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Abstract

Scale-out server workloads benefit from many-core proces-

sor organizations that enable high throughput thanks to abun-

dant request-level parallelism. A key characteristic of these

workloads is the large instruction footprint that exceeds the

capacity of private caches. While a shared last-level cache

(LLC) can capture the instruction working set, it necessitates

a low-latency interconnect fabric to minimize the core stall

time on instruction fetches serviced by the LLC. Many-core

processors with a mesh interconnect sacrifice performance

on scale-out workloads due to NOC-induced delays. Low-

diameter topologies can overcome the performance limita-

tions of meshes through rich inter-node connectivity, but at

a high area expense.

To address the drawbacks of existing designs, this work in-

troduces NOC-Out – a many-core processor organization that

affords low LLC access delays at a small area cost. NOC-

Out is tuned to accommodate the bilateral core-to-cache ac-

cess pattern, characterized by minimal coherence activity and

lack of inter-core communication, that is dominant in scale-

out workloads. Optimizing for the bilateral access pattern,

NOC-Out segregates cores and LLC banks into distinct net-

work regions and reduces costly network connectivity by elim-

inating the majority of inter-core links. NOC-Out further sim-

plifies the interconnect through the use of low-complexity tree-

based topologies. A detailed evaluation targeting a 64-core

CMP and a set of scale-out workloads reveals that NOC-Out

improves system performance by 17% and reduces network

area by 28% over a tiled mesh-based design. Compared to

a design with a richly-connected flattened butterfly topology,

NOC-Out reduces network area by 9x while matching the per-

formance.

1. Introduction

Today’s information-centric world is powered by servers. A

recent report estimates the server hardware market to exceed

$57 billion in 2014 [5], with various online services pro-

pelling the growth. The size of the market has motivated both

established and start-up hardware makers to develop special-

ized processors for server workloads, as evidenced by designs

such as Oracle’s T-series and IBM’s POWER.

Recent research examining scale-out workloads behind

many of today’s online services has shown that, as a class,

these workloads have a set of common characteristics that

differentiate them from desktop, media processing, and sci-

entific domains [4]. A typical scale-out workload, be it a

streaming service or web search, handles a stream of mostly

independent client requests that require accessing pieces of

data from a vast dataset. Processing a diversity of requests,

scale-out workloads have large active instruction footprints,

typically in the order of several megabytes.

The presence of common traits – namely, (a) request inde-

pendence, (b) large instruction footprints, and (c) vast dataset

sizes – indicates that processors can readily be specialized for

this workload class. The abundant request-level parallelism

argues for processor designs with a large number of cores to

maximize throughput. The independent nature of requests vir-

tually eliminates inter-thread communication activity; how-

ever, large instruction footprints require a fast communica-

tion path between the individual cores and the last-level cache

(LLC) containing the applications’ instructions. Finally, the

vast dataset dwarfs on-die storage capacities and offers few

opportunities for caching due to limited reuse [4].

Taking advantage of common workload features, and

driven by the need to increase server efficiency, the indus-

try has introduced processors, which we broadly refer to as

scale-out processors, that are specialized to scale-out work-

loads. An example of an existing scale-out processor design

is the Oracle T-series, which features up to 16 cores, 3-6 MB

LLC capacities, and a low-latency crossbar interconnect. Ex-

tending and formalizing the space of scale-out processors, re-

searchers introduced the Scale-Out Processor (SOP) design

methodology [15]. The SOP methodology, which provides

an optimization framework for deriving optimal core counts

and LLC capacities based on microarchitectural and technol-

ogy parameters, advocates many cores, modestly-sized LLCs,

and low interconnect delays.

With both industry and researchers calling for many-core

scale-out processor designs, an open question is how should

the cores and LLC be arranged and interconnected for maxi-

mum efficiency. In light of known scalability limitations for

crossbar-based designs, existing many-core chip multiproces-

sors (CMPs), such as Tilera’s Tile series [19], have featured a

mesh-based interconnect fabric and a tiled organization. Each

tile integrates a core, a slice of the shared LLC with directory,

and a router. The resulting organization enables cost-effective

scalability to high core counts; however, the mesh-based de-

sign sacrifices performance on scale-out workloads due to its

large average hop count [15]. Each hop involves a router

traversal, which adds delay that prolongs the core stall time

on instruction fetches serviced by the LLC.

To reduce NOC latency, researchers have proposed low-
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diameter NOC topologies, such as the flattened butterfly [13],

that leverage the abundant on-chip wire budget to achieve

rich inter-node connectivity. By minimizing the number of

router traversals, a low-diameter network improves perfor-

mance over a mesh-based design by accelerating accesses to

the LLC. However, the performance gain comes at consid-

erable area overhead stemming from the use of many-ported

routers and a multitude of repeater-intensive long-range links.

In this work, we address the scalability challenge for scale-

out processors through NOC-Out – a core, cache, and inter-

connect organization specialized for the target workload do-

main. We identify the direct communication between cores

and LLC banks, which we term bilateral, as the dominant per-

mutation in scale-out workloads and show that other forms of

communication, including coherence activity, is rare. Based

on this insight, NOC-Out decouples LLC tiles from the cores

and localizes them in a central portion of the die. The segre-

gated organization naturally accommodates the bilateral core-

to-cache access pattern. More importantly, with the traffic

flowing between spatially distinct regions (cores to caches

and back to the cores), NOC-Out virtually eliminates the need

for direct inter-core connectivity, affording a significant re-

duction in network cost.

