
NoC Synthesis Flow for Customized Domain
Specific Multiprocessor Systems-on-Chip

Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Student Member, IEEE,

Rutuparna Tamhankar, Student Member, IEEE, Stergios Stergiou, Student Member, IEEE,

Luca Benini, Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—The growing complexity of customizable single-chip multiprocessors is requiring communication resources that can only be

provided by a highly-scalable communication infrastructure. This trend is exemplified by the growing number of Network-on-Chip

(NoC) architectures that have been proposed recently for System-on-Chip (SoC) integration. Developing NoC-based systems tailored

to a particular application domain is crucial for achieving high-performance, energy-efficient customized solutions. The effectiveness of

this approach largely depends on the availability of an ad hoc design methodology that, starting from a high-level application

specification, derives an optimized NoC configuration with respect to different design objectives and instantiates the selected

application specific on-chip micronetwork. Automatic execution of these design steps is highly desirable to increase SoC design

productivity. This paper illustrates a complete synthesis flow, called NetChip, for customized NoC architectures, that partitions the

development work into major steps (topology mapping, selection, and generation) and provides proper tools for their automatic

execution (SUNMAP, �pipesCompiler). The entire flow leverages the flexibility of a fully reusable and scalable network components

library called �pipes, consisting of highly-parameterizable network building blocks (network interface, switches, switch-to-switch

links) that are design-time tunable and composable to achieve arbitrary topologies and customized domain-specific NoC architectures.

Several experimental case studies are presented in the paper, showing the powerful design space exploration capabilities of the

proposed methodology and tools.

Index Terms—Systems-on-chip, networks on chip, synthesis, mapping, architecture.

�

1 INTRODUCTION

IN contrast to past projections, today the introduction of
new technology solutions is increasingly application

driven. As an example, let us consider ambient intelligence,
which is regarded as the new paradigm for consumer
electronics. Systems designed for ambient intelligence will
be based on high-speed digital signal processing, with
computational loads ranging from 10 MOPS for lightweight
audio processing, 3 GOPS for video processing, 20 GOPS for
multilingual conversation interfaces, and up to 1 TOPS for
synthetic video generation [4]. This computational chal-
lenge will have to be addressed at manageable power levels
and affordable costs, and a single processor will not suffice,
thus driving the development of increasingly more complex
Multi-Processor Systems-on-Chip (MPSoCs).

SoCs represent high-complexity, high-value semicon-
ductor products that incorporate building blocks from
multiple sources (either in-house made or externally
supplied), such as general-purpose fully programmable
processors, coprocessors, DSPs, dedicated hardware accel-
erators, memory blocks, I/O blocks, etc. Even though

commercial products currently exhibit only a few integrated
cores (e.g., NEC’s new TCP/IP offload engine is powered
by 10 Tensilica Xtensa Processor Cores [42]), in the next few
years technology will support the integration of thousands
of cores, making a large computational power available.

Full exploitation of the increased level of SoC integration
requires new paradigms and significant improvements of
design productivity, as current system architectures and
design styles do not scale up to such dimensions and
complexities. A relevant example regards the system
architecture, whose paradigm is progressively shifting from
computation-centric to communication-centric. In fact,
MPSoC performance will be increasingly determined by
the ability of the communication infrastructure to efficiently
accommodate the communication needs of the integrated
computation resources. Traditional state-of-the-art shared
busses cannot meet the scalability requirements of complex
MPSoCs due to the serialization of bus access requests, and
turn out to be also energy-inefficient due to the broadcast
communication paradigm.

A scalable communication architecture that supports the
trend of SoC integration consists of an on-chip packet-
switchedmicronetwork of interconnects, generally known as
Network-on-Chip (NoC) [2], [21], [34]. The scalable and
modular nature of NoCs and their support for efficient on-
chip communication potentially leads to NoC-based multi-
processor systems characterized by high structural complex-
ity and functional diversity. It is observed in [14] that NoC-
based systems are economically feasible if they can be used in
several product variants, and if the design can be reused in
different application areas. On the other hand, successful
products must provide good performance characteristics,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005 113

. D. Bertozzi and L. Benini are with DEIS, University of Bologna, Viale
Risorgimento 2, 40136, Bologna, Italy.
E-mail: {dbertozzi, lbenini}@deis.unibo.it.

. A. Jalabert is with CEA-LETI, France. E-mail: antoine.jalabert@cea.fr.

. S. Murali, R. Tamhankar, S. Stergiou, and G. De Micheli are with the
Department of Electrical Engineering, Gates Computer Science Building,
Room 330, 353 Serra Mall, Stanford University, Stanford, CA 94305.
E-mail: {smurali, rutu, utopcell, nanni}@stanford.edu.

Manuscript received 30 Jan. 2004; revised 29 June 2004; accepted 21 July
2004; published online 20 Dec. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0035-0104.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

thus requiringdedicated solutions that are tailored to specific
needs.As a consequence, the challenge lies in the capability to
designhardware-optimized, customizable computationplat-
forms for each application domain [9].

Hardware optimization can be achieved by facilitating
the integration of domain-specific computation resources in
a plug-and-play design style. Standard interface sockets
such as Virtual Component Interface (VCI) [43] and Open Core
Protocol (OCP) [44] have been developed for this purpose
and support the use of a common NoC as the basis for
system integration. A relevant task of these interfaces is to
make the NoC adaptive to the different features of the
integrated cores (e.g., data and address bus width).

NoC architectures are pushing the evolution of traditional
IC design methodologies in order to more effectively deal
with functional diversity and complexity. At the application
level, the key design challenge is to expose task-level
parallelism and to formally capture concurrent communica-
tion in models of computation [14]. Then, high-level con-
current tasks have to be mapped to the underlying
communication and computation resources. At this level,
an abstract model of the hardware architecture is usually
exposed to the mapping tool, so that area and power
estimates can be given in the early design stage, and different
objective functions (e.g., minimization of communication
energy) can be considered to evaluate the feasibility of
alternativemappings. ForNoC-basedMPSoCs, a critical step
in communicationmapping is thenetwork topology selection
for its significant impact on overall system performance,
which is increasingly communication-dominated.

Although a lot of research efforts are being devoted to
improving individual design activities, there are very few
complete NoC design methodologies and CAD tools.
Setting up a fully automated synthesis framework for NoCs
is a nontrivial task, particularly for the case of application
specific MPSoCs, where a set of heterogeneous computing
and storage resources have to be interconnected to each
other by means of a custom-tailored communication net-
work. This translates into the need to provide design time
instantiation of different network schemes and topologies,
tailored to the specific application domain.

A library-based approach to NoC design could be an
effective solution [12], [24], wherein predesigned soft
macros are composed at instantiation time to build arbitrary
topologies. However, the full exploitation of a customizable
network topology requires an ad hoc design methodology
spanning different levels of abstractions (from application
specification to physical implementation) and deriving the
most efficient NoC configuration for a given application
domain.

The design methodology has to partition the design
problem into manageable tasks and to define the tools and
practices for those tasks. In this paper, we propose a NoC
synthesis flow, called NetChip, for designing domain-
specific NoCs and automating most of the complex and
time-intensive design steps. Significantly, NetChip pro-
vides design support also for regular network topologies
and, therefore, lends itself to the implementation of both
homogeneous and heterogeneous system interconnects.

NetChip assumes that the application has already been
mapped onto cores by using preexisting tools (such as [15])
and the resulting cores together with their communication
requirements represent the inputs to ourNoC synthesis flow.
The tool-assisted design and generation of a customized
NoC-based communication architecture is the ultimate goal

of NetChip, and is achieved by means of three major design
activities: topology mapping, topology selection, and topology
generation. NetChip leverages two tools: SUNMAP, which
performs the network topology mapping and selection func-
tions, and �pipesCompiler, which performs the topology
generation function.

SUNMAP produces a mapping of cores onto various NoC
topologies that are defined in a topology library. The
mappings are optimized for the chosen design objective
(such as minimizing area, power or hop delay) and satisfy
the design constraints (such as area or bandwidth con-
straints). SUNMAP uses floorplanning information early in
the mapping process to determine the area-power estimates
of a mapping and to produce feasible mappings (satisfying
the design constraints). The tool supports various routing
functions (dimension ordered, minimum-path, traffic split-
ting across minimum-paths, traffic splitting across all paths)
and chooses the mapping onto the best topology from the
library of available ones.

A design file describing the chosen topology is input to
the �pipesCompiler, which automatically generates the
SystemC description of the network components (switches,
links, and network interfaces) and their interconnection
with the cores. A custom hand-mapped topology specifica-
tion can also be accepted by the NoC synthesizer, and the
network components with the selected configuration can be
generated accordingly. The resulting SystemC code for the
whole design can be simulated at the cycle-accurate and
signal accurate level. The �pipesCompiler uses the
�pipes library, which consists of highly parameterizable
network building blocks that can be tuned and composed at
design time to generate the chosen topology. Thus,
NetChip automates NoC mapping, selection, and genera-
tion functions of a design, thereby bridging an important
design gap in building NoCs.

