and gets them back into the

community much faster.

A more concerning story can be seen when considering the graphs in Fig 7. Now we con-

sider a range of antibody test specificities. Going from 50% to 98%. Low specificities (τ< 0.9)

Fig 7. A comparison of different antibody test specificities τB shown from left to right, with varying levels of
seroprevalence (P0) shown from red to blue. Top: The number of infected individuals (I +QI population) over one
year. Bottom: The proportion of the population that has been released from quarantine (S + I + R population) over one
year. Model parameters are shown in Table 4.

https://doi.org/10.1371/journal.pone.0240775.g007

Table 3. Fixed parameters used for Fig 6 analysis. Infection tests were disabled for this analysis.

Model Parameters

σB τB TB CB GB β γ

- 0.9 0.8 2 × 105 True 0.32 0.1

Initial Population split

Population S I R QS QI QR

6.7 × 107 0.035 0.01 0.001 0.95(1 − P0) 0.004 0.95P0

https://doi.org/10.1371/journal.pone.0240775.t003

Table 4. Fixed parameters used for Fig 7 analysis. Infection tests were disabled for this analysis.

Model Parameters

σB τB TB CB GB β γ

0.9 - 0.8 2 × 105 True 0.32 0.1

Initial Population split

Population S I R QS QI QR

6.7 × 107 0.035 0.01 0.001 0.95(1 − P0) 0.004 0.95P0

https://doi.org/10.1371/journal.pone.0240775.t004
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lead to extreme second peaks, and could possibly lead to more. This is due to the progressive

release of false-positives from the quarantined population, which eventually swells the suscep-

tible population to a size where the infection count can resume exponential growth. High spec-

ificities avoid this at the cost of a prolonged lockdown, which is naturally limited by the lower

false-positive rate. Clearly some means of release beyond immunity passports would be

required to avoid this scenario. Notably, a reasonably specific test (τB = 0.9) is capable of

restraining a second peak to reasonably low levels regardless of seroprevalence. This may allow

for other means of reducing lockdown measures, though with very low seroprevalence this

could still be a potentially risky strategy. The dangers of neglecting uncertainties in medical

diagnostic testing are pertinent to this decision [47].

Incremental relaxation scenario

Considering the above, some form of incremental relaxation of lockdown seems appropriate.

This could take many forms, it could be an incremental restoration of certain activities such as

school openings, permission for the reopening of some businesses, the relaxation of stay-at-

home messaging, etc. Under the parameterisation chosen for this analysis the model is not sen-

sitive to any particular policy change. We consider a variety of rates of phased relaxations to

quarantine. To model these rates we consider a weekly incremental transition rate from QS to

S, and QR to R. In Fig 8, three weekly transition rates have been applied: 1%, 5% and 10% of

the quarantined population. Whilst in practice the rate is unlikely to be uniform as decision

makers would have the ability to update their timetable as the impact of relaxations becomes

apparent, it is useful to illustrate the interaction of testing capacity and release rate.

The model simulates these rates of transition for a year, with a sensitivity and specificity of

90% for active virus tests. The specifics of all the runs are detailed in Table 5. Fig 8 shows five

analyses, with increasing capacity for the active virus tests. In each, the 3 incremental transition

rates are applied with a range of targeting capabilities. The value of 0.8 used previously repre-

sents an unrealistically extreme case of effective targeting. The PPV, as discussed above, has a

greater dependence on the prevalence (at lower values) in the tested population than it does on

the sensitivity of the tests, the same is true of the specificity and the NPV.

It is important to notice that higher test capacities cause a higher peak of infections for

higher release rates. This has a counterintuitive explanation. When there is the sharpest rise in

the susceptible population (i.e., high rate of transition), the virus rapidly infects a large number

of people. When these people recover after around two weeks they become immune and thus

cannot continue the spread of the virus. However, when the infection testing is conducted

with a higher capacity up to 150,000 units per day, these tests transition some active viral carri-

ers into quarantine, so the peak is slightly delayed providing more opportunity for those

released from quarantine later to be infected, leading to higher peak infections. This continues

until the model reaches effective herd immunity after which the number of infected in the pop-

ulation decays very quickly. Having higher testing capacities delays but actually has the poten-

tial to worsen the peak number of infections.

At 10% release rate, up to a capacity of testing of 150,000 these outcomes are insensitive to

the prevalence of the disease in the tested population. This analysis indicates that the relatively

fast cessation of lockdown measures and stay-home advice would lead to a large resurgence of

the virus. Testing capacity of the magnitude stated as the goal of the UK government would

not be sufficient to flatten the curve in this scenario.