To further optimize interconnect cost and performance,

NOC-Out deploys simple reduction trees to carry messages

from the cores to the centrally-located LLC banks. Each re-

duction tree is shared by a small number of cores. A node

in a tree is just a buffered 2-input mux that merges packets

from a local port with those already in the network. This sim-

ple design reduces cost and delay by eliminating the need for

routing, multi-port arbitration, complex switches, and deep

buffers. Similarly, NOC-Out uses low-complexity dispersion

trees to carry the data from the cache banks to the cores. A

node in a dispersion tree is a logical opposite of that in a re-

duction tree, allowing packets to either exit the network or

advancing them up the tree at minimal cost and delay.

We use a full-system simulation infrastructure, along with

detailed area and energy models for a 32nm technology node,

to evaluate NOC-Out in the context of a 64-core CMP on a

set of scale-out workloads. Our results show that NOC-Out

matches the performance of a conventional tiled organization

with a flattened butterfly interconnect while reducing the net-

work area by a factor of 9, from a prohibitive 23mm2 to an

affordable 2.5mm2. Compared to a mesh-based design, NOC-

Out improves system performance by 17% while requiring

28% less network area.

2. Background

In this section, we examine scale-out workloads and the de-

mands they place on processor designs.

2.1. Scale-Out Workloads

Research analyzing the scale-out workload domain has

shown that a key set of traits holds across a wide range
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Figure 1: Effect of distance (which grows with core count) on
per-core performance for ideal and mesh-based in-
terconnects on two scale-out workloads.

of workloads, including web search, media streaming, and

web serving. These traits can be summarized as (a) request

independence, (b) large instruction footprint, and (c) vast

dataset [4]. We next examine each of these traits to under-

stand their effect on processor design.

Request Independence: Scale-out workloads handle a

stream of requests that are, to an overwhelming extent, mu-

tually independent. Fundamentally, request independence is

the feature that makes scale-out workloads inherently parallel

and attractive for execution on many-core chips. Another im-

plication of request independence is the lack of inter-thread

communication. Write sharing among cores working on sep-

arate requests is rare due to the vast data working set size;

nonetheless, the shared memory programming model is val-

ued in the scale-out domain as it simplifies software develop-

ment and facilitates the use of existing software stacks.

Large instruction footprint: Active instruction work-

ing sets in scale-out workloads are typically measured in

megabytes and are characterized by complex control flow.

As a result, private last-level caches tend to lack the requi-

site capacity for capturing the instruction footprint. Shared

last-level caches, on the other hand, have the capacity and re-

duce replication when compared to private caches as different

cores are often executing the same workload and can share in-

structions [8].

One challenge with large, LLC-resident instruction work-

ing sets is that the on-die distance between the cores and

the LLC adds delay to the cache access time. Because L1-

I misses stall the processor, scale-out workloads are partic-

ularly sensitive to the on-die communication delays due to

frequent instruction fetches from the LLC.

Figure 1 shows the effect of distance on per-core perfor-

mance for two representative scale-out workloads. In this

experiment, an 8MB LLC is shared by all cores on the die.

The number of cores is indicated on the x-axis; more cores re-

sult in a larger die size and a longer average distance between

each core and the target LLC bank. The figure compares the
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(a) Mesh-based CMP with 64 tiles.
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Figure 2: Elements of tiled CMPs.

performance of an idealized interconnect (labeled "Ideal") in

which only the wire delay is exposed (i.e., routing, arbitra-

tion, switching, and buffering all take zero time) to a realistic

mesh-based interconnect with a 3-cycle per-hop delay (router

and wire delay). To focus the study, we do not model con-

tention in either network. As the figure shows, interconnect

delay has a significant effect on performance that increases

with core count. At 64 cores, the average difference in per-

formance between an ideal and mesh-based interconnect is

22%.

Vast dataset: Scale-out workloads operate on vast

amounts of data that is frequently kept in DRAM to reduce

the access latency. The data working set of these workloads

dwarfs the capacity of on-die caches. Moreover, there is es-

sentially no temporal reuse in the data stream. The combi-

nation of these features renders on-die caches ineffective for

capturing the data working set, indicating that committing

large swaths of the die real-estate to cache is not useful.

To recap, scale-out workloads are best served by many-core

chips featuring a modestly-sized LLC for capturing the in-

struction working set and an on-die interconnect optimized

for low cache access latency.

2.2. Scale-Out Processors

The observations captured in the previous section are re-

flected in several contemporary processors targeted at the

scale-out market. A representative example is the Oracle

T-series (formerly, Sun Niagara) family of processors. De-

pending on the model, the T-series features up to 16 cores, a

banked LLC with 3-6 MB of storage capacity, and a delay-

optimized crossbar switch connecting the cores to the cache

banks.