The rest of the paper is organized as follows: In the next
section, we present the previous works in this area. In
Section 3, we present the design methodology of NetChip.
In Sections 4 and 5, we present the SUNMAP tool and the
area-power models used in the tool. In Section 6, we present
the architecture of networks components defined in the
�pipes library. We present the �pipesCompiler in
Section 7. The NetChip design flow is used to model
several video and network applications. The communica-
tion pattern in these applications differ, thereby requiring
various topologies for different applications. These are
presented in Sections 8.1 and 8.2. The rich design space
exploration capabilities of NetChip is shown in Section 8.3.
The design flow can also be used to model custom hand-
mapped topologies and is explained in Section 8.4. In
Section 8.5, we model a DSP Filter application and generate
the SystemC files of the chosen topology. The resulting
design is simulated at the cycle-accurate level and the
simulations are checked for functional and timing correct-
ness, validating the output of our tools.

2 PREVIOUS WORK

The most advanced state-of-the-art SoC communication
architectures represent evolutionary solutions with respect
to sharedbusses. SonicsMicroNetwork [36] is aTDMA-based
bus which can easily adapt to the data-word width, burst
attributes, interrupt schemes, and other critical parameters of
the integrated cores, while providing very high bandwidth
utilization. STBUS interconnect is a high performance

114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

communication infrastructure that allows to instantiate
shared busses as well as more advanced topologies such as
partial or full crossbars. Although evolutionary from a
topology viewpoint, these solutions can rely on advanced
and highly automated design methodologies for the imple-
mentation of generic communication subsystems, allowing
designers to rapidly assemble, synthesize, and verify their
SoCs using the MicroNetwork or the STBUS interconnect as
integration platforms.

However, the early works in [2], [34] pointed out the
need for more scalable architectures for on-chip commu-
nication and, therefore, to progressively replace shared
busses with on-chip networks. Many NoC architectures
have therefore been proposed in the open literature so far,
but in most cases, the design methodologies and tools are
still in the early stage.

One of the earliest contributions in this area is the Maia
heterogeneous signal processing architecture, proposed by
Zhang et al., based on a hierarchical mesh network [10].
Unfortunately, Maia’s interconnect is fully instance-specific.
Furthermore, routing is static at configuration time and
communication is based on circuit switching, as opposed to
packet switching. In this direction, Dally and Lacy sketch
the architecture of a VLSI multicomputer using 2009
technology [35]. A chip with 64 processor-memory tiles is
envisioned. Communication is based on packet switching.
This seminal work draws upon past experiences in
designing parallel computers and reconfigurable architec-
tures (FPGAs and their evolutions) [30], [31], [32].

Most proposed NoC platforms are packet switched and
exhibit regular structure. An example is a mesh intercon-
nection, which can rely on a simple layout and the switch
independence on the network size. The NOSTRUM net-
work described in [5] takes this approach: The platform
includes both a mesh topology and the relative design
methodology, wherein a concrete architecture is derived
from a general NoC template, then application mapping
follows.

The Scalable Programmable Integrated Network (SPIN)
described in [3] is another regular, fat-tree-based network
architecture. It adopts cut-through switching to minimize
message latency and storage requirements in the design of
network switches. The Linkoeping SoCBUS [39] is a two-
dimensional mesh network which uses a packet connected
circuit (PCC) to set up routes through thenetwork:Apacket is
switched through the network locking the circuit as it goes.
This notion of virtual circuit leads to deterministic commu-
nication behavior but restricts routing flexibility for the rest of
the communication traffic.

In [8], the use of octagon communication topology for
network processors is presented. Instead, the implementa-
tion of a star-connected on-chip network supporting plesio-
chronous communication among system components is
described in [13].

TheAetherealNoCdesign frameworkpresented in [7] aims
at providing a complete infrastructure for developing
heterogeneous NoC with end-to-end quality of service
guarantees. The network supports guaranteed throughput
(GT) for real-time applications and best effort (BE) traffic for
timing unconstrained applications. Support for heteroge-
neous architectures requires highly configurable network
building blocks, customizable at instantiation time for a
specific application domain. For instance, the Proteo NoC [12]
consists of a small library of predefined, parameterized
components that allow the implementation of a large range of

different topologies, protocols and configurations. �pipes

interconnect [24] and its synthesizer�pipesCompiler [25]
push this approach to the limit, by instantiating an applica-
tion specific NoC from a library of composable soft macros
(network interface, link, and switch). The components are
highly parameterizable and provide reliable and latency
insensitive operation. They represent the core of the NoC
synthesis flow illustrated in this paper.

In [11], a hierarchical approach for designing on-chip
networks was presented to help designers compare different
design options. Design methodologies for building irregular
networks have been proposed in [18], [20]. Pinto et al. [18]
presents a heuristic for the constraint-driven communication
synthesis of on-chip communication networks, while [20]
describes a design methodology for finding minimal topol-
ogies that support low contention or contention-free com-
munication for known communication patterns. In [19],
memory optimization in single chip network fabrics is
explored.

The problem of mapping cores onto NoC architectures is
addressed in [22], [23], [26], [27]. In [22], a branch-and-
bound algorithm is used to map cores onto a mesh-based
architecture with the objective of minimizing energy and
satisfying the bandwidth constraints of the NoC. A simple
dimension-ordered routing is assumed in the work. In [23],
the authors extend the above work for other deadlock free
minimal path routing algorithms. In [26], fast algorithms for
mesh NoC architectures under different routing functions
(minimum path, split-traffic) and delay/bandwidth con-
straints are presented.

The design methodology and tools presented in this
paper aim at providing MPSoC designers with a framework
for the rapid selection and synthesis of application-specific
NoC architectures. While still allowing the comparison and
generation of regular network topologies, our NoC design
framework supports the synthesis of customized irregular
topologies, and bridges a gap in a largely unexplored
research area.

3 DESIGN FLOW OF NETCHIP

The design flow of NetChip is presented in Fig. 1a. The
application is mapped onto cores during the hardware/
software codesign phase using existing tools such as [15].
By means of static analysis or simulation, it is possible to
determine the average rate of data transfer between the
cores. The resulting cores and communication demands
between them is represented by a graph, called core graph,
and is the input to our tool. NetChip has three phases of
operation: topology mapping phase, topology selection phase,
and topology generation phase. NetChip in-turn has two tools
built into it: SUNMAP which performs the topology mapping
and selection phases and the �pipesCompiler which
generates the selected topology.

In the topology mapping phase, NetChip takes as inputs:

. the core graph with communication among cores
annotated as edge weights,

. the design objective function that needs to be
optimized, and

. the design constraints that are to be satisfied by the
mapping.

Netchip has a Graphical User Interface (GUI) designed in
TCL/TK for entering the inputs. A snapshot of the GUI is

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 115

presented in Fig. 1b. The input core graph is then mapped
onto various standard topologies (mesh, torus, hypercube,
Clos, and butterfly) defined in the topology library. The
approach presented here is general and other topologies
(such as the star network or the octagon network [13], [8]) can
be easily added to the library. Netchip explores various
design objectives such as minimizing average hop delay,
area, and power dissipation. The tool also supports
different routing functions: dimension-ordered, minimum path,
traffic splitting across minimum paths, and traffic splitting
across all paths. For each mapping, the bandwidth and area
constraints are evaluated, so that only feasible mappings are
chosen. The area-power models and floorplanner are built
into NetChip, so that area-power estimates can be
incorporated early in the mapping process. For a chosen
design objective and routing function, the best feasible
mappings onto various topologies are obtained.

In the topology selection phase, the various topologies (with
mappings produced from the mapping phase) are evaluated
for several design objectives and the best topology for the
application is chosen. The design file describing the selected
topology and routing files describing the routes (or paths) to
be taken (which depends on the chosen routing function) are
automatically generated. The SUNMAP tool which incorpo-
rates these two phases is explained in Section 4.

In the topology generation phase, NetChip reads the
design and routing files and generates SystemC description
of network components for the selected topology using
�pipesCompiler. The �pipesCompiler instantiates a
network of building blocks from the �pipes library, which
consists of composable soft macros (switches, network
interfaces, and links) described in SystemC at the cycle-
accurate level. The network components generated are
optimized for that particular network and support reliable,
latency-insensitive operation. The architecture of the
�pipes network components is presented in Section 6. In
Section 7, the �pipesCompiler is presented.

NetChip can also accept a custom hand-mapped
topology and generate the network components for the
topology. In such a case, the first two phases are skipped, as

shown in Fig. 1a. The resulting network generated by the
�pipesCompiler is highly optimized for that particular
topology. The area, power, and latency savings of the
custom mappings can also be compared with mappings
onto standard topologies using the NetChip tool.