The 1% release rate scenario indicates that a slow release by itself is sufficient to lower peak

infections, but potentially extends the duration of elevated infections. The first graph of the

top row in Fig 8 shows that the slow release rate causes a plateau at a significantly lower
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number of infections compared to the other release rates. Poorly targeted tests at capacities

less than 100,000 show similar consistent levels of infections. However, with a targeted test

having a prevalence of 30% or more, the 1% release rate indicates that even with 50,000 tests

per day continuous suppression of the infection may be possible.

Fig 8. Total active infections each day over the year after relaxing lock-down, under different testing intensities
(columns) and various epidemiologic conditions. The per-day testing capacity is varied across the five columns of
graphs. Rate, the percentage of the initial quarantined population being released each week is varied among rows. The
prevalence of infections in the tested population is varied among different colours. To facilitate comparison within
each column of graphs, the gray curves show the results observed for other Rates and Prevalences with the same testing
intensity. Model parameters are shown in Table 5.

https://doi.org/10.1371/journal.pone.0240775.g008

Table 5. Fixed parameters used for Fig 8 analysis.

Model Parameters

σA τA TA CA GA DA β γ

0.9 0.9 - - True 1 0.32 0.1

σB τB TB CB GB DB

1 0 0 Rate × Population True 7

Initial Population split

Population S I R QS QI QR

6.7 × 107 0.034 0.01 0.001 0.95 0.004 0.001

https://doi.org/10.1371/journal.pone.0240775.t005
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At the rate of 5% of the population in lock-down released incrementally each week the

infection peak is suppressed compared to the 10% rate. The number of infections would

remain around this level for a significantly longer period of time, up to 6 months. There is neg-

ligible impact of testing below a capacity of 100,000 tests. However, with a test capacity of

150,000 tests the duration of the elevated levels of infections could be reduced if the test is

extremely well targeted (TA = 0.7), reducing the length of necessary wide-scale lockdown. If

this level of targeting is not achieved, increasing capacity may again increase peak infections,

so care must be taken to ensure a highly targeted testing strategy.

Conclusions

This analysis does support the assertion that a bad test is potentially worse than no tests, but a

good test is only effective in a carefully designed strategy. More is not necessarily better and

over estimation of the test accuracy could be extremely detrimental.

This analysis is not a prediction; the numbers used in this analysis are estimates and the

SIRQ model used is unlikely to be detailed enough to inform policy decisions. As such, the

authors are not drawing firm conclusions about the absolute necessary capacity of tests. Nor

do they wish to make specific statements about the necessary sensitivity or specificity of tests

or the recommended rate of release from quarantine. The authors do, however, propose some

conclusions that would broadly apply when testing and quarantining regimes are used to sup-

press epidemics, and therefore believe they should be considered by policy makers when

designing strategies to tackle COVID-19.

• Diagnostic uncertainty can have a large effect on the dynamics of an epidemic. And, sensitiv-

ity, specificity, and the capacity for testing alone are not sufficient to design effective testing

procedures. Policy makers need to be aware of the accuracy of the tests, the prevelence of the

disease at increased granularity and the characteristics of the target population, when decid-

ing on testing strategies.

• Caution should be exercised in the use of antibody testing. Assuming that the prevalence of

antibodies is low, it is unlikely antibody testing at any scale will support the end of lockdown

measures. And, un-targeted antibody screening at the population level could cause more

harm than good.

• Antibody testing, with a high specificity may be useful on an individual basis, it has scientific

value, and could reduce risk for key workers. But any belief that these tests would be useful

to relax lockdown measures for the majority of the population is misguided.

• The incremental relaxation to lockdown measures, with all else equal, would significantly

dampen the increase in peak infections, by 1 order of magnitude with a faster relaxation, and

2 orders of magnitude with a slower relaxation.

• As the prevelence of the disease is suppressed in different regions, it may be the case that

small spikes in cases could be the result of false positives. This problem is potentially exacer-

bated by increased testing in localities in response to small increases in positive tests. Policy

decisions that depend on small changes in the number of positive tests may, therefore, be

flawed.

• For infection screening to be used to relax quarantine measures the capacity needs to be suf-

ficiently large but also well targeted to be effective. For example this could be achieved

through effective contact tracing. Untargeted mass screening at any capacity would be inef-

fectual and may prolong the necessary implementation of lockdown measures.
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Epidemiological models used for policy making in real time will need to take into account

the impact of diagnostic uncertainty of testing, as well as the dynamical behaviour and sensitiv-

ity analyses of modelled parameters in an appropriately complex model that may need to

include quarantining, contact tracing and other surveillance strategies, test availability and tar-

geting, and multiple subpopulations of susceptible, infected and recovered categories.
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