Extending and formalizing the space of existing scale-

out processor designs, researchers have proposed the SOP

methodology – a framework for performing cost-benefit anal-

ysis at the chip level in the context of scale-out work-

loads [15]. Given a set of microarchitectural and technol-

ogy parameters, the SOP methodology uses the metric of per-

formance density to derive optimal resource configurations,

Figure 3: Flattened butterfly topology (links from only one
node shown for clarity).

such as the number of cores and LLC capacity. An impor-

tant conclusion of the work is that, indeed, scale-out proces-

sors benefit from many cores with a modestly-sized LLC and

a fast interconnect. Subsequent work has demonstrated that

many-core processor configurations derived using the SOP

methodology improve performance and TCO at the datacen-

ter level [6]. However, a key limitation of these earlier efforts

has been their reliance on crossbar interconnects whose poor

scalability forced suboptimal design choices.

2.3. Existing Many-Core Organizations

To overcome the scalability limitations of crossbar-based de-

signs, emerging many-core processors, such as Tilera’s Tile

series, employ a tiled organization with a fully distributed last-

level cache. Figure 2(a) shows an overview of a generic CMP

based on a tiled design. Each tile, pictured in Figure 2(b),

consists of a core, a slice of the distributed last-level cache, a

directory slice, and a router. The tiles are linked via a routed,

packet-based, multi-hop interconnect in a mesh topology.

The tiled organization and a structured interconnect fabric

allow mesh-based designs to scale to large core counts. Un-

fortunately, the regularity of the mesh topology works to its

disadvantage when it comes to performance scalability. Each

hop in a mesh network involves the traversal of a multi-ported

3
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Figure 4: Percentage of LLC accesses causing a snoop message to be sent to a core.

router, shown in Figure 2(c), which adds delay due to the need

to access the packet buffers, arbitrate for resources, and navi-

gate the switch. As Figure 1 shows, in a 64-core CMP, these

delays diminish the performance of a mesh-based tiled CMP

by 22% compared to an ideal fabric in which only the wire

delay is exposed.

To overcome the performance drawbacks of mesh-based in-

terconnects, researchers developed low-diameter topologies

suitable for on-die implementation. These topologies use

rich inter-node connectivity to bypass intermediate routers

between a packet’s source and destination nodes. A state-of-

the-art low-diameter topology is the flattened butterfly [13],

shown in Figure 3. The flattened butterfly uses a set of dedi-

cated channels to fully connect a given node to others along

the row and column. The resulting network requires, at most,

two hops (one in each of the X and Y dimensions) to deliver

the packet to the destination. In doing so, the flattened but-

terfly greatly reduces the contribution of routers to the end-to-

end delay, allowing performance to approach that of an ideal

interconnect.

Problematically, the performance advantages of the flat-

tened butterfly, or another richly-connected NOC, come at

considerable area expense stemming from the use of many-

ported routers and a multitude of links. For instance, in the

flattened butterfly in Figure 3, each router necessitates 14 net-

work ports (7 in each of the two dimensions) plus a local

port. The network ports are costly due to the presence of deep

packet buffers necessary to cover the flight time of the long-

range links. Meanwhile, the routers’ internal switch fabric

is area-intensive due the need to interconnect a large number

of ports. Finally, links consume valuable on-die real-estate

due to the need for frequent repeater placement1, even though

wires themselves can be routed over tiles.

To summarize, existing NOC architectures require an uneasy

choice between performance and area-efficiency. Meanwhile,

scale-out processors demand both – good performance and

good area-efficiency.

1Repeaters are necessary to overcome poor RC characteristics of wires in

current and future technologies.

3. Memory Traffic in Scale-Out Workloads

In order to maximize the efficiency of scale-out processors,

we examine the memory traffic in scale-out workloads to iden-

tify opportunities for specialization.

As noted earlier, scale-out workloads have large instruction

footprints and vast datasets. Cores executing these workloads

frequently access the LLC because neither the instructions

nor the datasets fit in L1 caches. The multi-megabyte instruc-

tion footprints of scale-out workloads can be readily accom-

modated in the LLC while the vast datasets dwarf the LLC

capacity and reside in memory. Consequently, the majority of

accesses to the instruction blocks hit in the LLC while many

dataset accesses miss and are filled from main memory.

On an L1 miss, the directory controller and the LLC check

if the block is available on chip. If so, and if LLC’s copy is the

most recent, the LLC will service the miss and send the data

to the requesting core. If the requesting core signals that it

needs to modify the block, the directory will also send snoop

messages to the set of sharers, instructing them to invalidate

their copy. Conversely, if the directory indicates that another

core has the block, it will send a snoop message to the appro-

priate core, instructing it to forward the block to the requester.

Finally, in the case of a miss, the LLC fetches the block from

main memory and returns it to the requesting core.

Importantly, coherence activity and core-to-core communi-

cation (i.e., L1-to-L1 forwarding) is triggered only as a result

of data sharing at the L1 level. However, due to the high-level

behavior of scale-out workloads, this type of data sharing is

rare. Instructions are actively shared, but are read-only and

served from the LLC; dataset is vast, and the likelihood of

two independent requests sharing a piece of data is low.

Figure 4 shows the fraction of accesses to the LLC that

cause a snoop message to be sent to an L1 cache across six

scale-out workloads. As expected, coherence activity is neg-

ligible in these workloads, with an average of two out of 100

LLC accesses triggering a snoop. Earlier work made similar

observations for both scale-out [4] and server [14] workloads.

