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variables archived in higher resolution—is freely accessible to the weather forecast community.
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T
 he weather and climate prediction community  

 have made continued, significant improvement  

 in the quality of numerical forecast guidance. 

This has come as a result of increased resolution; 

improved physical parameterizations; improved 

chemistry and aerosol physics; improved estimates of 

the initial state estimate due to better data assimila-

tion techniques; and improved couplings between the 

atmosphere and the land surface, cryosphere, ocean, 

and more. Nonetheless, judging from the pace of past 

improvements, medium-range forecast systematic 

errors will not become negligibly small within the 

next decade or two. For intermediate-resolution 

simulations such as those from current-generation 

global ensemble systems, users of forecast guidance 

may notice biased surface temperature forecasts, 

precipitation forecasts with insufficient detail in 

mountainous terrain, or perhaps too much drizzle 

or too little heavy rain. They may notice over- or 

underestimated cloud cover or that near-surface 

winds are characteristically much stronger than fore-

cast. They may notice that hurricanes are too large 

1 We prefer the term “reforecast” in this instance to “hindcast” so as to make the association in the reader’s mind with reanalyses. 

This reforecast would not have been very useful were there not a high-quality reanalysis to provide initial conditions, here 

from the NCEP Climate Forecast System Reanalysis.

in size but less intense than observed. Sometimes, 

however, systematic errors may be less obvious. Does 

the model forecast of the Madden–Julian oscillation 

(MJO; Zhang 2005) propagate too slowly or decay 

too quickly? Are Arctic cold outbreaks too intense, 

and do they plunge south too quickly or too slowly? 

Does the model overforecast the frequency of tropi-

cal cyclogenesis in the Caribbean Sea? Do tropical 

cyclones tend to recurve too quickly or slowly? Such 

questions may be difficult to answer quantitatively 

with a month or even a year of model guidance.

In such circumstances, reforecasts can be used to 

great advantage to distinguish between the random 

and the model errors. Reforecasts are especially help-

ful for statistically adjusting weather and climate 

forecasts to observed data, ameliorating the errors 

and improving objective guidance (Hamill et al. 

2006; Hagedorn 2008). Reforecasts, also commonly 

called hindcasts, are retrospective forecasts for many 

dates in the past, ideally conducted using the same 

forecast model and same assimilation system used 

operationally.1 Reforecasts have been shown to be 

“Those who cannot remember the past are condemned to repeat it.”

—George Santayana
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particularly useful for the calibration of relatively 

uncommon phenomena such as heavy precipitation 

(Hamill et al. 2008) and longer-lead weather–climate 

phenomena (Hamill et al. 2004), where there is 

small forecast signal and comparatively large noise 

owing to chaos and model error. In both cases, the 

large sample size afforded by reforecasts is useful for 

finding a suitably large number of past similar fore-

cast scenarios. With associated observational data, 

one then can estimate a conditional distribution of 

the possible observed states given today’s numerical 

guidance, assuming past forecasts have similar errors 

to current forecasts. Even when no observed data are 

available for calibration, reforecasts can be useful for 

determining the climatology of a model. A 20 m s–1 

surface wind would be exceptionally strong in most 

locations on Earth, but if the forecast model severely 

overforecasts wind speeds, such an event may be of 

less concern. A reforecast can thus be used for esti-

mating the forecast climatology, placing the current 

forecast in context (Lalaurette 2003, 2013).

The reforecast dataset discussed here makes an 

unprecedentedly large volume of data accessible 

to users. Over 27 years of once-daily, 11-member 

ensemble forecasts were computed using the same 

model version, the same uncertainty parameteriza-

tion, and a very similar method of ensemble initializa-

tion to the currently operational National Centers for 

Environmental Prediction (NCEP) Global Ensemble 

Forecast System (GEFS). More than 125 TB of fore-

cast output is conveniently available for fast-access 

download, and the full model dataset (~1 PB) is 

archived on tape. This dataset is more extensive than 

contemporary alternatives, such as the 5-member, 

~20-yr weekly reforecasts from the European Centre 

for Medium Range Weather Forecasts (ECMWF; 

Hagedorn 2008; Hagedorn et al. 2012), and there is 

no charge for its use. Daily lagged reforecasts were 

also generated for the NCEP Climate Forecast System 

(CFS) seasonal forecasts (Saha et al. 2010).

We had several rationales for creating this exten-

sive a reforecast dataset. The first is that we hope that 

the greater number of forecast samples from a statis-

tically consistent model will lead to the diagnosis of 

model errors and development of novel and improved 

statistical calibration algorithms and algorithms for 

rare events and for novel applications—algorithms 

that may be less accurate were they developed with 

smaller training datasets. An example of this is 

products for the renewable energy sector, such as 

extended-range wind and solar energy potential 

forecasts. We also hope that by making these data 

and experimental products from it freely available, 

the dataset will be used widely.