4 TOPOLOGY MAPPING AND SELECTION

We formulate the mapping problem mathematically as
follows. The communication between the cores of the SoC is
represented by the core graph:

Definition 1. The core graph is a directed graph GðV ;EÞ, where
V ¼ fvi; i ¼ 1; 2; . . . ; N1g, N1 ¼ jV j, with each vi repre-
senting a core and the directed edge ðvi; vjÞ, denoted as
ei;j 2 E, representing the communication between the cores vi
and vj. The weight of the edge ei;j, denoted by commi;j,
represents the bandwidth of the communication from vi to vj.

The connectivity and link bandwidth of the NoC is
represented by the NoC topology graph:

Definition 2. The NoC topology graph is a directed graph
P ðU; F Þ, where U ¼ fui; i ¼ 1; 2; . . . ; N2g, N2 ¼ jUj, with
each vertex ui 2 U representing a node in the topology and the
directed edge ðui; ujÞ, denoted as fi;j 2 F representing a direct
communication between the vertices ui and uj. The weight of
the edge fi;j, denoted by bwi;j, represents the bandwidth
available across the edge fi;j.

The mapping of the core graph GðV ;EÞ onto the
processor graph P ðU; F Þ is defined by the one-to-one
mapping function map:

map : V ! U; s:t: mapðviÞ ¼ uj; 8vi 2 V ; 9uj 2 U: ð1Þ

The mapping is defined when jV j � jU j.
As an example, the core graph of Video Object Plane

Decoder (Fig. 2a) is shown in Fig. 2b. Example topology
graphs of mesh, torus, hypercube, Clos, and butterfly are

116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 1. Design flow of NetChip and the input GUI. (a) Design flow of NetChip and (b) snapshot of the input GUI.

shown in Fig. 4. An example mapping of the VOPD core
graph onto mesh and torus topology graphs is shown in
Figs. 2c and 2d.

The communication between each pair of cores (i.e., each
edge ei;j 2 E) is treated as a flow of single commodity,
represented as fdk; k ¼ 1; 2; � � � ; jEjg. The value of dk
represents the bandwidth of communication across the
edge and is denoted by vlðdkÞ. The set of all commodities is
represented by D and is defined as:

D ¼
dk : vlðdkÞ ¼ commi;j; k ¼ 1; 2; � � � ; jEj; 8i; j : ei;j 2 E;

with sourceðdkÞ ¼ mapðviÞ; destðdkÞ ¼ mapðvjÞ:

� �

ð2Þ

As an example, in Fig. 2b, the communication between vld

and rld is represented by a single commodity, d1, with
value vlðd1Þ equal to 70, sourceðd1Þ representing vld and
destðd1Þ representing rld.

4.1 General Minimum-Path Mapping Algorithm

In this section, we present the general mapping algorithm,
and in the next sections, we show how the algorithm is
adapted for each topology. NetChip supports different
routing functions: dimension-ordered, minimum-path, traffic
splitting across minimum-paths, and traffic splitting across all
paths. In dimension-ordered and minimum-path routing,
the communication between every pair of cores takes place
through a single path. Splitting the traffic across multiple
paths reduces the bandwidth requirements of network
links. In traffic splitting across minimum paths, the
communication between cores is spread only across the
minimum paths between them. Clearly, this is a special case
of the all-path traffic splitting. The advantage of this scheme
is that it has bandwidth requirements which are inter-
mediate to that of minimum-path routing and all-path
traffic splitting. Also, traffic streams across different paths
have the same hop delay, thereby reducing the jitter
associated with traffic splitting.

As the graph mapping problem is a special case of the
quadratic assignment problem, which is intractable [22],
[29], we use a heuristic approach with three phases:

1. An initial mapping is obtained using a greedy
algorithm.

2. For minimum-path routing, the minimum-paths and
mapping costs are computed. When the routing
function is traffic splitting, the paths are obtained by
solving a system of Multi-Commodity Flow (MCF)
equations [26].

3. The solution is iteratively improved by invoking the
second phase for every mapping produced by pair-
wise swapping of vertices.

The minimum-path mapping algorithm is presented in
Figs. 3a and 3b. In this paper, we present only mapping
algorithms for minimum-path routing and we refer the
interested reader to [26] for description of the mapping
algorithms for other routing functions. In the initial
mapping procedure, first the core that has maximum
communication demand is placed onto one of the mesh
nodes with maximum number of neighbors. Then, the core
that communicates the most with placed cores is chosen.
This core is placed onto the NoC node that minimizes the
cost function and this procedure is repeated until all the
cores are placed.

Once an initial mapping is obtained, in the second phase
(steps 2 to 8 in Fig. 3), the commodities are sorted in
decreasing order of their values. Then, for each commodity
in order, a quadrant graph between the source and destina-
tion of the commodity is formed, as the shortest path
between the source and destination lies within the quadrant
between them. The shaded regions in Figs. 2c and 2d are
examples of quadrant graphs for the communication
between the cores smem and iquant. The procedure for
forming quadrant graphs is presented in Section 4.3. Then,
Dijkstra’s shortest path algorithm is applied (step 5) to the
quadrant graph and the minimum path is obtained. The
edge weights are incremented suitably and the procedure is
repeated for each commodity in order. After routing all
commodities, if the bandwidth and area constraints are
satisfied, the cost of communication is calculated. Band-
width constraints are satisfied, if in the resulting mapping,
the traffic across any link is smaller than or equal to the
capacity of the link.1 The area constraints are satisfied when
the mapped design area is lower than the maximum
allowed area and aspect ratios of the design and soft core
blocks (blocks that have flexible sizes) are within permis-
sible ranges. For the area-power estimates, area-power
models of the switches and floorplanner are incorporated
into NetChip as explained in Section 5. The mapping
algorithms can have many different objectives such as
minimizing average hop delay, area, or power dissipation
and is an input parameter to NetChip. Depending on the
objective function, the cost function calculation (done as
part of step 8) varies.

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 117

1. Capacity of a link in an NoC is technology and implementation
dependent and is assumed as an input to NetChip.

Fig. 2. VOPD block diagram and core graph, with communication BW annotated (in MB/s) and its mapping onto mesh and torus topologies. (a) VOPD

block diagram, (b) VOPD graph, (c) mesh mapping, and (d) torus mapping.

In the last phase of the algorithm (steps 9-10), for each
pair-wise swapping of vertices, phase-2 is repeated. Finally,
the best mapping from all evaluated mappings is returned
by the procedure. The best mappings of VOPD onto mesh
and torus topologies for the design objective of minimizing
power is presented in Figs. 2c and 2d.

As the minimum-path computations are performed on
the quadrant graph instead of the entire NoC graph, large
computational time savings is achieved, as the number of
nodes in a quadrant graph is much smaller than the total
NoC nodes. The runtime of the algorithm is just a few
minutes even for large applications (around 100 nodes) on a
1 GHz SUN workstation. The detailed comparison of this
algorithm (applied to mesh topology mapping) with
existing algorithms is presented in [26].

In the mapping algorithm presented above, all but two of
the steps are common to all topologies: The first step is the
formation of NoC topology graph, which is obviously
specific to a particular topology, and the second step is the
procedure used to form quadrant graphs, which varies with

the topology used. These two steps are explained in detail
in the following sections.

4.2 NoC Topology Graph Definition

The formal definition of the NoC topology graph was
presented in the beginning of this section. The edges in the
NoC graph represent connections between adjacent NoC
nodes. Thus, for defining a topology graph, we simply need
to define the nodes that are adjacent to a particular node in
that topology.

For a mesh, each node, except the nodes on the edges,
have four neighbors, nodes in the four corners have two
neighbors, and other nodes in the edges have three
neighbors. A torus has similar structure as the mesh, but
has additional wrap-around channels between the edge
nodes.

Example 1. In the mesh topology shown in Fig. 4a, corner
nodes such as node 0 has two neighbors, edge nodes
such as node 1 has three neighbors, and other nodes such
as node 4 has four neighbors. The wrap-around channels
of a torus are shown in Fig. 4b (such as the channels

118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 3. Minimum-path mapping algorithms. (a) Initial mapping procedure and (b) minimum-path mapping procedure.

Fig. 4. NoC topologies. (a) Mesh, (b) torus, (c) hypercube, (d) 3-stage Clos, and (e) butterfly.

connecting node 0 with nodes 2 and 6).

For a hypercube with N nodes (also called as 2-ary
n-cube), each node has n (which is equal to log2 N)
neighbors. A node ui in such a network is represented by
the n-tuple: (h1; h2; . . . ; hn), which is the binary representa-
tion of the decimal i. Intuitively, each hj represents a single
dimension and, thus, an n-tuple uniquely identifies every
node of a 2-ary n-cube.

Example 2. Node 2 in Fig. 4c is represented by ð0; 1; 0Þ. All
nodes with n-tuples distance 1 apart from the n-tuple for
ui are neighbors of ui (node 6 whose 3-tuple is ð1; 1; 0Þ is
adjacent to 2).