The lack of coherence activity in scale-out workloads im-

plies that the dominant traffic flow is from the cores to the

LLC and back to the cores. We refer to this phenomenon as

core-to-cache bilateral access pattern. In tiled processors, the

coupled nature of core and LLC slices means that accesses
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Figure 5: NOC-Out organization.

to the last-level cache from each individual core, over time,

target all of the tiles, resulting in an all-to-all traffic pattern at

the chip level. Achieving low latency under all-to-all traffic

requires a richly connected topology, necessarily resulting in

high area and wire cost.

4. NOC-Out

NOC-Out is a processor organization optimized for the bilat-

eral access pattern dominant in scale-out workloads. NOC-

Out leverages two insights to minimize interconnect delays at

a small area footprint. First, NOC-Out segregates the LLC

slices from the cores into separate cache-only tiles and con-

centrates the cache tiles in the center of the die. The segrega-

tion of cores and the LLC breaks the all-to-all traffic pattern

characteristic of tiled CMPs and establishes a bilateral traf-

fic flow between core and cache regions. Second, NOC-Out

takes advantage of the bilateral traffic to limit network con-

nectivity, enabling a reduction in network cost. Specifically,

NOC-Out eliminates the bulk of the core-to-core links and the

supporting router structures, preserving a minimum degree of

connectivity to enable each core to reach the LLC region.

Figure 5 shows a high-level view of the proposed organiza-

tion, featuring LLC slices in the center of the die and core tiles

on both sides of the LLC. NOC-Out uses simple, routing-free

reduction trees to guide packets toward the centralized cache

banks, and dispersion trees, which are logical opposites of re-

duction trees, to propagate response data and snoop traffic out

to the cores. Every reduction and dispersion tree connects a

small number of cores to exactly one cache bank. The LLC

banks are linked in a flattened butterfly topology forming a

low-latency NUCA cache. Notably, NOC-Out does not sup-

port direct core-to-core connectivity, requiring all traffic to

flow through the LLC region.

In the rest of the section, we detail the organization of the

reduction, dispersion, and LLC networks.

4.1. Reduction Network

The reduction network is designed for a low-latency delivery

of packets from the cores to the centralized cache banks. Fig-

ure 6(a) shows key features of a reduction tree, which spans
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Figure 6: Details of NOC-Out networks.

a column of cores and terminates at the LLC bank at the end

of the column. Effectively, a reduction tree is a many-to-one

interconnect, with all packets that enter a reduction tree flow-

ing to the same destination cache bank. A node in the tree is a

buffered, flow-controlled, two-input multiplexer that merges

packets from the local port with those already in the network.

Compared to a conventional packet-based NOC, the reduc-

tion network does not require routing, as all packets flow to a

common destination. The switch, typically implemented as a

crossbar or a mux tree in conventional NOCs, is reduced to a

simple two-input mux in a reduction tree. The reduction net-

work is similar to conventional NOCs in that it benefits from

the use of virtual channels for protocol deadlock avoidance,

and as such requires a virtual channel allocation mechanism.

However, with just two ports (local and network), the VC allo-

cator is trivially simple. In fact, given the low memory-level

parallelism of scale-out workloads [4], static-priority arbitra-

tion policies that always prioritize the network over the local

port (or vice-versa) tend to work well and afford further sim-

plification of the arbitration logic.

NOC-Out distinguishes three message classes – data re-

quests, snoop requests, and responses (both data and snoop) –

to guarantee network-level deadlock freedom for its coher-

ence protocol. Of these, only data requests and responses

travel through the reduction trees, as snoop requests can only

originate at the directory nodes at the LLC. As a result, each

port in a reduction tree has two virtual channels, one per mes-

sage class.

Upon arrival at a router in a reduction tree, a packet is

buffered in the appropriate VC (determined by the packet’s

message class). With a total of four VCs in a router (two

ports with two VCs per port), a 4:1 arbiter selects a winning

VC based on priority and downstream buffer availability. In

this work, we assume the following fixed priority ordering of

VCs (highest to lowest): network responses, local responses,

network requests, local requests. By prioritizing the network

over the local port, we seek to mitigate the latency disadvan-

tage of cores that are more distant from the LLC. Because a

reduction tree router has exactly one output port, routing and

output port selection logic is unnecessary, and just one arbiter

is required per node.

4.2. Dispersion Network

The dispersion network carries packets (data responses and

snoop requests) from the LLC to the cores. Figure 6(b) shows

5
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a logical view of a dispersion tree. A dispersion tree is a log-

ical opposite of the reduction tree, with a single source (a

cache bank) and multiple destinations (cores). Each node in

a tree is a buffered, flow-controlled demultiplexer that selects

a local output port for packets that have reached their desti-

nation or propagates them farther up the tree toward the next

node.

As is the case with the reduction network, virtual channels

are necessary for deadlock avoidance to guarantee that snoop

requests do not block data responses from reaching their des-

tination. With two VCs per node (one per message class), on

each clock cycle, simple control logic (1) uses message pri-

ority and buffer availability to select a winning VC, and (2)

sets up demux control to forward a flit from the selected VC

to the local or network output. Again, we use a static priority

assignment to prioritize reply messages over snoop requests,

subject to buffer availability.

4.3. LLC Network

As described above, NOC-Out segregates core and LLC

slices2 into separate tiles. Because each core connects to just

one LLC tile through its reduction and dispersion trees, NOC-

Out relies on a richly-connected flattened butterfly network

to route traffic between LLC tiles. The choice of the network

is motivated by the need to minimize delay and reduce con-

tention in the LLC region.