A second major reason for generating this exten-

sive dataset was to quantify the benefits of this addi-

tional training data. Do we really need an exception-

ally large training sample size, or might the products 

be acceptably similar in skill were they developed 

with a smaller reforecast dataset, perhaps with fewer 

members, fewer past years, or skipping days between 

samples? Generating a large reforecast dataset is com-

putationally expensive and labor intensive. For this 

dataset, more than 15 million CPU hours were used 

on the Department of Energy’s Lawrence Berkeley 

Laboratory supercomputers, and approximately 5 

person years of effort were expended to generate the 

reforecasts and set up the archives. Such extensive 

data may also not be an unalloyed benefit; the refore-

casts in the distant past may have larger errors owing 

to a thinner observing network. Hence, should re-

forecasting become a regular component of National 

Weather Service’s suite of numerical guidance, it will 

be helpful to determine the optimal configuration to 

apply to future ensemble forecast systems—the com-

promise that provides adequate training data to the 

statistical applications while being as computationally 

inexpensive as possible.

The next section of the article will discuss the 

contents of the dataset and the procedures to follow 

in order to download these data. We will then dem-

onstrate some statistical characteristics of the raw 

reforecast dataset. The penultimate section describes 

several forecast applications. The final section pro-

vides conclusions.
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A DESCRIPTION OF THE REFORECAST 

DATASET AND HOW TO ACCESS IT. 

The operational configuration of the NCEP GEFS 

changed as of 1200 UTC 14 February 2012. The real-

time and reforecast models use version 9.0.1 of the 

GEFS, discussed at www.emc.ncep.noaa.gov/GFS 

/impl.php. For more detail on the GEFS, see Hamill 

et al. (2011a). During the first 8 days of the opera-

tional GEFS forecast and the reforecast, the model is 

run at T254L42 resolution, which with a quadratic 

Gaussian transform grid is an equivalent grid spacing 

of approximately 40 km at 40° latitude, and 42 vertical 

levels. Starting at day +7.5, the forecasts are integrated 

at T190L42, or approximately 54 km at 40° latitude, 

and data are saved at this resolution from days +8 to 

days +16—the end of the GEFS integration period. 

Note that there is a bug in version 9.0.1, resulting in 

the use of incorrect land surface tables in the land 

surface parameterization, which has introduced sig-

nificant biases to near-surface temperatures. These 

errors are at least consistent between the current 

operational GEFS and the reforecast.

Through 20 February 2011, control initial condi-

tions were generated by the Climate Forecast System 

Reanalysis (CFSR) (Saha et al. 2010). This used the 

Grid-Point Statistical Interpolation (GSI) system of 

Kleist et al. (2009) at T382L64. From 20 February 2011 

through May 2012, initial conditions were taken from 

the operational GSI analysis, internally computed at 

T574L64. After 22 May 2012, the GSI was upgraded 

to use a hybrid ensemble Kalman filter–variational 

analysis system (Hamill et al. 2011a,b). This analysis 

improved the skill of operational GEFS forecasts and 

thus of the reforecasts introduced into the archive 

subsequent to that date.

The perturbed initial conditions for both the op-

erational GEFS and the reforecast use the ensemble 

transform technique with rescaling (ETR) (Wei 

et al. 2008). For the operational real-time forecasts, 

80 members are cycled for purposes of generating 

the initial condition perturbations. However, only 

the leading 20 perturbations plus the control initial 

condition were used to initialize the operational 

medium-range forecasts. The operational medium-

range GEFS forecasts are generated every 6 h from 

0000, 0600, 1200, and 1800 UTC initial conditions. 

In comparison, the reforecast was generated only once 

daily, at 0000 UTC, and only 10 perturbed forecast 

members and the one control forecast were generated. 

However, the 6-hourly cycling of ETR perturbations 

was preserved, though this cycling used only the 10 

perturbed members rather than the 80 used in real 

time. Model uncertainty in the GEFS is estimated 

with the stochastic tendencies following Hou et al. 

(2008) for both operations and reforecasts.

Here are some details on the reforecast data that 

are available. About 29 years (December 1984–

present) of reforecast data are currently archived. 

