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1 Introduction

Objective no-reference (NR) image quality assessment
(IQA) refers to the design of algorithms that seek to judge
the quality of distorted images without recourse to compari-
son with any reference image. Recently, several successful
NR QA algorithms have been proposed. A new two-step
framework for NR IQA called blind image quality index
(BIQI) based on natural scene statistics (NSS) models was
proposed in Ref. 1, then later refined to produce the distor-
tion identification-based image verity and integrity evalu-
ation (DIIVINE) index.” The DIIVINE index produces
IQA results that accord very closely with human subjective
judgments of quality when tested on large IQA databases.’
The authors of Ref. 3 proposed a single-stage NR IQA algo-
rithm called the BLind Image Integrity Notator using
Discrete Cosine Transform Statistics (BLIINDS)-II index,
which introduces a generalized parametric model of the natu-
ral statistics of local image discrete cosine transform (DCT)
coefficients to predict image quality scores. Like DIIVINE,
BLIINDS-II also produces predictions that compete very
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well with even full-reference (FR) IQA indices. The authors
of Ref. 4 proposed a neural network—based NR IQA algo-
rithm that was trained on perceptually relevant features
including the mean phase congruency (PC) image, the
entropy of the phase congruency PC image, the entropy
of the distorted image, and the gradient of the distorted
image. We use a similar set of features here to produce an
IQA algorithm that does not require training. The algorithm
in Ref. 5 extracts a set of low-level image features, such as
texture statistics, then learns a mapping from these features
to subjective image quality scores using a support vector
machine (SVM). This algorithm also reports competitive
results. A hybrid no-reference IQA model, which is based
on a hybrid of curvelet, wavelet, and cosine transforms,
was proposed in Ref. 6. It does well on a portion of the lab-
oratory for image & video engineering (LIVE) IQA
database.’

The above-mentioned IQA algorithms, several of which
perform quite well, are all based on machine learning prin-
ciples, and require training-testing sequences using human
opinion scores of distorted images, such as difference
mean opinion scores (DMOS). While the training procedures
are fair and extensible, the algorithms produced still have a
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connection to the database (and distortion types) on which
they are trained. It is highly desirable to create algorithms
that reduce or eliminate this dependence, since many pos-
sible deployments will require that algorithms not
have available information of new or varying distortions
[e.g., quality assessment (QA) agents operating in dynamic
video networks].

Recently, the authors of Ref. 8 propose an unsupervised,
training free, NR IQA model using latent quality factors. A
newer IQA model, called the natural image quality evaluator
(NIQE), was proposed by the authors of Ref. 9 based on the
construction of a “quality aware” collection of statistical fea-
tures based on a simple and successful space domain NSS
model. Here we also develop an NR QA algorithm that
can also handle multiple distortions without any training
on human scores, but using a different complementary set
of features. The new algorithm is not based on machine
learning, but instead uses a set of perceptually relevant
image features combined using a simple functional relation-
ship to predict image quality. Its performance as tested on the
LIVE IQA database suggests that it is quite promising.

2 Relevant Perceptual Features

We use several local features to measure complementary
aspects of perceptual image content. These are described
in the following sections.

2.1 Phase Congruency

Phase congruency (PC) measures the degree of coherency
of the local frequencies comprising the image, which was
developed by Morrone and Owens'® based on the local
energy model. The underlying principle of phase con-
gruencyPC is that perceptually significant image features
occur at spatial locations where the important Fourier com-
ponents are maximally in phase with one another.'”
Morrone and Owens!? define the PC is equal to the ratio
between the energy and the sum of the Fourier amplitudes.

_ EW)
EV[AW '

where A, is the amplitude of the n’th Fourier component,
and E(x) = \/F?(x) + H*(x), F(x) is the signal I(x)
with its DC component removed, and H(x) is the Hilbert
transform of F(x).

Kovesi'' developed another measure of PC that is easier
to compute:

pe (9 = 2 A 801 (0 1),

PC (x)
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where W(x) is a tapered weighting function, || is a floor
function that leaves the argument unchanged if non-
negative, and zero otherwise. Ag,,(x) = cos[gp,(x) — @(x)]—
| sin[g,, (x) — @(x)]| is a sensitive measure of phase deviation,
where ¢, (x) is the local phase of the Fourier component at x,
and ¢(x) is the average phase at x. T is an estimate of the
noise level, and ¢ is a small constant that avoids division by
zero. Details on the property of PC can be found in Ref. 11.