In order to reduce the area and channel expense of the

flattened butterfly, NOC-Out takes advantage of the fact that

the number of LLC tiles need not match the number of core

tiles. The number of LLC tiles can be reduced because low

instruction- and memory-level parallelism in scale-out work-

loads naturally dampen the bandwidth pressure on the LLC.

Our empirical data shows that a design with four cores per

one LLC bank achieves a level of performance that is within

2% of a system with an equal number of cores and banks.

Moreover, each LLC tile can house multiple banks that share

the router. A reduction in the number of the LLC tiles di-

minishes the cost and extent of the richly-connected LLC net-

work.

4.4. Additional Considerations

Before concluding the description of NOC-Out, we highlight

several additional aspects of the proposed design; namely, its

flow control architecture, connectivity to off-die interfaces,

and support for shared memory.

Flow control: All three NOC-Out networks (reduction,

dispersion, and LLC) rely on conventional virtual channel

credit-based flow control. The amount of buffering per port

in both reduction and dispersion trees is insignificant (a few

flits per VC) thanks to a short round-trip credit time resulting

from a trivial pipeline. The flattened butterfly LLC network

requires more buffering per port to cover the multi-cycle de-

lays of long-range links and multi-stage routers; however, this

cost is restricted to just a fraction of the nodes.

2An LLC slice is composed of data, tags, and directory.

Off-die interfaces: Contemporary server chips integrate a

number of off-die interfaces, such as memory controllers, to

improve performance and reduce system cost. In the NOC-

Out design, these are accessed through dedicated ports in the

edge routers of the LLC network, as shown in Figure 5.

Shared memory: Shared memory is a prominent fea-

ture of today’s software stacks. Despite being optimized for

the bilateral core-to-cache communication, NOC-Out fully

supports the shared memory paradigm through conventional

hardware coherence mechanisms, preserving full compati-

bility with existing software. What NOC-Out sacrifices by

eliminating direct core-to-core connectivity is the support for

locality-optimized communication. Instead, NOC-Out spe-

cializes for cost and performance on scale-out server work-

loads that do not benefit from locality optimizations.

5. Methodology

Table 1 summarizes the key elements of our methodology,

with the following sections detailing the specifics of the eval-

uated designs, technology parameters, workloads, and simu-

lation infrastructure.

5.1. CMP Parameters

Our target is a many-core CMP implemented in 32nm tech-

nology. We use the Scale-Out Processor methodology [15] to

derive the optimal core count, number of memory controllers,

and LLC capacity for the assumed technology and microar-

chitectural parameters. The resulting processor features 64

cores, 8MB of last-level cache, and four DDR3-1667 memory

channels. Core microarchitecture is modeled after an ARM

Cortex-A15, a three-way out-of-order design with 32KB L1-I

and L1-D caches. Cache line size is 64B.

We consider three system organizations, as follows:

Mesh: Our baseline for the evaluation is a mesh-based

tiled CMP, as shown in Figure 2. The 64 tiles are organized

as an 8-by-8 grid, with each tile containing a core, a slice of

the LLC and a directory node.

At the network level, a mesh hop consists of a single-cycle

link traversal followed by a two-stage router pipeline for a

total of three cycles per hop at zero load. The router per-

forms routing, VC allocation, and speculative crossbar (XB)

allocation in the first cycle, followed by XB traversal in the

next cycle. Each router port has 3 VCs to guarantee deadlock

freedom across three message classes: data requests, snoop

requests, and responses. Each VC is 5 flits deep, which is the

minimum necessary to cover the round-trip credit time.

Flattened Butterfly (FBfly): The FBfly-based CMP has

the same tiled organization as the mesh baseline, but enjoys

rich connectivity afforded by the flattened butterfly organi-

zation as shown in Figure 3. Each FBfly router has 14 net-

work ports (7 per dimension) plus a local port. Due to high

arbitration complexity, the router does not employ specula-

tion, resulting in a three-stage pipeline. Each router port has

6
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Table 1: Evaluation parameters.

Parameter Value

Technology 32nm, 0.9V, 2GHz

CMP features 64 cores, 8MB NUCA LLC, 4 DDR3-1667 memory channels

Core ARM Cortex-A15-like: 3-way out-of-order, 64-entry ROB, 16-entry LSQ, 2.9mm2, 1W

Cache per MB: 3.2mm2, 500mW

NOC Organizations:

Mesh Router: 5 ports, 3 VCs/port, 5 flits/VC, 2-stage speculative pipeline. Link: 1 cycle

Flattened Butterfly Router: 15 ports, 3 VCs/port, variable flits/VC, 3 stage pipeline. Link: up to 2 tiles per cycle

NOC-Out
Reduction/Dispersion networks: 2 ports/router, 2 VCs/port, 1 cycle/hop (inc. link)

LLC network: flattened butterfly

three VCs to guarantee deadlock freedom. The number of flit

buffers per VC is optimized based on the location of the router

in the network to minimize buffer requirements. Finally, the

link delay is proportional to the distance spanned by the link.

Given our technology parameters (detailed below) and tile di-

mensions, a flit in the channel can cover up to two tiles in a

single clock cycle.