The archive includes the 0000 UTC GEFS real-time 

forecasts, which will be available with some delay, 

perhaps by 1300 UTC, though many fields will be 

available more quickly via the National Oceanic and 

Atmospheric Administration (NOAA)/National 

Operational Model Archive and Distribution System 

(NOMADS; http://nomads.ncdc.noaa.gov). Ninety-

eight different forecast global fields are available at 

1° resolution, and 28 selected fields are also available 

at the native resolution (~0.5° Gaussian grid spacing 

for the first week’s forecasts and ~0.67° grid spacing 

for the second week’s forecasts). Data are internally 

archived in GRIB2 format (www.nco.ncep.noaa.gov 

/pmb/docs/grib2/). The 1° data were created from the 

native-resolution data via bilinear interpolation using 

wgrib2 software (www.cpc.ncep.noaa.gov/products 

/wesley/wgrib2/). The listing of the fields that were 

saved and their resolutions are provided in Tables 1 

and 2. Reforecast data were saved at 3-hourly intervals 

from 0 to 72 h and every 6 h thereafter. The 28+ years 

of data daily currently archived totals approximately 

125 TB of internal storage.

Reforecast data can be accessed in many dif-

ferent ways. For users who want a few select fields 

(e.g., precipitation forecasts) spanning many days, 

months, or years, we provide a web interface for 

accessing such data (http : / /esrl.noaa.gov/psd 

/forecasts/reforecast2/). The interface allows the 

user to select particular fields, date ranges, domains, 

and type of ensemble information (particular mem-

bers, the mean, or the spread). While data are inter-

nally archived in GRIB2 format, the synthesized files 

produced from a user’s web form input are in netCDF 

format (www.unidata.ucar.edu/software/netcdf/). 

Should a user desire GRIB2 data instead, the raw 

data can be accessed via anonymous ftp (at ftp://ftp 

.cdc.noaa.gov/Projects/Reforecast2) or using wgrib2’s 

“fast downloading” capabilities (www.cpc.ncep 

.noaa.gov/products/wesley/fast_downloading_grib 

.html). We request that users be conservative with 

their downloads in order to minimize computations 

and bandwidth.

Some users may desire only selected days of re-

forecasts but want full model output rather than the 

limited set of fields and levels available from Earth 

System Research Laboratory (ESRL). In this case, the 

user can download these data from the tape archive 

at the U.S. Department of Energy (the web form 
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Tropical cyclone fore-

cast tracks were calculated 

using the GFDL tracker 

algorithm (Gopalakrishnan 

et al. 2012). Figure 2 shows 

track stat ist ics binned 

by ha lf decades. There 

has been a pronounced 

improvement in track fore-

casting during the period 

of the reforecasts. This 

is at least in part due to 

greater changes in the fore-

cast skill of the steering 

flow in the tropics, owing 

to improvements in the 

CFSR analyses over time. 

Tropical 500-hPa geopo-

tentia l height anomaly 

correlations improved by 

1–2 days between 1985/86 

and 2009/10 (not shown). 

Such large changes in skill 

during the reforecast period 

can make it more difficult 

to achieve high forecast 

accuracy with simple statis-

tical postprocessing algorithms, for the forecast errors 

in past cases will not be fully representative of current 

forecast errors. Some of these differences, however, 

also might be due to a change in the accuracy of the 

observed locations; past observed tracks may not be 

as accurate as more recent observed tracks. Our own 

internal computations of blended climatology and 

persistence track forecasts (CLIPER; Neumann 1972) 

shows that western Pacific CLIPER track errors have 

also decreased substantially in the past 25 years.

REFORECAST APPLICATIONS. We anticipate 

that many groups will use this reforecast dataset to 

explore, compare, and validate methods for statisti-

cally postprocessing the model data. Here we consider 

the usage of the reforecast for postprocessing 24-h 

accumulated precipitation forecasts, both probabi-

listic and deterministic.

Previously, an analog technique was demonstrated 

with the first-generation reforecasts as one of many 

possible methods for statistically downscaling and 

correcting the forecasts, improving their reliability 

and skill (Hamill et al. 2006; Hamill and Whitaker 

2006). Figure 3 shows Brier skill scores from the 

first- and second-generation reforecasts, processed 

using the rank analog technique described more 

TABLE 1. Reforecast variables available for selected mandatory and other 

vertical levels. Geopotential height is indicated by F, and an X indicates 

that this variable is available from the reforecast dataset at 1° resolution; a 

Y indicates that the variable is available at the native ~0.5° resolution. AGL 

indicates “above ground level.” Hybrid sigma-pressure vertical levels (a 

very close approximation to sigma levels near the ground) are called “hyb.”

Vertical level U V T F q Wind power

10 hPa X X X X

50 hPa X X X X

100 hPa X X X X

200 hPa X X X X

250 hPa X X X X

300 hPa X X X X X

500 hPa X X X X X

700 hPa X X X X X

850 hPa X X X X X

925 hPa X X X X X

1000 hPa X X X X X

Hyb 0.996 X X X

Hyb 0.987 X X X

Hyb 0.977 X X X

Hyb 0.965 X X X

80 m AGL X,Y X,Y X,Y

for this is at http://portal.nersc.gov/project/refcst 

/v2/). Such full data may be useful for, say, initializing 

high-resolution regional reforecasts. An example 

of this will be provided in the forecast applications 

section.