For Clos networks (for the sake of simplicity, we restrict to
three-stage Clos networks), each switch in a stage is
connected to every switch in the next stage (e.g., switch 0 of
stage 1 in Fig. 4d is connected to switches 0; 1; 2; 3 of stage 2).
Thus, adjacency calculations are simple for this topology.
Butterfly networks (with N core nodes) are also known as
k-ary n-fly networks, where k is the radix of switches in the
network, and n is the number of stages in the network
(n ¼ logk N). A 2-ary 3-fly network is presented in Fig. 4e. As
seen, the switches in each stage are connected to two switches
in the next stage. The maximum distance between adjacent
switches halves with each stage (e.g., switch 0 of stage 1 is
connected to switches 0 and 2 of stage 2, resulting in a
maximumdistance of 2. Switch 0 of second stage is connected
to switches0and1of third stage, thus resulting inamaximum
distance of 1).

4.3 Quadrant Graph Formation

The procedure for forming quadrant graphs is specific to a
topology as the nodes that lie in the shortest path of a
commodity is topology specific. Example quadrant graphs
for mesh and torus networks were presented in Figs. 2c and
2d (shaded areas in the figure). For a mesh network, the
nodes that are within the bounding box formed by the row
and column boundaries of the source and destination nodes
of a commodity form the elements of the quadrant graph of
that commodity (Fig. 2c). For a torus network, the wrap-
around channels need to be considered for computing the
smallest bounding box between the source and destination
nodes (Fig. 2d).

For hypercubes, all nodes that havematching hj values (of
the n-tuple) as that of the source and destination nodes of a
commodity are included in the quadrant graph. As an
example, for source node 0 (represented by (0,0,0)) and
destination 3 (represented by (0,1,1)), all nodes with n-tuples
of the form(0,*,*) (where * representsdonot carevalues), form
the quadrant graph (i.e., nodes 0,1,2,3 are the elements of the
quadrant graph).

As Clos networks have full interconnection pattern
between switches of adjacent stages and butterfly networks
have no path diversity (a single path from any source to any
destination), the quadrant graph formation for these net-
works is simple.

5 AREA-POWER MODELS AND FLOORPLANNING

We developed analytical models to estimate the area of
switches. We assume that the switches are based on the
�pipes architecture. The area calculations include the
crossbar area, buffer area, logic (including control) area,
and include fine granularity of details (like accounting for

pipeline registers, cross points, etc). We used ORION [37], a
power modeling tool, for developing bit energy models for
the switches. The area-power models are developed for
various switch configurations for different technology para-
meters (in the rest of this paper, we assume 0:1� technology).
The area and energy consumption for some example switch
configurations are presented in Table 1. We use wiring
parameters from [38] to estimate link power dissipation. We
assume that the area-power values of the cores are an input to
our tool.

In order to estimate the area and link power dissipation
for a mapping, we need to know the exact size and position
of the cores and length of links. For this purpose, we have
implemented a floorplanner in NetChip. We assume there
are two types of blocks (the mapped cores are referred to as
blocks in the floorplanning formulation): hard blocks whose
dimensions are known prior to floorplanning and soft blocks
that have fixed area but unknown dimensions. In this work,
we assume the blocks to be rectangular in shape. For soft
blocks, the maximum and minimum permissible aspect
ratios (the ratio of width to length of a block) are inputs to
the floorplanner. The general solution to the floorplanning
problem has two basic steps: first is finding the relative
position of modules and the second is finding the exact
position, area, and size of the modules [28]. For a particular
mapping that needs to be evaluated for area-power-delay,
the relative positions of the cores are known. Thus, the
floorplanning problem is reduced to one of finding the
exact position and size of the cores and switches. We use a
simple Linear Program (LP)-based floorplanner existing in
literature [33] for this purpose. For the floorplanning
problem, we assume a greedy 2D mapping of higher
dimensional topologies (such as the 2-ary n-cube). Note that
a more sophisticated floorplanner such as the one presented
in [28] can be used in place of the simple floorplanner and
the floorplanner can consider specific features of NoCs.

The area and aspect ratio constraints (for feasibility of
mapping) are evaluated and link lengths in the NoC are
obtained from the floorplanner. Using the built-in power
models, power dissipation for the switches and links are
calculated based on the average traffic (shown as edge
annotations in Fig. 2b) through them. The computed area,
power values are returned (step 7 in Fig. 3b) to the mapping
algorithm.

6 �PIPES

Once the best communication architecture has been selected
following the aforementioned steps, the customized NoC
configuration is generated by the �pipesCompiler.
�pipesCompiler uses the �pipes library, which con-
sists of highly parameterized network components that can
be tailored to the communication needs of the selected

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 119

TABLE 1
Switch Area and Energy

architecture. This section provides the details of the basic
building blocks of the �pipes library. The custom-tailored
generation of network component instances (operated by
�pipesCompiler) will be addressed in the next section.

The �pipes components target heterogeneous packet-
switched NoCs, thanks to the aggressive design of the
network components for high performance and to their
instantiation time flexibility. The high degree of parameter-
ization of �pipes components is achieved by using both
global network-specific parameters and local block-specific
parameters. The former ones include flit size, degree of
redundancy of error control logic, address space of the
cores, maximum number of hops between any two nodes,
maximum number of bits allocated with in a packet for end-
to-end flow control, etc. On the other hand, specific
parameters of the network interface are: type of interface
(master, slave, or both), flit buffer size at the output port,
content of routing tables for source-based routing, other
interface parameters to the cores such as number of
address/data lines, maximum burst length, etc. Parameter-
ization of the switches mainly regards the number of their
I/O ports, the number of virtual channels for each physical
output link, and the link buffer size. Finally, the length of
each individual link can be specified in terms of number of
repeater stages, as will be discussed next.

The �pipes network interface uses OCP as point-to-
point communication protocol with the cores, and takes
care of protocol conversion to adapt to the network
protocol. Data packetization results in the packet partition-
ing procedure illustrated in Fig. 5. A flit type field allows to
identify the head and the tail flit, and to distinguish
between header and payload flits.

The NoC backbone relies on wormhole switching and
static routing. Routes are obtained by the network interface
by accessing a look-up table based on the destination
address. Each route is represented by a set of direction bits.
Each switch directs the flits belonging to a certain packet to
the particular output port, based on the direction bits. This
routing algorithm allows a lightweight switch implementa-
tion as no dynamic decisions have to be taken at the
switching nodes.

One relevant �pipes feature is the support for com-
munication reliability. It is achieved by means of distributed
error detection with link-level retransmission as error
recovery technique. Although a distributed approach to
error detection causes a higher area overhead at the
network nodes compared with an end-to-end solution, the
effects of error propagation are reduced, for instance,
preventing packets with corrupted header from being
directed to the wrong path. In order to counterbalance this
overhead, error detection with retransmission of incorrectly
received data was preferred to error correction, since the

latter technique requires complex energy-inefficient deco-
ders. If the bit error rate is not high, average performance
penalty caused by retransmissions as perceived from the
application can be neglected and error detection schemes
have been showed to minimize average energy-per-bit [6];
as a consequence, they were the preferred choice to provide
communication reliability in �pipes. The retransmission
policy implemented in �pipes is GO-BACK-N. Flits are
transmitted continuously and the transmitter does not wait
for an ACK after sending a flit. Such an ACK is received
after a round-trip delay. When a NACK is received, the
transmitter backs up to the flit that is negatively acknowl-
edged and resends it in addition to the N succeeding flits
that were transmitted during the round-trip delay. At the
receiver, the N-1 received flits following the corrupted one
are discarded regardless of whether they were received
error-free or not. GO-BACK-N trades off inefficiency in bus
usage (retransmission of many error-free flits) with a
moderate implementation cost, and was preferred to a
selective-repeat scheme, wherein only those flits that are
negatively acknowledged are retransmitted but more
buffering resources are required at the destination switch.

In �pipes switches, different error detecting decoders
can be instantiated at design time, depending on their
latency and redundancy (additional link parity lines)
overhead and on their error detecting capability, that has
to be compared with the estimated (technology-dependent)
bit error rate and the required mean time to failure (MTTF)
for a specific implementation. The considered error detect-
ing codes consist of several versions of the Hamming code
and of the Cyclic Redundancy Check (CRC) code, each one
characterized by a different minimum distance and, hence,
error detection capability. The ultimate objective is to select
at design time, for a specified supply voltage and flit size,
the coding schemes that provide a MTTF of at least one year
and, among them, the scheme that minimizes decoding
latency and/or redundancy, based on the most critical
design constraint.

Finally, it is worth noting that the support for high
performance communication was provided in �pipes by
means of proper design techniques for the basic network
components (such as link pipelining, deeply pipelined
switches, and latency insensitive component design). The
architecture of the network components (links, switches,
and network interfaces) is presented in the following
sections.

6.1 Network Link

A solution to overcome the interconnect-delay problem
consists of pipelining interconnects [40], [41]: The link data
introduction rate can be decoupled from link delay by
changing this latter into latency. This requires the system to
be made of modules whose behavior does not depend on
the latency of the communication channels (latency in-
sensitive operation) [40].