NOC-Out: Our proposed design, described in Section 4,

segregates core and LLC tiles, and localizes the LLC in the

center of the die. To connect cores to the LLC, NOC-Out

uses specialized reduction and dispersion networks. Direct

inter-core connectivity is not supported and all traffic must

flow through the LLC region.

Both the reduction and dispersion networks require just

two VCs per port. In the reduction network, only data re-

quests and responses flow from the cores to the cache, as

snoop requests cannot originate at the core tiles. Similarly,

the response network only needs to segregate snoop requests

and data responses, as data requests cannot originate at the

LLC. In the absence of contention, both networks have a

single-cycle per-hop delay, which includes traversal of both

the link and the arbitrated mux (in the reduction tree) or de-

mux (in the dispersion tree). This delay is derived based on

the technology parameters and tile dimensions.

The LLC is organized as a single row of tiles, with each

tile containing 1 MB of cache and a directory slice. The as-

pect ratio of the LLC tiles roughly matches that of the core

tiles, allowing for a regular layout across the die, as shown

in Figure 5. LLC tiles are internally banked to maximize

throughput. For the evaluation, we model two banks per tile

(16 LLC banks, in total), as our simulations show that this

configuration achieves similar throughput at lower area cost

as compared to designs with higher degrees of banking. The

eight LLC tiles are fully connected via a one-dimensional flat-

tened butterfly. LLC routers feature a 3-stage non-speculative

pipeline, with three VCs per input port.

5.2. Technology Parameters

We use publicly available tools and data to estimate the area

and energy of the various network organizations. Our study

targets a 32nm technology node with an on-die voltage of

0.9V and a 2GHz operating frequency.

We use custom wire models, derived from a combination

of sources [2, 10], to model links and router switch fabrics.

For links, we model semi-global wires with a pitch of 200nm

and power-delay-optimized repeaters that yield a link latency

of 125ps/mm. On random data, links dissipate 50fJ/bit/mm,

with repeaters responsible for 19% of link energy. For area

estimates, we assume that link wires are routed over logic

or SRAM and do not contribute to network area; however,

repeater area is accounted for in the evaluation.

Our buffer models are taken from ORION 2.0 [11]. We

model flip-flop based buffers for mesh and NOC-Out, as both

have relatively few buffers per port. For the flattened butter-

fly, we assume SRAM buffers that are more area- and energy-

efficient than flip-flops for large buffer configurations.

Cache area, energy, and delay parameters are derived via

CACTI 6.5 [18]. A 1MB slice of the LLC has an area of

3.2mm2 and dissipates on the order of 500mW of power,

mostly due to leakage.

Finally, parameters for the ARM Cortex-A15 core are bor-

rowed from Microprocessor Report and scaled down from the

40nm technology node to the 32nm target. Core area, includ-

ing L1 caches, is estimated at 2.9mm2. Core power is 1.05W

at 2GHz. Core features include 3-way decode/issue/commit,

64-entry ROB, and 16-entry LSQ.

5.3. Workloads

We use scale-out workloads from CloudSuite [3]. The work-

loads include Data Serving, MapReduce, Web Frontend, SAT

Solver, and Web Search. We consider two MapReduce work-

loads – text classification (MapReduce-C) and word count

(MapReduce-W). For the Web Frontend workload, we use the

e-banking option from SPECweb2009 in place of its open-

source counterpart from CloudSuite, as SPECweb2009 ex-

hibits better performance scalability at high core counts. Two

of the workloads – SAT Solver and MapReduce – are batch,

while the rest are latency-sensitive and are tuned to meet the

response time objectives. Prior work [4] has shown that these

workloads have characteristics representative of the broad

class of server workloads as described in Section 2.1.

Four out of six workloads scale to 64 cores. The other two,

namely Web Serving and Web Search, only scale to 16 cores

7



Appears in Proceedings of the 45th Annual International Symposium on Microarchitecture, Vancouver, Canada, December 2012

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Data Serving MapReduce-C MapReduce-W SAT Solver Web Frontend Web Search GMean

N
o

r
m

a
li

z
e

d
 P

e
r
fo

r
m

a
n

c
e

Mesh

Flattened Butterfly

NOC-Out

Figure 7: System performance, normalized to a mesh-based design.

due to various software bottlenecks. For these two workloads,

we choose the 16 tiles in the center of the die for the mesh and

flattened butterfly designs, and the 16 core tiles adjacent to the

LLC in the NOC-Out design.

5.4. Simulation Infrastructure

We estimate the performance of the various processor designs

using Flexus full-system simulation [22]. Flexus extends the

Virtutech Simics functional simulator with timing models of

cores, caches, on-chip protocol controllers, and interconnect.

Flexus models the SPARC v9 ISA and is able to run unmodi-

fied operating systems and applications.

We use the SimFlex multiprocessor sampling methodol-

ogy [22]. Our samples are drawn over an interval of 10

seconds of simulated time. For each measurement, we

launch simulations from checkpoints with warmed caches

and branch predictors, and run 100K cycles (2M cycles for

Data Serving) to achieve a steady state of detailed cycle-

accurate simulation before collecting measurements for the

subsequent 50K cycles. We use the ratio of the number of ap-

plication instructions to the total number of cycles (including

the cycles spent executing operating system code) to measure

performance; this metric has been shown to accurately reflect

overall system throughput [22]. Performance measurements

are computed with 95% confidence with an average error of

less than 4%.