PC appears to be perceptually relevant. For example,
Fig. 1 shows the “parrots” image containing various degrees
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of blur and two corresponding PC images, which highlights
many image regions that are of structural significance, and
containing different degrees of blur. The first PC image was
obtained by setting the wave parameter to 3 (the default value
provided by the author), while the second is the result of fix-
ing the wave parameter at 8, since a larger wave parameter
delivers better PC on heavily distorted images (see Fig. 1).
Note that the wave parameter denotes the wavelength of a
low-pass filter constructed for log Gabor filters. As shown
in Fig. 1(a), when the degree of blur is low, the first PC
image is better articulated than the second PC image;
when the blur increases, the information content of the
first PC image degrades, while the second PC image
improves relative to the first [in Fig. 1(c)]. This suggests
that proper wave parameter selection yields more informative
PC images on blurred images. Matlab code for calculating
PC can be found in Ref. 12

PC is a relevant feature for IQA, which has been used for
both FR IQA and (training-based) NR IQA.>!* Here we use
PC as an important perceptual feature to construct a training-
free NR IQA model.

2.2 Image Entropy

Image entropy measures the available local information con-
tent of the image. The sample entropy of the image [ is

E; = —ZP(”)logzp(”)» 3)

where p(n) is the empirical probability of luminance value n.
Image distortion leads to information loss, and image
entropy appears to vary with the type and severity of distor-
tion. Entropy has been used quite successfully for FR IQA'
and for reduced-reference (RR) IQ."> A simple entropy mea-
sure has also been proposed for NR IQA.'® In the following
experiment, the MATLAB function entropy was used to
compute entropy.

2.3 Image Gradient

The image gradient Al = [Al,, Al,] measures the perceptu-
ally relevant rate of change of image luminance, which is
large when there are significant luminance variations in

Blurred image

Fig. 1 Image “parrots” of with varying degrees of blur” and associated
phase congruency maps. (a) Standard deviation of blurred image is
1.3; (b) standard deviation of blurred image is 4.0; (c) standard
deviation of blurred image is 7.7.
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the image /. A simple and robust measurement of the hori-
zontal and vertical components of the gradient of 7 is gen-
erated by convolving [ with the 3 X 3 Sobel operator masks.

As usual, the gradient magnitude is defined as the square
root of the sum of the directional derivative estimates. The
image gradient may be viewed as a local measure of image
contrast, which has been used as an important ingredient in
many IQA algorithms. "’

3 Definition of the Novel NR IQA Index

Existing successful NR IQA methods use machine learning
of DMOS to train the quality prediction models. In some
sense, these approaches are not completely ‘“distortion-
independent,” since they learn how to assess the quality
of only the distortions contained in the database. Our goal
is to develop a “universal” NR IQA index that can assess
the quality of distorted images without relying on DMOS
training. We call such an approach “opinion unaware.”

We use four perceptually motivated features, which we
have used before to construct an NR IQA algorithm that
required training,” to construct a training-free NR IQA
model: (1) the mean value of the phase congruency image
(MPC); (2) the entropy of the phase congruency image
(EPC); (3) the entropy of the distorted image (EDIS); and
(4) the mean value of the gradient magnitude of the distorted
image (MGDIS).

We propose three variants of NR QA indices that combine
these features in different ways.

MPC,  EPC, MPC, * EPC,
EDIS EDIS « MGDIS  (4)
NRQI = Max(NRQI!, NRQI2 X Scale),

NRQII = NRQI2 =

where MPC,; and MPC, are the MPC for different wave
parameters and Scale is a constant that reflects the propor-
tional coefficient between NRQI1 and NRQI2. When
Scale = 0, then NRQI = NRQII1, and when Scale is large,
NRQI is equivalent to NRQI2.

4 Performance Evaluation

We tested the no-reference quality index (NRQI) indices on
the LIVE IQA database, which consists of 29 different refer-
ence images and 779 distorted images from five distortion
categories—JPEG2000 (JP2K), JPEG, White Noise (WN),
Gaussian blur (Gblur) and Fastfading noise (FF)—along
with the associated DMOS, which represent human judg-
ments of image quality. In the following experiment, we
remove all reference images, leaving 779 distorted images.

The indices used to measure the performance of the algo-
rithm are the Spearman rank ordered correlation coefficient
(SROCC) and the linear correlation coefficient (LCC)
between the algorithm scores and the DMOS. For the latter
measures, the logistic function specified in Ref. 18 was used
to fit the model predictions to the subjective data.

4.1 Testing on LIVE Single Distortion Databases

First, we test the four perceptual features and the above three
NR indices on the LIVE JP2K, JPEG, WN, Gblur, and
Fastfading databases individually, with the experimental
results given in Tables 1 and 2. When computing NRQI,
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Table 1 Spearman rank ordered correlation coefficient (SROCC) of
perceptual features individually on LIVE distortion databases.