C H A R ACTE R I STI C S O F TH E R AW 

REFORECAST DATA. The skill of the second-

generation global ensemble reforecasts has improved 

very significantly from those from the first gen-

eration. Figure 1 shows a time series of yearly aver-

aged global 500-hPa geopotential height anomaly 

correlations (AC) from both systems. For recent years, 

the day +5 second-generation reforecasts are more 

accurate than the day +3 first-generation reforecasts. 

Considering the second-generation reforecast, there 

is a modest change in average skill of the reforecasts 

during the 26-yr period shown. Yearly average AC 

increases in the version 2 reforecasts during the 

period with the change somewhat less than 1 day. For 

example, the day +5 forecasts for 2009/10 appear to 

be roughly comparable to the day +4 forecasts (not 

shown) from 1985 to 1986. This is likely due primarily 

to changes in the observing network and observation 

data processing during the reanalysis period (Wang 

et al. 2011; Kumar et al. 2012).
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generally in Hamill and Whitaker (2006). Skill scores 

were calculated in the conventional manner (Wilks 

2006), ignoring the tendency to overforecast skill by 

not separating the data into subsets with homoge-

neous climatological uncertainty (Hamill and Juras 

2006). Analog dates were selected on similarities of 

past ensemble-mean precipitation forecasts to the 

current ensemble-mean forecast for the current grid 

point and others in a ~100-km (7 × 7 grid point) box 

around the point of interest. Probabilities were then 

estimated from the ensemble of analyzed condi-

tions for the dates with the closest match. Different 

numbers of analogs were used, depending on how 

unusual the precipitation forecast was for the day 

TABLE 2. Single-level reforecast variables archived (and their units). Where a [Y] is displayed, this indicates 

that this variable is available at the native ~0.5° resolution as well as the 1° resolution.

Variable (units)

Mean sea level pressure (Pa) [Y]

Skin temperature (K) [Y]

Soil temperature, 0.0–0.1-m depth (K) [Y]

Volumetric soil moisture content 0.0–0.1-m depth (fraction between wilting and saturation) [Y]

Water equivalent of accumulated snow depth (kg m–2; i.e., mm) [Y]

2-m temperature (K) [Y]

2-m specific humidity (kg kg–1 dry air) [Y]

Maximum temperature (K) in last 6-h period (0000, 0600, 1200, 1800 UTC) or in last 3-h period (0300, 0900, 1500, 2100 UTC) [Y]

Minimum temperature (K) in last 6-h period (0000, 0600, 1200, 1800 UTC) or in last 3-h period (0300, 0900, 1500, 2100 UTC) [Y]

10-m u wind component (ms–1) [Y]

10-m v wind component (ms–1) [Y]

Total precipitation (kg m–2; i.e., mm) in last 6-h period (0000, 0600, 1200, 1800 UTC) or in last 3-h period (0300, 0900, 1500, 2100 UTC) [Y]

Water runoff (kg m–2; i.e., mm) [Y]

Average surface latent heat net flux (W m–2) [Y]

Average sensible heat net flux (W m–2) [Y]

Average ground heat net flux (W m–2) [Y]

Convective available potential energy (J kg–1) [Y]

Convective inhibition (J kg–1) [Y]

Precipitable water (kg m–2; i.e., mm) [Y]

Total-column integrated condensate (kg m–2; i.e., mm) [Y]

Total cloud cover (%)

Downward shortwave radiation flux at the surface (W m–2) [Y]

Downward longwave radiation flux at the surface (W m–2) [Y]

Upward shortwave radiation flux at the surface (W m–2) [Y]

Upward longwave radiation flux at the surface (W m–2) [Y]

Upward longwave radiation flux at the top of the atmosphere (W m–2) [Y]

Potential vorticity on the 320-K isentropic surface (~10–6 K m2 kg–1 s–1)

U component on 2-PVU (1 PVU = 1 × 10–6 K m2 kg–1 s–1) isentropic surface (m s–1)

V component on 2-PVU isentropic surface (m s–1)

Temperature on 2-PVU isentropic surface (K)

Pressure on 2-PVU isentropic surface (Pa)

80-m u wind component (m s–1) [Y]

80-m v wind component (m s–1) [Y]

Vertical velocity at 850 hPa (Pa s–1)

Water runoff (kg m–2; i.e., mm)

Wind mixing energy at 80 m (J) [Y]
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in question. When the event was rather common, 

judged relative to the forecast climatology, as many 

as 200 members were used. When the forecast event 

was in the extreme tail of the forecast distribution, 

as few as 30 analogs were selected. The use of fewer 

analogs for extreme events, especially for the short 

lead times, improves the forecast skill (Hamill 

et al. 2006, their Fig. 7). Confidence intervals were 

calculated with a paired block bootstrap algorithm 

following Hamill (1999). North American Regional 

Reanalysis (NARR) 24-h accumulated precipitation 

analysis data (Mesinger et al. 2006; Fan et al. 2006) 

were used both for training (cross validated by year) 

and verification. There are systematic errors with the 

NARR (Bukovsky and Karoly 2007). Still, currently 

we know of no other precipitation analysis that has 

the NARR’s complete coverage of the contiguous 

United States over the full period of the reforecasts. 