6. Evaluation

We first examine system performance and area efficiency of

mesh, flattened butterfly, and NOC-Out designs given a fixed

128-bit link bandwidth. We then present an area-normalized

performance comparison, followed by a discussion of power

trends.

6.1. System Performance

Figure 7 shows full system performance, normalized to the

mesh, under the various NOC organizations. Compared to

the mesh, the richly-connected flattened butterfly topology

improves performance by 7-31%, with a geomean of 17%.

The highest performance gain is registered on the Data Serv-

ing workload, which is characterized by very low ILP and

MLP, making it particularly sensitive to the LLC access la-

tency.
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Figure 8: NOC area breakdown.

On average, the proposed NOC-Out design matches the

performance of the flattened butterfly. On Data Serving, bank

contention is responsible for a small performance degradation

in NOC-Out, resulting in lower performance as compared to

the flattened butterfly. On the other hand, on Web Search (a

16-core workload), NOC-Out enjoys a smaller average com-

munication distance between the cores and the LLC, resulting

in higher performance. The bottom line is that NOC-Out im-

proves system performance by 17% over the mesh, and, on

average, matches the performance of the flattened butterfly.

We conclude the performance assessment by noting that

while the bisection bandwidths of the various topologies are

different, the networks are not congested. Differences in la-

tency, not bandwidth, across the topologies are responsible

for the performance variations.

6.2. NOC Area

Figure 8 breaks down the NOC area of the three organizations

by links, buffers, and crossbars. Only repeaters are accounted

for in link area, as wires are assumed to be routed over tiles.

At over 23mm2, the flattened butterfly has the highest NOC

area, exceeding that of the mesh by nearly a factor of 7. The

large footprint of the flattened butterfly is due to its large link

budget and the use of buffer-intensive many-ported routers.

NOC-Out’s interconnect footprint of 2.5mm2 is the lowest

among the evaluated designs, requiring 28% less area than

a mesh and over 9 times less area than a flattened butterfly.

NOC-Out’s area advantage stems from minimal connectivity

among the majority of the nodes (i.e., cores) and from the

8
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Figure 9: System performance, normalized to a mesh-based design, under a fixed NOC area budget.

use of low-complexity network trees (reduction and disper-

sion) that minimize router costs. Each of the two tree net-

works contributes just 18% to the total NOC footprint. In con-

trast, the flattened butterfly interconnecting NOC-Out’s LLC

region constitutes 64% of the total network area while linking

just 11% of the tiles.

6.3. Area-Normalized Comparison

The performance and area analysis in the previous two sec-

tions assumed a fixed link width of 128 bits, resulting in vastly

different NOC area costs and bisection bandwidths. To better

understand how the various designs compare given a fixed

NOC budget, we assess the performance of the mesh and flat-

tened butterfly using NOC-Out’s area of 2.5mm2 as a limiting

constraint. We reduce the width of both mesh and flattened

butterfly NOCs until each of their respective areas (links +

routers) equals that of NOC-Out and then measure the perfor-

mance of the resulting designs.

Figure 9 summarizes the results of the study, with perfor-

mance of the three organizations normalized to that of the

mesh. Given a smaller area budget, the performance of both

mesh and flattened butterfly degrades. The degradation is

small in the mesh network, as the increase in the serializa-

tion latency continues to be dwarfed by the header delay. In

contrast, the richly-connected flattened butterfly sees its link

bandwidth shrink by a factor of 7, significantly impacting end-

to-end latency through a spike in the serialization delay. Com-

pared to the flattened butterfly at the same area budget, NOC-

Out enjoys a 65% performance advantage. Compared to the

mesh, NOC-Out’s performance edge is 19%.

6.4. Power Analysis

Our analysis shows that the NOC is not a significant con-

sumer of power at the chip level. For all three organizations,

NOC power is below 2W. In contrast, cores alone consume in

excess of 60W. Low ILP and MLP of scale-out workloads is

the main reason for the low power consumption at the NOC

level. Another factor is the near-absence of snoop traffic in

these workloads.

NOC-Out results in the most energy-efficient NOC design,

dissipating 1.3W of power, on average. Mesh and flattened

butterfly average 1.8W and 1.6W, respectively. In all organi-

zations, most of the energy is dissipated in the links. NOC-

Out’s higher efficiency stems from the lower average distance

between the cores and the LLC, resulting in less energy spent

in the wires. Meanwhile, the flattened butterfly’s rich connec-

tivity gives it an advantage over the mesh.

6.5. Summary

The evaluation results show that NOC-Out offers the perfor-

mance of the richly-connected flattened butterfly topology at

a fraction of the network area. Whereas the flattened butter-

fly requires a prohibitive 23mm2 of die real-estate, NOC-Out

necessitates just 2.5mm2 for the interconnect. When con-

strained to NOC-Out’s area budget, the performance of the

flattened butterfly diminishes, giving NOC-Out a 65% perfor-

mance advantage. In comparison to a mesh, NOC-Out im-

proves performance by 17% and reduces the network area

footprint by 28%.