JP2K JPEG WN GBlur FF
MPC 0.8430 0.7579 0.9477 0.7976 0.7954
EPC 0.6636 0.6369 0.9217 0.0782 0.3153
EDIS 0.1000 0.7591 0.0305 0.2138 0.0860
MGDIS 0.2054 0.1873 0.8748 0.6364 0.5986

Table 2 Linear correlation coefficient (LCC) of perceptual features
individually on LIVE distortion databases.

JP2K JPEG WN GBlur FF
MPC 0.8474 0.7654 0.9369 0.7672 0.8357
EPC 0.6657 0.6280 0.9507 0.2421 0.5563
EDIS 0.1607 0.8410 0.5939 0.2366 0.2284
MGDIS 0.2812 0.1607 0.8979 0.6255 0.5811

Table 3 SROCC on LIVE individual distortion databases.

JP2K JPEG  WN GBlur  FF

NRQI1 0.8064 0.8713 0.9357 0.7528 0.7758
NRQI2 0.4689 0.5255 0.9350 0.7642 0.7343
NRQI 0.8074 0.8715 0.9357 0.8562 0.8181

LQF (four topics)®  0.84 0.87 0.86 0.84 0.76

NIQE® 0.9187 0.9422 0.9718 0.9329 0.8639

GRNN® 0.8106 0.9129 0.9769 0.7796 0.7167

057003-3

Scale = 25; changing this value by +20% produces little
change in performance.

From Tables 1 and 2, it can be seen that perceptual feature
MPC is quite relevant across all five distortion categories,
while the other three features (EPC, EDIS, and MGDIS)
are relevant to two or three distortion types.

Since the NRQI NR QA indices do not require any learn-
ing process, we compared them with the same blind IQA
without human training, the method of Ref. 8 using latent
quality factors (LQF), and the newer NIQE,” using the
LIVE individual distortion databases shown in Tables 3
and 4. The results of the GRNN-based learning method
by the same perceptual features is also given (the realigned
DMOS were used as in Refs. 1—4, so the results are different
from those reported in Ref. 5).

May 2013/Vol. 52(5)
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Table 4 LCC on LIVE individual distortion databases.

JP2K JPEG  WN GBlur  FF
NRQI1 0.8112 0.8911 0.9482 0.7190 0.8124
NRQI2 0.5138 0.5845 0.9411 0.8154 0.7673
NRQl 0.8126 0.8911 0.9482 0.8765 0.8435
LQF (four topics)® 0.87 0.89 0.87 0.85 0.82
NIQE® 0.9264 0.9526 0.9773 0.9447 0.8804
GRNN?® 0.8233 0.9392 0.9885 0.8145 0.7842

From Tables 3 and 4, it can be seen that the index NRQI1
correlates well with human DMOS on the JP2K, JPEG, and
WN distortion categories, and the combination index
(NRQI) delivers good performance against all five distortion
categories, and outperforms the LQF method® on the WN,
Gblur, and FF distortion categories, and also better than
the GRNN learning method® on the Gblur and FF categories,
but the results are a litter inferior to NIQE.

Figure 2(a)-2(e) show the scatter plots between the NRQI
objective scores and DMOS on the five LIVE individual dis-
tortion databases, which also suggests that NRQI index is
consistent with human subjective judgments of quality in
these distortions.

4.2 Testing on Entire LIVE IQA Database

The computation of phase congruencyPC is based on energy.
As such, the mean value of phase congruencyPC increases

with the amount of noise, but decreases as the other distor-
tions increase, as reflected by the opposite trends in Fig. 2.
To make the shape of the scatterplots of the NRQI index con-
sistent over all distortion categories, we adjusted the NRQI
for noise distortion as in Eq. (5), which simply reverses the
slope and returns the scatterplot to the proper range of values.

k

NRQIwn = ,
QAW = 60 % (NRQI + 0.01)

&)

where k is a constant. In the next experiment, k is set to 1.

In order to make the NRQI and NRQIwn indices appli-
cable to diverse distorted images, we use the subband coef-
ficients from a wavelet transform over three scales and three
orientations with Daubechies 9/7 wavelet basis as input fea-
tures, and a multiclass SVM to classify a given image into
noise and other distortion categories (details available in
Ref. 1). Thus, we use the first stage (“distortion identifica-
tion”) of the BIQI algorithm. This stage does not utilize
human opinion scores. Hence, we regard our algorithm
NRQI as “distortion aware.” The correlations of NRQI
against DMOS on the entire LIVE IQA Database (all distor-
tions) are shown in Table 5.