We use it here, for better and worse.

The postprocessed forecasts validated from 1985 

to 2010 show an improvement of slightly greater than 

+1 day additional lead time at the early forecast leads 

from the first- to the second-generation reforecast; that 

is, a 24–48-h version 2 forecast could be made as skill-

fully as the previous 0–24-h forecast from version 1. At 

longer leads, the improvement sometimes approaches 

+2 days additional lead time. All dif-

ferences are statistically significant. 

The improvement of postprocessed 

forecasts from version 1 to version 

2 is smaller than the improvement 

in the raw forecast guidance. This 

is to be expected; the postprocess-

ing is correcting more systematic 

error in version 1 than in version 2. 

Postprocessed guidance from both 

versions is highly reliable, though 

forecasts from version 2 tend to issue 

high and low probabilities more fre-

quently; that is, they are more “sharp” 

(not shown). Forecast skill probably 

is overestimated somewhat for the 

samples early on in the reforecast 

period (e.g., the 1980s), for the cross-

validated training procedure used 

analogs from future forecasts that 

were more accurate. Experimental 

products based on this method are 

available over the contiguous United 

States in near–real time (at www.esrl 

.noaa.gov/psd/forecasts/reforecast2 

/analogs/index.html).

Deterministic forecasts can also 

be improved with the statistical postprocessing. A 

slightly different approach was used to generate the 

deterministic forecast from the analogs. First, rather 

than using the observed on days with similar fore-

casts, the difference between observed minus forecast 

on the days with the closest analog forecasts was used 

to “dress” the current forecast; this provided some-

what higher precipitation amounts when anomalously 

large events were forecast. The mean of this dressed 

set of analog forecasts was then computed. As with 

deterministic forecasts generated from an ensemble-

mean forecast, the analog-mean forecast tends to 

overforecast the light precipitation and underforecast 

heavy precipitation. To ameliorate this, following 

Ebert’s probability-matched mean approach (www 

.cawcr.gov.au/staff/eee/etrap/probmatch.html) the 

ensemble mean of the analogs was adjusted before 

it was used as a deterministic forecast. Specifically, 

for all the forecasts for a given month of the year, 

the cumulative distribution function (CDF) of these 

analog ensemble-mean forecasts was computed (cross 

validated) using the current month and the surround-

ing two months, as well as the CDF of the NARR 

dataset. The quantile associated with the current 

analog-mean forecast relative to the forecast climatol-

ogy was noted, and the final deterministic forecast 

FIG. 1. Running mean (an average over the previous 365 days) of the 

500-hPa geopotential height AC from the deterministic control 

reforecasts. The filled areas denote anomaly correlation from the 

first-generation GFS reforecast described in Hamill et al. (2006); the 

bounding lower line denotes the Southern Hemisphere AC and the 

bounding upper line the Northern Hemisphere AC. Blue indicates 

day +3 forecasts, pink indicates day +5 forecasts, and green indicates 

day +7 forecasts. The second-generation reforecasts are shown with-

out filled areas; thicker lines denote Northern Hemisphere AC and 

thinner lines the Southern Hemisphere AC.
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was the precipitation amount associated with the 

corresponding analyzed quantile. Figure 4 shows that 

the analog postprocessed deterministic forecast skill 

also provides an improvement relative to either the 

GEFS control or ensemble mean, particularly at the 

light precipitation amounts, where apparently there 

was a drizzle overforecast bias. The ensemble mean 

from the raw ensemble shows a characteristic under-

forecast bias, while the control forecast has a slight 

overforecast bias. Interestingly, the 

probability-matched mean analogs 

provided litt le improvement in 

skill relative to the ensemble mean 

or control at the longer forecast 

lead times. We believe that this is a 

consequence of applying the prob-

ability-matching process. Though 

this improves forecast bias, if there 

is little association between forecast 

and observed anomalies, as becomes 

more common at longer leads as skill 

degrades, then the algorithm can 

become overconfident of extreme 

events. For more on this, see Hamill 

and Whitaker (2006, their Figs. 2 

and 7 and associated discussion).