7. Discussion

7.1. Scalability of NOC-Out

So far, our description and evaluation of NOC-Out has been

in the context of a 64-core CMP. NOC-Out can be readily

scaled to support larger numbers of cores through the use

of concentration and, in configurations featuring hundreds of

cores, through judicious use of express channels in reduction

and dispersion networks. If necessary, the LLC network can

be scaled up by extending its flattened butterfly interconnect

from one to two dimensions. We now briefly discuss each of

these options.

Concentration: Concentration can be used to reduce the

network diameter by aggregating multiple terminals (e.g.,

cores) at each router node [2]. In the case of reduction and

dispersion networks, a factor of two concentration at each

node (i.e., two adjacent cores sharing a local port of the

mux/demux) could be used to support twice the number of

cores of the baseline design at nearly the same network area

cost. With four times more nodes in the network and a con-

centration factor of four, we find that the 16B links in the tree

networks are bottlenecked by insufficient bandwidth, necessi-

tating either additional or wider links.

Express links: In future CMPs with hundreds of cores,

the height of the reduction and dispersion trees may become

a concern from a performance perspective. To mitigate the

tree delay, express links can be judiciously inserted into the

9
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tree to bypass some number of intermediate nodes, allowing

performance to approach that of an "ideal" wire-only network.

While express links increase the cost of the network due to

greater channel expense, they are compatible with the simple

node architectures described in Sections 4.1 and 4.2 and do

not necessitate the use of complex routers.

Flattened butterfly in LLC: When executing scale-out

workloads, much of the useful LLC content is the instruc-

tion footprint and OS data. Because this content is highly

amenable to sharing by all the cores executing the same bi-

nary, adding cores to a scale-out processor does not mandate

additional LLC capacity [15]. Should the need arise, how-

ever, to expand the LLC beyond a single row of tiles, the flat-

tened butterfly network interconnecting the tiles can be read-

ily scaled from one to two dimensions. While an expanded

flattened butterfly increases the cost of NOC-Out, the expense

is confined to the fraction of the die occupied by the LLC.

7.2. Comparison to Prior Work

NOC-Out is not the first attempt to specialize the on-chip in-

terconnect to a specific application domain. Bakhoda et al.

proposed a NOC design optimized for GPU-based throughput

accelerators [1]. Significant similarities and differences exist

between the two efforts. Both designs address the needs of

thread-rich architectures characterized by a memory-resident

data working set and a many-to-few-to-many traffic pattern.

But whereas workloads running on throughput accelerators

are shown to be insensitive to NOC latency, we show scale-

out workloads to be highly sensitivity to interconnect delays

due to frequent instruction fetches from the LLC. As a result,

NOC-Out innovates in the space of delay-optimized on-chip

topologies, whereas prior work has focused on throughput

and cost in the context of meshes.

One effort aimed at boosting NOC efficiency specifically in

the context of server processors was CCNoC, which proposed

a dual-mesh interconnect with better cost-performance char-

acteristics than existing multi-network alternatives [20]. Our

work shows that mesh-based designs are sub-optimal from a

performance perspective in many-core server processors.

A number of earlier studies sought to reduce NOC area

cost and complexity through microarchitectural optimizations

in crossbars [12, 21], buffers [17], and links [16]. A recent

study examined challenges of NOC scalability in kilo-node

chips and proposed an interconnect design that co-optimized

buffering, topology, and flow control to reduce NOC area and

energy [7]. All of these efforts assume a conventional tiled

organization. In contrast, our NOC-Out design lowers NOC

area overheads by limiting the extent of on-die connectivity.

However, NOC-Out’s efficiency can be further improved by

leveraging many of the previously proposed optimizations.

Finally, Huh et al. preceded NOC-Out in proposing a seg-

regated NUCA CMP architecture in which core and LLC tiles

are disjoint [9]. Our design is different from Huh’s in that it

seeks to reduce the number of cache tiles to lower network

cost, whereas Huh relied on a sea of cache tiles to optimize

data placement and partitioning.

8. Conclusion

Server processors for scale-out workloads require many cores

to maximize performance per die by exploiting request-level

parallelism abundant in these workloads. Standing in the way

of seamless performance scale-up resulting from additional

cores is the on-die interconnect that adds delay on instruc-

tion fetches serviced by the last-level cache. The performance

penalty is particularly acute in mesh-based networks that re-

quire a large number of router traversals on a typical LLC

access. While a low-diameter flattened butterfly topology

overcomes the performance bottleneck of meshes, it incurs

a high area overhead through the use of many-ported routers

and repeater-intensive long-range links.

This work introduced NOC-Out, a processor organization

tuned to the demands of scale-out workloads. NOC-Out seg-

regates LLC banks from core tiles and places the cache in the

center of the die, naturally accommodating the bilateral core-

to-cache data access pattern characteristic of scale-out work-

loads. With the bulk of the traffic flowing to the LLC and

directly back to the cores, NOC-Out simplifies the intercon-

nect by restricting direct connectivity among the cores. NOC-

Out farther improves network cost and latency characteristics

through the use of simple tree topologies that take advantage

of the bilateral traffic pattern between the cores and the LLC.

Finally, NOC-Out optimizes the intra-LLC interconnect by

reducing the number of LLC tiles for a fixed cache capacity

with respect to the conventional tiled design. The combina-

tion of these optimizations enable a low-cost low-latency in-

terconnect fabric that matches the performances of a flattened

butterfly at the cost of a mesh.
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