

Nodal Design of Actuators and Sensors
(NODAS)

Technical Report

Jan E. Vandemeer

Department of Electrical and Computer Engineering
Carnegie Mellon University

May 7, 1998

Committee:
Dr. Gary K. Fedder, advisor

Dr. Tamal Mukherjee, second reader

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
07 MAY 1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
Nodal Design of Actuators and Sensors (NODAS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Department of Electrical and Computer
Engineering,Pittsburgh,PA,15213-3890

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

71

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

A circuit-level methodology for simulating micromachined inertial sensors based on a hierarchical

representation of microelectromechanical systems is presented. In the NODAS methodology (NOdal

Design of Actuators and Sensors), various surface micromachined suspended microstructures are designed

as netlists of general-purpose micromechanical beams, plates, electrostatic gaps, electrostatic comb-drives,

joints, and anchors and evaluated using lumped-parameter behavioral models. NODAS provides the user

with a one to one correspondence between layout and schematic, and the ability to simultaneously perform

circuit level simulation on both the microelectromechanical components and the electronics in the sche-

matic. The on-chip displacements and global position of each micromechanical component are separated

in the netlist, enabling application of translation and rotation of the chip while simultaneously providing

access to on-chip displacements for position sensing and electrostatic actuation. Each of the components is

modeled with an Analog Hardware Description Language. Simulations of static displacements and modal

frequencies of a cantilever beam, crab-leg flexure, folded-flexure resonator, capacitive accelerometer, and a

vibratory-rate gyroscope are done using an ordinary differential equation solver. Simulation results agree

to within 5% of finite-element analysis for displacements with small angles (less than 10˚). Simulation of a

16 kHz vibratory-rate gyroscope system with dual transresistance sense amplifiers, a demodulator and a

filter illustrates the ability to perform system-level mixed-domain simulation with the NODAS methodol-

ogy.

3

Table of Contents:

Section: Page

I. Introduction and Motivation 4
II. Modeling Theory 6
 A. General Theory and Conventions 6
 B. Beams 9
 C. Plate Masses 15
 D. Joints 18
 E. Anchors 19
 F. Electrostatic Gaps 20
 G. Electrostatic Comb-drive 22
 H. Damping Models for Components 24
III. Simulation Experiments and Results 24
 A. Experiments in Accuracy 25
 B. Experiments in Speed of Simulation 27
 C. Folded-Flexure Resonator 28
 D. Electrostatic Comb-Fingers 30
 E. Capacitive Accelerometer 33
 F. Vibratory-Rate Gyroscope 34
IV. Conclusions 37
V. Acknowledgements 38
VI. Reference 39
APPENDIX A: SCHEMATIC IMPLEMENTATION 40
 A. CREATING A MEMS SCHEMATIC IN SABER SKETCH 40
 B. SIMULATING AND ANALYZING A MEMS DESIGN IN SABER 43
APPENDIX B: MAST FILES 45
 A. ANCHOR 45
 B. BEAM 46
 C. PLATE MASS 50
 D. Y-AXIS COMB DRIVE 56
 E. X-AXIS COMB DRIVE 60
 F. ELECTROSTATIC GAP 64
 G. JOINT 68

4

I. INTRODUCTION AND MOTIVATION

The increasing integration of microelectromechanical systems (MEMS) has pushed the demand

for computer-aided design (CAD) tools to support rapid design of systems involving physical interactions

between electrical, mechanical, magnetic, thermal, fluidic, and optical domains. For integrated circuits,

design flow involves simulation and analysis at the system, circuit, and device (or physical) levels. Design

is eased by abstracting physical layout into a schematic view which represents the circuit as an intercon-

nected set of components. Presently, the design flow for MEMS does not include a schematic or “circuit”

level analysis. This report describes a methodology for the NOdal Design of Actuators and Sensors

(NODAS), which allows a designer to create MEMS designs in a schematic fashion. NODAS performs

mixed-domain nodal simulation of MEMS by incorporating a hierarchical library of suspended MEMS

components with in-plane motion. These models enable a novice MEMS designer to simulate complicated

devices quickly and efficiently using schematic capture tools that are compatible with electrical circuit

analysis.

At present, there are three methods of simulation used for MEMS: direct numerical simulation

(

e.g.

, finite element analysis), signal flow analysis, and nodal analysis. Finite element analysis is both time

consuming and computationally expensive for system design due to its low level of abstraction, lack of

design hierarchy, and its inability to simulate multiple domains simultaneously. Signal flow analysis does

not provide a one-to-one correspondence to layout due to its high level of abstraction. Previous work on

higher-level MEMS simulation with nodal analysis has focused on behavioral simulation of individual

devices (

e.g.,

 microresonators) with abstract macromodels [1], or with eigenmode decomposition using

single degree-of-freedom (DOF) elements [2][3]. This approach is suitable for evaluation of existing

devices, but inhibits a top-down design flow for new devices.