These calibration approaches are 

relatively simple; they are univariate, 

based only on the forecast precipita-

tion amount, and they do not factor in changes in skill 

of the forecasts during the training period such as may 

be due to increasing observational data density with 

time. Though not attempted here, there have been 

several other methods proposed in the recent past that 

may also be worthy of consideration, including quantile 

regression (Bremnes 2004), Bayesian model averaging 

(Sloughter et al. 2007), logistic regression (Hamill et al. 

2008), and mixture models (Bentzien and Friederichs 

FIG. 2. Global tropical cyclone track error (solid lines) and spread 

(dashed) over ~5-yr periods during the reforecast. Statistics were 

accumulated only for 1 Jun to 30 Nov of each year and included data 

from all basins.

FIG. 3. Brier skill scores (BSS) 

of 24-h accumulated precipita-

tion forecasts from 1985 to 2010 

over the continental United 

States (CONUS), postpro-

cessed using the rank analog 

technique. (a) BSS for the 

>2.5 mm 24 h–1 event. (b) BSS 

for the >25 mm 24 h–1 event. 

Scores are plotted as a function 

of month of the year and for dif-

ferent forecast lead times from 

1 to 6 days. Solid lines indicate 

the scores for the second-gen-

eration reforecast (V2), dashed 

lines for the first-generation 

reforecast (V1). Black, green, 

red, blue, purple, and orange 

lines indicate the respective 

skills for days +1 to +6. Edges of 

the shaded gray regions provide 

the 5th and 95th percentiles 

of the confidence interval, de-

termined via a 1000-sample 

paired block bootstrap follow-

ing Hamill (1999).

1559OCTOBER 2013AMERICAN METEOROLOGICAL SOCIETY |



2012). We hope and expect that other groups will ex-

plore methods that may extract further value from the 

extensive reforecast dataset, using different and new 

techniques and additional predictors, and test them 

against existing techniques. This dataset may be helpful 

in such comparative evaluation of different methods.

Suppose now that a long time series of observa-

tions is not available to accompany the time series 

of reforecasts. How can one leverage the reforecasts 

to provide value-added guidance? Reanalyses might 

be used for the calibration, but analyses may be con-

taminated somewhat by model forecast bias. Should 

the user desire guidance for a point location, the 

reanalysis cannot provide this, only for the gridbox 

averaged analyzed state. In such cases, perhaps usage 

of diagnostics like the extreme forecast index (EFI; 

Lalaurette 2003, 2013) may be of use. The EFI quan-

tifies how unusual the current ensemble guidance is 

relative to the climatology of past forecast guidance. 

Ideally, even when the ensemble guidance is biased 

in some fashion, it can still provide some advanced 

warning of potential extreme events. For such events, 

today’s ensemble guidance should be ranked in the 

extreme quantiles of the distribution defined by the 

past forecasts.

Figure 5 considers the problem of extended-range 

wind energy forecasts, specifically a +5- to +10-day 

forecast of 80 m above ground level wind speeds—a 

common height of the hubs of wind turbines. Suppose 

a wind farm operator in North Dakota does not have a 

multidecadal time series of wind observations at hub 

height, but he or she wishes to extract some informa-

tion from a reforecast that may indicate when it would 

be relatively inexpensive to shut down a turbine for 

maintenance. Figure 5a shows the ensemble-mean 

forecast wind speed for a particular case day in early 

2010. The winds appear relatively light on average in 

this location, but they might be biased. However, the 

availability of the reforecasts allows that wind speed 

forecast to be placed in context. Figure 5b shows the 

quantile of the ensemble-mean forecast wind speed 

relative to its climatology for that month—a calcu-

lation similar in spirit to the EFI. The wind speed 

forecasts are indeed unusually light in this location 

relative to their forecast climatology, which ended up 

being consistent with analyzed conditions (Figs. 5c,d).

FIG. 4. Equitable threat scores (ETS) and biases (BIA) for raw ensemble-mean forecasts, control forecasts, and 

deterministic forecasts generated from postprocessed analog ensemble-mean forecasts. ETS for (a) the >0.5 

mm 24 h–1 event, (b) the >5 mm 24 h–1 event, and (c) the >50 mm 24 h–1 event. (d)–(f) BIA for these respective 

events. The 5th and 95th percentile confidence intervals for the difference between the raw ensemble mean 

and the deterministic analog are plotted over the analog results. Confidence intervals were calculated with a 

1000-sample block bootstrap following Hamill (1999).
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Let us turn our attention from postprocessing to 

other potential applications of the reforecasts. One pos-

sible application is to use the global reforecast ensemble 

data as initial and lateral boundary conditions for 

a high-resolution regional reforecast ensemble. The 

ability to perform high-resolution regional refore-

casts may be of interest to many, perhaps to examine 

the ability of a higher-resolution regional model to 

provide value-added guidance for high-impact weather 

events. As discussed previously, the full model output 

FIG. 5. (a) +5- to +10-day forecast of ensemble-mean 80-m AGL wind speeds, initialized at 0000 UTC on 1 Jan 