�pipes interconnect takes this approach. Switch-to-
switch links are subdivided into basic segmentswhose length
guarantees that the desired clock frequency (up to the
maximum speed achievable by a certain technology) can be
used and that the systemoperating frequency is not boundby
the delay of the longest link. Depending on the specific link
length, a certain number of clock cycles is needed by a flit to
cross that interconnect. Fig. 6 illustrates the linkmodel,which
is equivalent to a pipelined shift register. Pipelining has been
used both for data and control lines.

120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 5. Packet partitioning into flits.

The figure also illustrates that pipelined links affect
operation of link-level error control, making it latency-
insensitive. The retransmission of a corrupted flit between
two successive switches is represented. Multiple outstand-
ing flits propagate across the link during the same clock
cycle. When flits are correctly received at the destination
switch, an ACK is propagated back to the source, and after
N clock cycles (where N is the length of the link expressed
as number of repeater stages) the flit will be discarded from
the buffer of the source switch. On the contrary, a corrupted
flit is NACKed and will be retransmitted in due time.

By means of a proper buffering policy, network switches
have been designed in such a way that their functional
correctness depends on the flit arriving order and not on
their exact timing, so that input links of the switches can be
different and of any length. These design choices are at the
basis of latency insensitive operation of the overall NoC and
allow the construction of an arbitrary network topology
and, hence, support for heterogeneous architectures.

6.2 Switch

A schematic representation of a �pipes switch is illu-
strated in Fig. 7a. The example configuration exhibits four
inputs, four outputs, and two virtual channels multiplexed
across the same physical output link. Switch operation is
latency insensitive, in that correct operation is guaranteed
for arbitrary link pipeline depth.

For latency insensitive operation, the switch has virtual
channel registers to store 2N þM flits, where N is the link
length (expressed as number of basic repeater stages) andM

is a switch architecture related contribution (12 cycles in this
design). The reason is that each transmitted flit has to be
acknowledgedbefore beingdiscarded from the buffer. Before
an ACK is received, the flit has to travel across the link
N cycles, an ACK/NACK decision has to be taken at the
destination switch (a portion of M cycles), the ACK/NACK
signalhas tobepropagatedback (N cycles) and recognizedby
the source switch (remaining portion of M cycles). During
this time, other2N þM flitshavebeen transmittedbutnotyet
ACKed.

Output buffering was chosen for �pipes switches, and
the resulting architecture consists of multiple replications of
the same output module reported in Fig. 7b, one for each
switch output port. All switch inputs are connected to the
inputs of each output module. Flow-control signals gener-
ated by each module (such as ACK and NACK for incoming
flits) are collected by a centralized switch unit, that directs
them back to the proper source switch. As can be observed
in Fig. 7b, each output module is deeply pipelined (seven

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 121

Fig. 6. Pipelined link model and latency-insensitive link-level error
control.

Fig. 7. �pipes switch architecture. (a) Example of 4� 4 switch configuration with two virtual channels and (b) architecture of the output module for
each �pipes switch output port.

pipeline stages) so to maximize the operating clock
frequency of the switch. The CRC decoders for error
detection work in parallel with the switch operation,
thereby hiding their latency.

The first pipeline stage checks the header of incoming
packets on the different input ports to determine whether
those packets have to be routed through the output port
under consideration. Only matching packets are forwarded
to the second stage, which resolves contention based on a
round robin policy. Arbitration is carried out when the tail
flit of the preceding packet is received, so that all other flits
of a packet can be propagated without contention related
delay at this stage. A NACK for flits of nonselected packets
is generated. The third stage is just a multiplexer, which
selects the prioritized input port. The following arbitration
stage keeps the status of virtual channel registers and
determines whether flits can be stored into the registers or
not. A header flit is sent to the register with more free
locations, followed by successive flits of the same packet.
The fifth stage is the actual buffering stage, and the ACK/
NACK response at this stage indicates whether a flit has
been successfully stored or not. The following stage takes
care of forward flow control: A flit is transmitted to the next
switch only when adequate free register locations are
available at the output port of interest of the destination
switch. Finally, a last arbitration stage multiplexes flits from
the virtual channels on the physical output link on a round-
robin basis, thereby improving network throughput.

6.3 Network Interface

The �pipes network interface (NI) provides a standar-
dized OCP-based interface to networked cores. The NI for
cores that initiate communication (initiators) needs to turn
OCP-compliant transactions into packets to be transmitted
across the network. It represents the slave side of an OCP
end-to-end connection (the master side being the initiator
core), and it is therefore referred to as network interface
slave (NIS). Its architecture is shown Fig. 8a. The NIS has to
assemble the packet header, which has to be spread over a
variable number of flits depending on the length of the path
to the destination node. The look-up table containing static

routing information is accessed by the HEADER_ BUILDER
block and the destination address is used as table entry. In
this way, two routing fields are extracted: numSB (number
of hops to destination) and lutword (actual direction bits
read from the look-up table). Together with the core
transaction related information (datastream), they are for-
warded to the FLIT_BUILDER block, provided the enable
signal busy_builder is not asserted. Based on the input data,
module FLIT_BUILDER has the task of building the flits to
be transmitted via the output buffer OUT_BUFFER,
according to the mechanism illustrated in Fig. 8b. Let us
assume that a packet requires numSB ¼ 5 hops to get to
destination, and that the direction to be taken at each switch
is expressed by DIR. Module FLIT_BUILDER builds the first
flit by concatenating the flit type field with path informa-
tion. If there is some space left in the flit, it is filled with
header information derived from the input datastream. The
unused part of the datastream is stored in a regpark
register, so that a new datastream can be read from the
HEADER_BUILDER block. The following header and/or
payload flits will be formed by combining data stored in
regpark and reg_datastream. No partially filled flits are
transmitted to make transmission more efficient. Finally,
module OUT_BUFFER stores flits to be sent across the
network, and allows the NIS to keep preparing successive
flits also when the network is congested. The size of this
buffer is a design parameter. The response phase is carried
out by means of two modules. SYNCHRO receives incom-
ing flits and reads out only useful information (e.g., it
discards routing fields). At the same time, it contains
buffering resources to synchronize the network’s requests
to transmit remaining flits of a packet with the core
consuming rate. The RECEIVE_RESPONSE module trans-
lates useful header and payload information into OCP-
compliant response fields. When a read transaction is
initiated by the initiator core, the HEADER_BUILDER block
asserts a start_receive_response signal that triggers the wait-
ing phase of the RECEIVE_RESPONSE module for the
requested data. As a consequence, the NIS supports only
one outstanding read operation to keep interface complex-
ity low. Although no read after read transactions can be

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 8. �pipes network interface and the mechanism for building flits. (a) Architecture of �pipes network interface slave and (b) mechanism for

building header flits.

initiated unless the previous one has completed, an
indefinite number of write transactions can be carried out
after an outstanding read or write has been initiated. The
latency incurred by the interface (sum of the source and
destination interface delay) is 10 cycles. The architecture of
a network interface master is similar to the one just
described.

7 THE �PIPESCOMPILER

Conceptually, the �pipesCompiler generates a SystemC
description of the NoC after the network topology has been
chosen. The input to the compiler is a high-level description
of the NoC topology, provided either automatically by
SUNMAP or manually by the designer. The high-level
description consists of the definition of the cores, network
interfaces, switches, links, and their interconnections. The
number of pipeline stages of each link is also dictated,
based on link length estimations by the floorplanner and
target clock speed. The �pipes library of SystemC soft
macros described in the previous section is used by
�pipesCompiler to generate the network components
for the chosen topology.

The output is a SystemC hierarchical description of all
the switches, links, network nodes and interfaces that
specifies their topological connectivity. The structure of the
SystemC output can be optimized either for simulation or
synthesis. In the latter case, the programming constructs
utilized are constrained to a specific synthesizable SystemC
subset. The final description can be compiled and simulated
at the cycle-accurate and signal-accurate level, and can be
synthesized by back-end RTL synthesis tools for silicon
implementation.

7.1 Input Specification and Parsing

The �pipesCompiler input comprises the design de-
scription file together with the routing table information for
each core on the NoC. The design file describes the cores,
switches, links, and the interconnections between them.
From the designer’s viewpoint, the implementation of the
NI that connects a core to the NoC is transparent. The
�pipesCompiler will instantiate the needed NIs accord-
ing to the type of the core (Master, Slave, Master/Slave).

Each core is identified by its name, SystemC file, its type
(master, slave or master/slave), the switch and port to
which it is connected, and its routing table information file.
Each switch is identified by its name, number of I/O ports

and the number of the virtual channels of each output. Each
link is identified by its name, the names and ports of the
source and destination switches that it connects, and the
number of repeaters used in the link. For every core, the
routing table utilized by it is described in a separate file.
More precisely, all paths through which a core commu-
nicates with the rest of the cores in the selected topology are
explicitly given.

7.2 Network Instantiation

A tree data structure is generated upon parsing the input
file description. Each node in the tree denotes a specific
object of the design. This structure is then recursively
optimized in order to remove redundancies and later on
utilized to generate the SystemC output.