From Table 5, it can be seen that NRQI outperforms the
training-free LQF method,® but is inferior to the recent NIQE
method.” NRQI is a training-free “opinion unaware” method,
so it does not attain the performance of the GRNN-based
learning (the results of the learning method are obtained
using just a few test images, not the entire dataset as used
by NRQI, so it is an unfair comparison). Figure 3 shows
the scatter plot of objective NRQI scores against DMOS
over the entire LIVE IQA database, which also indicates
that the NRQI index agrees with human subjective judg-
ments of quality.
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Fig. 2 No-reference quality index (NRQI) against difference mean opinion scores (DMOS) on LIVE individual distortion databases. (a) JP2K;

(b) JPEG; (c) WN; (d) Gblur; (e) FF.
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Table 5 Image quality assessment (IQA) results on LIVE entire
database.

Method NRQI1 NRQlI LQF® GRNN® NIQE®
SROCC 0.6792 0.8263 0.80 0.8651 0.9086
LCC 0.6519 0.8350 0.78 0.8804 0.9069
120
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Fig. 3 NRQI against DMOS on entire LIVE image quality assessment
(IQA) database.

4.3 Testing on Part of TID2008 Database

In order to further evaluate the performance of NRQI, we
tested it on the same (available) distortions in an alternate
database—the TID2008 (see Ref. 19). The TID database
consists of 25 reference images and 1700 distorted images
over 17 distortion categories. Of these 25 reference images,
only 24 are natural images, and we test our algorithm only on
these 24 images. In order to show database independence,
the value of k£ was also set to 1 when computing NRQIwn.
The results are shown in Table 6.

From Table 6, it may be seen that NRQI correlates well
with many categories of MOS scores, and is competitive with
NIQE and the FR PSNR metric over all distortion images
and on the JP2K distorted category distortions in particular.
However, this method does not yet match NIQE and PSNR
on the other single distorted categories.

4.4 Statistical Significance and Hypothesis Testing
Based on DMOS

In order to ascertain wether the apparent differences
observed in image quality metric (IQM) performance are sta-
tistically significant, we applied a variance-based hypothesis
test (HT) using the residuals between DMOS and the quality
predicted by the IQM (after the nonlinear mapping). This
was done on the portion of the TID2008 Database interesting
with distortions in the LIVE database.

The test we used is based on an assumption of
Gaussianity of the residual differences between the IQM pre-
diction and DMOS. It uses the F-statistic to compare the
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Table 6 SROCC on part of TID2008 database.

Method JP2K JPEG WN GBlur ALL
NRQlI 0.8765 0.7490 0.6082 0.7812 0.8002
NIQE 0.8939 0.8756 0.7775 0.8249 0.8006
GRNN 0.6478 0.8528 0.7532 0.6740 0.7625
PSNR 0.8823 0.9215 0.9230 0.9342 0.799

Table 7 Statistical significance matrix based on IQM-DMOS resid-
uals on part of TID2008 database.

Method  NRQI NIQE GRNN
NRQI - — 0-1-1-10 10111
NIQE 01110 — 11111
GRNN -10-1-1-1  —1-1-1-1-1 —

variance of two sets of sample points. The Null
Hypothesis is that the residuals from one IQM come from
the same distribution and are statistically indistinguishable
(with 95% confidence) from the residuals from another
IQM. The results of the HT using the residuals between
the DMOS and IQM predictions are shown in Table 7.

Each entry in Table 7 is a codeword consisting of five
symbols. The position of the symbol in the codeword repre-
sents the following datasets (from left to right): JP2K, JPEG,
WN, Gblur, ALL data. Each symbol gives the results of the
HT on the dataset represented by the symbol’s position: A
value of “1” in the table indicates that the row algorithm
is statically superior to the column algorithm, whereas a
“—1” indicates that the row is statistically worse than the col-
umn. A value of “0” indicates that the row and column are
statistically indistinguishable (or equivalent).

From Table 7, we can conclude that NRQI is statistically
better than the machine learning GRNN method, and that it is
also statistically equivalent with NIQE in regard to quality
prediction of JP2K distorted images and over ALL types
of distortion.

5 Conclusions

We proposed a new training-free NR IQA model based on
several complementary and perceptually relevant image fea-
tures, namely the mean phase congruency of the image
(MPC), the entropy of the phase congruency image (EPC),
the entropy of the distorted image (EDIS), and the mean gra-
dient magnitude of the distorted image (MGDIS). The MPC
is quite relevant across all five distortion categories on LIVE,
while the other three features (EPC, EDIS, and MGDIS) are
relevant to two or three distortion types. The new index does
not need to be trained on any human opinion scores
(DMOS). Reasonably accurate image quality estimation is
accomplished using a simple functional relationship between
those features.
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