2010 for the period 0000 UTC 6 Jan–0000 UTC 11 Jan 2010. (b) Quantile for this ensemble-mean forecast rela-

tive to the cumulative distribution of past ensemble-mean forecasts for the month of January. (c) As in (a), but 

for CFSR analyzed conditions, and (d) as in (b), but for CFSR analyzed.
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for the global reforecast ensemble is available on the 

U.S. Department of Energy website. An illustrative 

example of a regional reforecast ensemble is shown 

in Fig. 6. Here, an 11-member ensemble 72-h forecast 

initialized at 0000 UTC 22 September 2005 for Tropical 

Cyclone (TC) Rita was generated using version 3.3 

of the Advanced Hurricane Weather Research and 

Forecasting model (AHW), with 36 vertical levels 

up to 20 hPa (Skamarock et al. 2008). Details of the 

modification of AHW for hurricane applications are 

described in Davis et al. (2008). This implementation of 

AHW was run over a fixed 36-km domain that covers 

the entire North Atlantic basin, North America, and 

the extreme eastern North Pacific (see Galarneau and 

Davis 2013, their Fig. 2 and Table 1). Two-way moving 

nests of 12 and 4 km are located within the 36-km 

domain, and the movement 

of these nests is determined 

by the TC’s motion during 

the previous 6 h. Specifics 

on the AHW configura-

tion are as follows: WRF 

single-moment 6-class 

microphysics (Hong et al. 

2004), modified Tiedtke 

convective parameteriza-

tion (Zhang et al. 2011) on 

the 36- and 12-km domains 

(no parameterization on 

the 4-km domain), Yonsei 

University boundary layer 

scheme (Hong et al. 2006), 

Goddard shortwave scheme 

(Chou and Suarez 1994), 

Rapid Radiative Transfer 

Model (Mlawer et al. 1997), 

and Noah land surface 

model (Ek et al. 2003).

The global reforecast 

ensemble shows a range 

of possible model trajecto-

ries, including significant 

impact on Houston, Texas 

(Fig. 6a). The track forecast 

from the global reforecast 

ensemble was consistent 

with the official National 

Hurricane Center track 

forecast for Rita 3 days pri-

or to landfall (not shown), 

which resulted in an evacu-

ation order for the Houston 

area. The track forecast 

had a significant left-of-

track error, as the observed 

storm made landfall farther 

northeast, near the Texas–

Louisiana border.  The 

intensity forecast was con-

sistently underestimated 

in the global reforecast 

FIG. 6. A 72-h track forecast for Hurricane Rita initialized at 0000 UTC 22 

Sep 2005 from the (a) global GFS ensemble reforecast and (b) regional AHW 

ensemble forecast. The individual ensemble member tracks are shown in gray 

(control run in green) with red dots marking every 24 h. The observed track 

is shown in black with black dots marking every day at 0000 UTC. The inset in 

(a) shows the intensity forecast for Rita from the global GFS ensemble (gray) 

and AHW (red). The observed intensity is shown by the blue dashed contour. 

The black line represents the ensemble mean and the shading encompasses 

intensity values within the 5th and 95th percentiles. The inset in (b) shows 

the 48-h forecast composite reflectivity (shaded according to the color bar in 

dBZ) from the 4-km domain of the control member of the AHW ensemble.
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ensemble (Fig. 6a inset)—a common characteristic 

with global data assimilation and forecast systems 

with grid spacing of many tens of kilometers. The 

AHW regional reforecast ensemble also had a left-

of-track forecast error, although the ensemble track 

envelope expanded slightly farther northeast along 

the Gulf Coast (Fig. 6b). That the left-of-track error 

appears in the AHW reforecast ensemble in addition 

to the global model suggests that track errors were 

driven by errors in the TC steering flow. This is mod-

ulated by large-scale features such as the subtropical 

ridge over the U.S. Southeast and an eastward-moving 

midlatitude trough over the central Great Plains (not 

shown). The AHW reforecast ensemble inherited the 

initial underestimate of intensity seen in the global 

reforecast (Fig. 6a inset) but was able to intensify 

the storm to a major hurricane by 48 h, just prior to 

landfall (Fig. 6a,b insets).