Initially, the different types of switches, links, and
network interfaces that are required in the design are
identified. In simulation mode, a single template class is
output for each type. Multiple objects are instantiated as
needed.

During network instantiation, the �pipesCompiler

performs several optimizations to remove redundant logic
from the generic library components. If, for example, a
switch has only one input link connected to a port, the logic
and buffers of the corresponding nonexisting output port
will not be generated. In the case of a custom-made
irregular design, this valuable optimization drastically
reduces hardware complexity. The optimized network
component classes are stored into arrays of structures.

During output generation, the tree structure is recur-
sively parsed starting from the leaves and the class
corresponding to each node is generated. The root of the
structure represents the main object file (main.cc) that
instantiates all objects of the design at runtime. The signals
needed to connect the objects according to the design
description file are also defined there.

If possible, the �pipesCompiler will share the signals
that are common to all objects. In order to automate tracing
of signals, a debugging mode has been implemented, that
enables monitoring of any signal in the design.

Example 3. Fig. 9 clarifies how a network is optimized by the
removal of redundant logic during network instantiation
in a simple topology. Since port[1] of SW_0 has only a
single input connection the �pipesCompiler will not
instantiate a PortOUT Block that would be connected to

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 123

Fig. 9. Irregular n/w optimizations.

the corresponding output. Similar optimization is per-
formed for an output-only port like port[3]. In each
PortOUT Block generated, the signals related to this
nonexisting input are removed from the generic template
files. The�pipesCompilerwill also optimize the size of
eachoutput buffer according to thenumberof repeaters on
each output link.

Execution times of the �pipesCompiler depend on the
design characteristics. A regular topology, for example,
such as a 16� 16 mesh, can be generated faster than an
irregular, application-specific topology with only few cores
and switches. In absolute terms, execution time is not a
major consideration. For a small custom design with four
switches and two cores, the execution time is about 2
seconds on a 1.8GHz Pentium 4. In all of the experiments
performed, network optimization and generation was
completed within a few minutes.

8 EXPERIMENTAL VALIDATION AND CASE STUDIES

In this section, we present experimental case studies of
NetChip, exploring various functionalities of the tool. In
Sections 8.1 and 8.2, we present the mappings produced by
NetChip for two types of applications: video applications
and network processor applications. As the communication
pattern of these applications are different, the topologies
produced have different characteristics. We then present the
design-exploration capabilities of NetChip in Section 8.3.
NetChip can also be used to generate custom topologies and
this is presented in Section 8.4. In the last section, a DSP
applicationdesignedinSystemCisusedtovalidateNetChip.

8.1 Video Applications

We applied NetChip onto four different video processing
applications: Video Object Plane Decoder (VOPD-mapped

onto 12 cores), MPEG4 decoder (14 cores), Picture-In-Picture
application (PIP-mapped onto eight cores), and Multi-
Window Display application (MWD-mapped onto 14 cores).
These are high-end video-processing applications and the
hardware-software partitioning of the applications is pre-
sented in [16], [17]. The core graphs of these applications are
presented in Fig. 10. The maximum link bandwidth for the
NoCs is conservatively assumed to be 500 MB/s.

The results of mappingVOPD onto various topologies are
presented in Fig. 11. As seen from Fig. 11a, the butterfly
topology (4-ary 2-fly) has the least average hop delay out
of all topologies. The lower hop delay is due to the fact that a
4-ary 2-fly has two stages of switches, which means an
average delay of two hops for all communication. Mesh,
torus, and hypercube networks have a higher average hop
delay as the least possible hop delay (that of adjacent nodes)
itself is twoand itwasnotpossible toplace all communicating
nodes adjacent to each other. As the Clos network has three
stages, the average hop delay is three. The area, power
estimates for the topologies arepresented inFigs. 11c and11d.
As seen from Fig. 11b, the butterfly topology has the least
number of switches, but has more links when compared to
mesh, torus, or hypercube. The large power savings achieved
by the butterfly network (Fig. 11d) is attributed to the fact that
there are fewer switches and smaller number of hops for
communication. Moreover, all the switches are 4� 4, while
the direct topologies have 5� 5 switches. The average link
length in the butterfly network (obtained from floorplanner)
was observed to be longer than the link lengths (around
1:5�) of direct networks. However, as the link power
dissipation ismuch lower than the switch power dissipation,
we get large power savings for the butterfly network. The
smaller number of switches and smaller switch sizes also
account for the large area savings achieved by the butterfly
network. Thus, butterfly is the best topology for VOPD. The
performancegains for thebutterfly over other topologiesmay
be surprising, but after careful inspection we see the reason.

124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 10. Core graphs of video processing applications. (a) MPEG4 core graph, (b) VOPD core graph, (c) PIP core graph, and (d) MWD core graph.

Fig. 11. Mapping characteristics of VOPD. (a) Avg hop delay, (b) resource util, (c) design area, and (d) design power.

Butterfly network trades off path diversity for network
switches and average hop delay. As the VOPD example has
lower bandwidth demands compared toMPEG4, we are able
to satisfy the bandwidth demands of the application using a
butterfly network.

The results of mapping MPEG4 are presented in Fig. 12.
As seen from the core graph of MPEG4 decoder (Fig. 10a),
the amount of communication between the cores (such as
to/from the shared SDRAM) is much higher than that can
be supported by minimum-path routing. When the link
capacities are assumed be 500 MB/s, all topologies violate
the bandwidth constraints for minimum-path routing. So,
we apply multipath routing, splitting the traffic across
many paths. As the butterfly topology has no path diversity,
traffic cannot be split across multiple paths and, thus, it
does not produce any feasible mapping for MPEG4.
Feasible mappings onto other topologies are obtained and
the mapping results are presented in Figs. 12a, 12b, and 12c.
The torus topology has slightly lower communication hop
delay than the mesh (Fig. 12a) as it utilizes more network
resources. However, the mesh topology has large savings in
area and power which overshadow the slightly higher hop
delay cost. The significant area savings is attributed to the
fact that in the torus topology all the switches are of size
5� 5 (for communicating with four neighbors and to the
core), whereas in the 12-node mesh topology, there are four
3� 3 switches, six 4� 4 switches, and two 5� 5 switches
(an example 12-node mesh is shown in Fig. 2c). Although
the mesh network has a slightly higher hop delay, which in
turn means a larger amount of traffic flow across the
switches, the power consumption is significantly lower than
the torus topology. This is attributed to the fact that energy
dissipation in a switch increases nonlinearly with increase
in switch size (refer Table 1). Thus, a mesh topology is more
suitable for the MPEG4 than other topologies.

The results of mapping PIP and MWD are presented in
Tables 2 and 3. For the PIP application, mesh topology
has the least area and power consumption. The PIP has
eight cores and we use a 3� 3 mesh, with one of the
nodes (of the total nine nodes) removed. A 3� 3 mesh is
more evenly spread, length and breadth-wise, when
compared to the 4-ary 2-fly butterfly network (refer
Fig. 4). Thus, mesh topology provides more flexibility
on the sizes of soft-core blocks without violating the
aspect ratio constraints of the design. This results in
much efficient floorplan for the mesh topology resulting
in significant area savings. In the mesh topology, much of
the traffic (30 percent) flows through the 3� 3 switches.
In the 4-ary 2-fly butterfly topology, all the traffic travels
through the 4� 4 switches. This results in small power
savings for the mesh topology. Thus for the PIP

application, mesh is the most suitable topology. For the
MWD application, like the VOPD, butterfly topology
results in the least area, while the mesh topology
provides small power savings. Depending on the design
objective, either of the topologies can be chosen for MWD
mapping.

8.2 Network Processor Application

We consider a network processor with 16-nodes, each node
having the architecture shown in Fig. 13a, obtained from [8].
The objective of the communication architecture is to
provide low contention for the data transfer between the
nodes. As Clos networks have maximum path diversity,
they have the least congestion for large data flows and are
more suitable for the network applications. We validated
the need for Clos networks by producing mappings onto
various topologies by relaxing the bandwidth constraints
and simulating the resulting SystemC design. We use traffic
generators to generate adversarial traffic pattern for each
topology. As seen from Fig. 13b, where the average packet
latency is plotted with increasing traffic injection (which in
turn means that the network processor is processing larger
amounts of data), Clos topology clearly outperforms other
topologies. Moreover, the area and average power dissipa-
tion in a Clos network (Figs. 13c and 13d) is only slightly
higher than the butterfly topology, justifying its use for
network processing applications.

8.3 Design Space Exploration of a Topology

In this section, we explore the MPEG4 mappings onto a
mesh topology. There are two ways in which a chosen
topology can be explored: the first is to evaluate the effects
of various routing functions and the second is to obtain a set
of area-power-performance trade off points for the map-
pings from which the optimum design point can be chosen.

The minimum bandwidth for different routing func-
tions (DO—Dimension Ordered, MP—Minimum-path,
SM—Split-traffic across Minimum-paths, SA—Split-traffic
across All paths) is shown in Fig. 13e. When the
maximum available link bandwidth is 500 MB/s, only
split-traffic routing can be used for mapping MPEG4.