Another potential application for reforecasts is 

to understand the ability of the model to predict 

uncommon phenomena or even the relationships 

between several uncommon phenomena. As an 

example, let us say that we wanted to understand 

whether atmospheric blocking statistics (Tibaldi 

and Molteni 1990) can be correctly forecast given a 

recently strong or weak MJO. To make the problem 

more statistically challenging, let us further suppose 

we are interested in the blocking forecasts related 

to a certain phase of the MJO, where it is most pro-

nounced in the Indian Ocean, and at a certain time 

of the year, here December–February (DJF). In such 

a situation, a year or two of past recent forecasts will 

not provide enough samples.

Using the first two empirical orthogonal functions 

of MJO variability (Wheeler and Hendon 2004), com-

monly known as real-time multivariate MJO (RMM
1
) 

and RMM
2
, a strong MJO, should it exist, would be 

classified as being in the Indian Ocean roughly if 

RMM
1
 ≅ 0 and RMM

2
 << 0. Accordingly, for the angle 

θ defined by the arctangent of RMM
1
 and RMM

2
, we 

define the Indian Ocean “strong MJO” as occurring 

if –(π/2 + π/8) ≤ θ ≤ –π/2 + π/8, and if the amplitude 

(RMM
1

2 + RMM
2

2)1/2 is in the upper quartile of the 

climatology of analyzed amplitudes for this phase and 

for DJF. Figure 7a shows the CFSR analyzed uncondi-

tional December–February 1985–2010 blocking statis-

tics and the blocking statistics under a strong Indian 

Ocean MJO 6 days prior to the analysis. The lagged 

observed blocking frequency from the Pacific to the 

Atlantic Ocean is apparently strongly suppressed with 

strong MJOs relative to the climatology. Composites 

(not shown) indicate that there are generally nega-

tive 500-hPa height anomalies in the climatological 

ridges and positive anomalies in the troughs, result-

ing in generally more zonal flow and less blocking. 

Figure 7b shows the blocking frequency in the +6 day 

control member reforecasts (using analyzed RMM
1
 

and RMM
2
; i.e., a –6 day lag so that analyzed data are 

used to define the MJO indices). There is a similar 

depression of the forecast blocking frequency under a 

strong MJO; the forecast model does well at replicating 

the climatology of blocking and its relationship to this 

phase of the MJO. This simple illustration shows how 

the reforecast dataset offers a unique opportunity to 

potentially diagnose and examine model systematic 

forecast characteristics related to infrequent or low-

frequency phenomena.

CONCLUSIONS. For the foreseeable future, 

weather and climate prediction model guidance will 

be contaminated by at least some systematic errors. 

Since most end users want reliable and accurate 

guidance, some statistical postprocessing may be 

FIG. 7. (a) Observed and (b) +6-day forecast blocking 

frequency as a function of latitude for Dec–Jan–Feb 

1985–2010 (green lines) and for the subset of cases with 

an Indian Ocean strong MJO as defined in the text. The 

MJO data were defined 6 days prior to the analysis or 

the forecast. Gray area denotes differences that are 

between the 5th and 95th percentile confidence inter-

vals as determined from a block bootstrap algorithm.
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helpful. Sometimes, such as for rare events and longer-

lead forecasts, a long training dataset of “reforecasts” 

can be especially helpful. The large sample provides 

enough similar cases to statistically correct the fore-

casts, even with relatively uncommon events. At longer 

leads, the large sample can be helpful for extracting a 

useful forecast signal from within the bath of chaotic 

noise and model error (Hamill et al. 2004).

This article described one such dataset: a second-

generation experimental reforecast that is approxi-

mately consistent with the 0000 UTC cycle of the 

NCEP Global Ensemble Forecast System as it was 

configured in 2012. We showed a variety of uses of 

this reforecast dataset, such as the statistical postpro-

cessing of precipitation forecasts, the initialization of 

regional reforecasts, and the diagnosis of the forecast-

ability of uncommon phenomena.

This dataset was generated f rom a large 

high-performance computing grant by the U.S. 

Department of Energy to explore the potential for 

improving longer-lead weather forecasts related 

to renewable energy; it was not created on NOAA 

computers. Currently, NCEP has not allocated any 

of its high-performance computing to the generation 

of reforecasts specific to weather time scales. While 

we intend to keep running this version of the GEFS 

for the foreseeable future, even after NCEP upgrades 

its GEFS, the regrettable truth is that soon enough 

the GEFS will change and the reforecast will be in-

consistent with the operational version of the model. 

ECMWF embraced some years ago the approach of 

computing a more limited set reforecasts on their 

operational computer using whatever model version 

is currently operational. In this way, their reforecast 

dataset is continually relevant to today’s model 

guidance. As NOAA determines the amount of high-

performance computing it needs in the coming years 

and decades, we expect that the computers will be 

sized so that NOAA too can generate reforecasts (and 

the necessary reanalyses) regularly, save the data, and 

make these readily available to the weather enterprise. 

This current reforecast dataset will help us decide on 

a realistic configuration for such reforecasts.
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