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 125

Fig. 12. Mapping characteristics ofMPEG4. (a) Avg hop delay, (b) design
area, and (c) design power.

TABLE 2
PIP Mapping

TABLE 3
MWD Mapping

Fig. 13f shows the area-power trade off points in the

design space of the mapping from which the optimum

design point can be chosen.

8.4 Generating Custom Topologies

An important application of NetChip is to construct

application-specific custom topologies. With an applica-

tion-specific network, the designer is faced with the

additional task of designing network components (e.g.,

switches) with different configurations (e.g., different I/Os,

virtual channels, buffers) and interconnecting them with

links of uneven length. These steps require significant

design time and the need to verify network components

and their communications for every design. NetChip

bridges the design gap for building such heterogeneous

application-specific NoCs.

126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 13. Network application characteristics ((a)-(d)) and design space exploration of an MPEG4 mapping ((e)-(f)). (a) Node arch, (b) latency, (c) area,

(d) power, (e) routing Fn, and (e) area-power plot.

Fig. 14. Mesh and custommappings of video object plane decoder. (a) Mesh NoC, (b) Appln specific NoC, (c) SystemC output, and (d) VOPD avg lat.

TABLE 4
Custom and Mesh Mappings of VOPD

The designer can invoke �pipesCompiler to assemble
a custom NoC, which is described using the GUI. A custom
NoC for the VOPD is presented in Fig. 14b. In the VOPD,
about half the cores communicate to more than a single
core. This motivates the configuration of this custom NoC,
having less than half the number of switches than the mesh
NoC. The results of mesh and custom mappings of VOPD is
presented in Table 4. By using the area-power models built
into NetChip, the area and power consumption of the
network components of the custom NoC were automati-
cally obtained. Significant area and power improvements
are obtained with the custom NoC, as fewer number of
switches are used and the switches have smaller size than
the mesh switches.

We performed cycle-accurate simulation of the SystemC
models of theNoCsgeneratedby theNetChip for theVOPD.
We use two-state Markov Models as stochastic traffic
generators to model the bursty nature of the application
traffic, with average communication bandwidth matching
the applications’ average communication bandwidth. Snap-
shots of SystemC simulations of mesh and custom NoCs for
some of the cores of VOPD are shown in Fig. 14c. The time
between transmission of a flit and its reception, which
includes the switch delay, link delay, and contention delay,
is marked in the figure. The variation of average packet
latency (for 64 byte packets, 32 bit flits, and 7 cycle switch
delay)with linkbandwidth is shown in Fig. 14d.Application-
specific NoCs have lower packet latency as the average
number of switch and link traversals is lower. Moreover, the
latency increases more rapidly for the mesh NoCs with
decrease in bandwidth.With the customNoC, we achieve an
average of 25 percent savings in latency (see Fig. 14d).

8.5 DSP Application and SystemC Simulations

We applied NetChip to a DSP Filter design with six cores
(refer Fig. 15a). The cores are modeled in SystemC and the
design is simulated at the transaction level. The resulting
core graph is used by the NetChip which produces
mappings onto the butterfly topology (Fig. 15b). Then, the
network components for the butterfly topology are auto-
matically generated and the resulting NoC design of the
DSP is simulated at cycle accurate and signal accurate level
in SystemC. A snap-shot of the SystemC simulation is
shown in Fig. 15d. We also generated the best mappings of
other topologies for comparison purposes. The SystemC
simulation of all topologies is carried out, and the observed
average packet latency for the topologies plotted (shown in
Fig. 15c). As seen from figure, the butterfly topology indeed
has the minimum latency.

For all these applications, NoC selection and generation
was obtained in few minutes on a 1GHz SUN workstation.

The SystemC simulations were also checked for functional
and timing correctness validating the output of NetChip.

9 CONCLUSION

While the communication needs of a high-speed general
purpose on-chip multiprocessor can be accommodated on a
homogeneous fabric, heterogeneous structures are required
for application-specific computing systems, wherein a set of
heterogeneous computing and storage resources have to be
interconnected by means of custom-tailored NoCs. In this
case, an ad hoc NoC synthesis flow must include selection
of the most suitable topology for a certain application
domain, mapping of cores onto that topology and genera-
tion of the resulting network instance. This paper presents a
NoC synthesis framework, called NetChip, wherein these
issues are addressed and automated by means of proper
tools, thus bridging an important design gap in building
NoCs. A library of highly parameterized, design time
composable network building blocks (�pipes) is at the
core of the proposed design methodology. The entire design
flow has been tested with several experimental case studies,
showing the rich design space exploration capabilities of
this framework.

ACKNOWLEDGMENTS

This research is supported by MARCO Gigascale Systems
Research Center (GSRC) and the US National Science

Foundation (under contract CCR-0305718).

REFERENCES

[1] M. Sgroi et al., “Addressing the System-on-a-Chip Interconnect
Woes through Communication-Based Design,” Proc. Design
Automation Conf., pp. 667-672, 2001.

[2] L. Benini and G. De Micheli, “Networks on Chips: A New SoC
Paradigm,” Computer, pp. 70-78, Jan. 2002.

[3] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip
Packet Switched Interconnections,” Proc. DATE 2000, pp. 250-256,
Mar. 2000.

[4] F. Boekhorst, “Ambient Intelligence, the Next Paradigm for
Consumer Electronics: How Will it Affect Silicon,” Proc. Int’l Solid
State Circuits Conf. 2002, pp. 28-31, Feb. 2002.

[5] S. Kumar et al., “A Network on Chip Architecture and Design
Methodology,” Proc. Int’l Symp. VLSI 2002, pp. 105-112, Apr. 2002.

[6] D. Bertozzi, L. Benini, and G. De Micheli, “Low Power Error
Resilient Encoding for On-Chip Data Buses,” Proc. Conf. Design
Automation and Testing in Europe DATE 2002, pp. 102-109, Mar.
2002.

[7] E. Rijpkema et al., “Trade-Offs in the Design of a Router with Both
Guaranteed and Best-Effort Services for Networks on Chip,” Proc.
Conf. DATE 2003, pp. 350-355, Mar. 2003.

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 127

Fig. 15. Mapping of DSP application. (a) Filter appln, (b) bfly floorplan, (c) SystemC plots, and (d) SystemC snapshot.

[8] F. Karim et al., “On-Chip Communication Architecture for OC-768
Network Processors,” Proc. Design Automation Conf., pp. 678-678,
June 2001.

[9] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns
and Platform-Based Design,” IEEE Trans. Computer-Aided Design of
Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, Dec. 2000.

[10] H. Zhang et al., “A 1V Heterogeneous Reconfigurable DSP IC for
Wireless Baseband Digital Signal Processing,” IEEE J. Solid State
Circuits, vol. 35, no. 11, pp. 1697-1704, Nov. 2000.

[11] X. Zhu and S. Malik, ”A Hierarchical Modeling Framework for
On-Chip Communication Architectures,” Proc. Int’l Conf. Compu-
ter Design 2002, pp. 663-671, Nov. 2002.

[12] I. Saastamoinen, D. Siguenza-Tortosa, and J. Nurmi, “Interconnect
IP Node for Future System-on-Chip Designs,” Proc. First IEEE Int’l
Workshop Electronic Design, Test and Applications, pp. 116-120, Jan.
2002.

[13] S.J. Lee et al., “An 800MHz Star-Connected On-Chip Network for
Application to Systems on a Chip,” Digest of Technical Papers,
ISSCC 2003, pp. 468-469, Feb. 2003.

[14] A. Jantsch and H. Tenhunen, Networks on Chip. Kluwer Academic
Publishers, 2003.

[15] S.J. Krolikoski et al., “Methodology and Technology for Virtual
Component Driven Hardware/Software Co-Design on the Sys-
tem-Level,” Proc. IEEE Int’l Symp. Circuits and Systems ’99, pp. 456-
459, June 1999.

[16] E.B. Van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4
Decoding on a Flexible Architecture Platform,” Proc. SPIE 2002,
pp. 1-13, Jan. 2002.

[17] E.G.T. Jaspers et al., “Chip-set for Video Display of Multimedia
Information,” IEEE Trans. Consumer Electronics, vol 45, no. 3,
pp. 707-716, Aug. 1999.

[18] A. Pinto et al., “Efficient Synthesis of Networks on Chip,” Proc.
Int’l Conf. Computer Design 2003, pp. 146-150, Oct. 2003.

[19] D. Whelihan and H. Schmit, “Memory Optimization in Single
Chip Network Fabrics,” Proc. Design Automation Conf. 2002,
pp. 530-535, June 2002.

[20] W.H. Ho and T.M. Pinkston, “A Methodology for Designing
Efficient On-Chip Interconnects on Well-Behaved Communication
Patterns,” Proc. Symp. High Performance Computer Architecture 2003,
pp. 377-388, Feb. 2003.

[21] P. Wielage and K. Goossens, “Networks on Silicon: Blessing or
Nightmare?” Proc. Euromicro Symp. Digital System Design DSD
2002, pp. 196-200, Sept. 2002.

[22] J. Hu and R. Marculescu, “Energy-Aware Mapping for Tile-Based
NOC Architectures under Performance Constraints,” Proc. Asia
and South Pacific Design Automation Conf. 2003, pp. 233-239, Jan.
2003.

[23] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architec-
tures,” Proc. DATE Conf. 2003, Mar. 2003.

[24] M. Dallosso et al., “�Pipes: A Latency Insensitive Parameterized
Network-on-chip Architecture for Multi-Processor SoCs,” pp. 536-
539, Proc. Int’l Conf. Computer Design, 2003.

[25] A. Jalabert et al., “�pipesCompiler: A Tool For Instantiating
Application Specific Networks on Chips,” Proc. Conf. DATE, 2004.

[26] S. Murali and G. De Micheli, “Bandwidth Constrained Mapping of
Cores onto NoC Architectures,” Proc. Conf. DATE, 2004.

[27] S. Murali and G. De Micheli, “SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs,” Proc. Design
Automation Conf., 2004.

[28] J.G. Kim and Y.D. Kim, “A Linear Programming-Based Algorithm
for Floorplanning in VLSI Design,” IEEE Trans. CAD, pp. 584-592,
vol. 22, no. 5 , May 2003.

[29] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[30] D. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture, a
Hardware/Software Approach. Morgan Kaufmann, 1999.

[31] K. Compton and S. Hauck, “Reconfigurable Computing: a Survey
of System and Software,” ACM Computing Surveys, pp. 171-210,
vol. 34, no. 2, June 2002.

[32] R. Tessier and W. Burleson, “Reconfigurable Computing and
Digital Signal Processing: A Survey,” J. VLSI Signal Processing,
pp. 7-27, vol. 28, no. 3, May 2001.

[33] N. Sherwani, Algorithms for VLSI Physical Design Automation,
pp. 187-189. Kluwer Academic Publishers, 1995.

[34] W.J. Dally and B. Towles, “Route Packets, not Wires: On-Chip
Interconnection Networks,” Proc. Design and Automation Conf.
DAC 2001, pp. 684-689, June 2001.

[35] W.J. Dally and S. Lacy, “VLSI Architecture: Past, Present and
Future,” Proc. Conf. Advanced Research in VLSI, pp. 232-241, 1999.

[36] D. Wingard, “MicroNetwork-Based Integration for SoCs,” Proc.
Design Automation Conf. DAC 2001, pp. 673-677, June 2001.

[37] H.S Wang et al., “Orion: A Power-Performance Simulator for
Interconnection Networks,” IEEE MICRO, Nov. 2002.

[38] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proc.
IEEE, pp. 490-504, Apr. 2001.

[39] D. Wiklund and D. Liu, “SoCBUS: Switched Network on Chip for
Hard Real Time Embedded Systems,” Proc. Int’l Parallel and
Distributed Processing Symp. 2003, pp. 78-85, 2003.

[40] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni Vincentelli,
“Theory of Latency-Insensitive Design,” IEEE Trans. CAD of ICs
and Systems, vol. 20, no. 9, pp. 1059-1076, Sept. 2001.

[41] L. Scheffer, “Methodologies and Tools for Pipelined On-Chip
Interconnects,” Proc. Int’l Conf. Computer Design, pp. 152-157, 2002.

[42] Tensilica Offload Engine, http://www.tensilica.com/html/
pr_2003_05_12.html, 2004.

[43] VSI Alliance, http://www.vsi.org/, 2004.
[44] Open Core Protocol, http://www.ocpip.org/, 2004.

Davide Bertozzi received the Electrical Engineering degree from the
University of Bologna (Italy) in 1999 and the PhD degree in 2003 from

the same university. He currently holds a
postdoctorate position in the Department of
Electrical Engineering and provides consulting
activity for several semiconductor industries. His
main research interests concern system level
design and communication architectures for
multiprocessor systems-on-chip.

Antoine Jalabert received the Engineer Diplo-
ma and the MSc degree in electrical engineering in 2003 from the Ecole
Supérieure d’Electronique de l’Ouest (ESEO), Angers, France, after

joining one year (2003) at the Institut Supérieur
d’Electronique de Paris (ISEP), Paris, France,
where he specialized in microelectronics. He is
currently pursuing the PhD degree with the
Laboratoire d’Electronique, de Technologie et
d’Instrumentation (LETI), CEA-Grenoble,
France, and ISEP. His work is now dedicated to
computing architectures using molecular electro-
nics (Post-CMOS Project).

Srinivasan Murali received the bachelor’s degree in computer science
and engineering from the University of Madras, India in 2002. He is
currently pursuing the PhD degree at Stanford University. His research

interests include mapping of applications onto
networks on chip architectures, multiprocessor
systems on chips, and reliability issues of SoCs.
He is a student member of the IEEE.

128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Rutuparna Tamhankar received the BE degree
in electronics engineering from the University of
Pune, India, in 1999 and the MS degree in
electrical engineering from West Virginia Uni-
versity in 2001. He is currently pursuing an
Engineer’s degree at Stanford University and is
also working at Sun Microsystems Inc., Sunny-
vale, California. At Sun Microsystems Inc., he is
working on timing methodology for high perfor-
mance microprocessor designs. His current

research includes low latency and efficient link design for network on
chips. He is a student member of the IEEE.

Stergios Stergiou received the BS degree from
the University of Athens, Greece, and the MS
degree in computer science from the University
of Patras, Greece. He is currently pursuing the
PhD degree in electrical engineering at Stanford
University, Stanford, California. His research
interests comprise all aspects of computer-aided
design of digital circuits, with particular empha-
sis on networks on chip. He is a student member
of the IEEE.

Luca Benini is an associate professor in the
Department of Electrical Engineering and Com-
puter Science (DEIS) at theUniversty of Bologna.
He received the PhD degree in electrical en-
gineering from Stanford University in 1997. He
also holds visiting researcher positions at Stan-
ford University and the Hewlett-Packard Labora-
tories, Palo Alto, California. Dr. Benini’s research
interests are in all aspects of computer-aided
design of digital circuits, with special emphasis

on low-power applications, and in the design of portable systems. On
these topics, he has published more than 200 papers in international
journals and conferences and three books. He has been program chair
and vice-chair of Design Automation and Test in Europe Conference. He
is a member of the technical program committee and organizing
committee of several technical conferences, including the Design
AutomationConference, International Symposium on LowPower Design,
and the Symposiom on Hardware-Software Codesign. He is a member of
the IEEE.

Giovanni De Micheli is a professor of electrical
engineering and, by courtesy, of computer
science at Stanford University. Previously, he
held positions at the IBM T.J. Watson Research
Center, Yorktown Heights, New York, at the
Department of Electronics of the Politecnico di
Milano, Italy, and at Harris Semiconductor,
Melbourne, Florida. He received the Nuclear
Engineer degree (Politecnico di Milano, 1979),
and the MS and PhD degrees in electrical

engineering and computer science (University of California at Berkeley,
1980 and 1983). His research interests include several aspects of
design technologies for integrated circuits and systems, with particular
emphasis on synthesis, system-level design, hardware/software code-
sign, and low-power design. He is the author of Synthesis and
Optimization of Digital Circuits (McGraw-Hill, 1994), coauthor and/or
coeditor of five other books, and more than 270 technical articles. He is,
or has been, member of the technical advisory board of several
companies, including Magma Design Automation, Coware, Aplus
Design Technologies, Ambit Design Systems, and STMicroelectronics.
Dr. De Micheli is the recipient of the 2003 IEEE Emanuel Piore Award for
contributions to computer-aided synthesis of digital systems. He is a
fellow of the ACM and IEEE. He received the Golden Jubilee Medal for
outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 D. Pederson Award for the best paper on the IEEE
Transactions on CAD/ICAS and two Best Paper Awards at the Design
Automation Conference, in 1983 and in 1993. He is past president of the
IEEE CAS Society. He was Editor in Chief of the IEEE Transactions on
CAD/ICAS from 1987-2001. Dr. De Micheli was the program chair and
general chair of the Design Automation Conference (DAC) from 1996-
1997 and 2000, respectively. He was the program and general chair of
the International Conference on Computer Design (ICCD) in 1988 and
1989, respectively. He was also codirector of the NATO Advanced Study
Institutes on Hardware/Software Co-Design, held in Tremezzo, Italy,
1995 and on Logic Synthesis and Silicon Compilation, held in L’Aquila,
Italy, 1986. He is a founding member of the ALaRI Institute at Universita’
della Svizzera Italiana (USI), in Lugano, Switzerland, where he is
currently scientific counselor.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BERTOZZI ET AL.: NOC SYNTHESIS FLOW FOR CUSTOMIZED DOMAIN SPECIFIC MULTIPROCESSOR SYSTEMS-ON-CHIP 129