Based on nodal analysis of mechanical systems [4], there has recently been an increasing amount

of work to develop a design methodology using basic MEMS components modeled as sets of lumped

parameter Ordinary Differential Equations (ODE’s) to create schematics of MEMS [5][6][7]. In contrast to

5

finite element analysis, circuit-level schematics constrain simulation to local interactions between compo-

nents. This enables a structured view for MEMS design using a hierarchical set of basic MEM components

(

e.g.,

 beam flexures, plate masses, electrostatic comb drives, electrostatic gaps, and anchors), which pro-

vide a direct linkage between the physical layout and behavioral simulation (Figure 1). In order to model

the components with nonlinear ordinary differential equations in multiple degrees of freedom, and in vari-

ous energy domains, an Analog Hardware Description Language (A-HDL) greatly eases model implemen-

tation (in this report, MAST [8] is used). A schematic capture package extracts a netlist from the schematic

and a nonlinear ODE solver (SABER) [9] performs nodal analysis on the mixed-domain system. This

methodology enables the user to perform the same types of analyses done on an electronic circuit simulator

(static (DC), transient, AC, noise and Fourier). At present, implementation is restricted to suspended sur-

face-micromachined MEMS. Suspended MEMS have no unconstrained mechanical elements, and include

such devices as resonators, accelerometers, and gyroscopes.

Section II describes the general methodology of the MEMS schematic and nodal simulation,

L

W
angle

W

L

W

L

fingers

gap

Beam: Plate Mass:

Gaps and

Comb-Fingers:

Anchor:
+y

+x

+z

+φ

(a) (b)

Figure 1. (a) MEMS design (capacitive accelerometer), (b) hierarchical set
of MEMS components

6

including component descriptions and model implementations in MAST. In Section III, experiments in

verification of the methodology are discussed, followed by examples of a folded-flexure resonator, capaci-

tive accelerometer, and vibratory-rate gyroscope. The conclusion will discuss possible future directions for

the research.

II. MODELING THEORY

This section discusses the theory behind modeling each of the components in the MEMS library

(

e.g.,

 beam flexures, plate-masses, joints, anchors, electrostatic gaps, and electrostatic comb-drives).

A. GENERAL THEORY AND CONVENTIONS

Static equilibrium dictates that the forces acting on a body must sum to zero. Likewise the sum of

moments must also equal zero. These equations are called the “through” variable relations, and are analo-

gous to Kirchoff’s Current Law in circuit theory. Nodal simulators solve for system variables by making

the sum of the “through variables” flowing out of each node equal to zero. By defining component models

(templates) using an A-HDL, one can create equations which relate multi-domain through variables in

terms of across variables. The simulator is given an initial set of across variable values, then uses the

“through” variable relations to determine the next set of across variable values. The present discussion is

restricted to micromechanical simulation of in-plane motion (

x, y,

φ)

, with coupled electrostatic and electri-

cal effects. Therefore in our current formulation, force in x and y, moment about

φ

, and current are through

variables, while position in x and y, the angle of

φ,

 and voltage are across variables.

MEMS components have a physical size and angular orientation associated with them (

e.g.

, beam

flexures have length (L), width (W), and angle (

Φ

DC

), plate masses have length (L) and width (W)). These

user-defined values are incorporated into the components to determine their positions. In this report “posi-

tion” is defined as the position the element has with no on-chip forces applied to it (zero-force position) as

shown for the crab-leg flexure in Figure 2a. Therefore, the position of a component is a reference point for

any on-chip displacement that may occur. With no forces applied (thus no displacements), each component

7

is treated as though it were a rigid body when determining its position. Simulation of inertial sensors (

e.g.

,

accelerometers and gyroscopes), requires two frames of reference, the on-chip movable frame, and the glo-

bal frame. The on-chip frame is needed to determine the displacements of the components relative to the

chip (Figure 2b). The global frame is needed to simulate the external accelerations and rotations which

cause translations and rotations of the chip relative to a stationary, or global, frame (this motion also effects

the displacements of the components relative to the chip) (Figure 2c).

The convention used by nodal simulators is that when a through variable flows from the positive

node to the negative node it is considered to have a positive value. Mechanical nodes associated with sur-

faces whose normal is directed along the +x, +y, or +z axes are considered positive (Figure 3a). The

through variable going into a translational node corresponds to a force acting in the positive direction along

the axis of the node. For example, the beam in tension in Figure 3b is represented by the schematic in

Figure 3c. Similarly, a through variable flowing into a node is equivalent to a counterclockwise moment

about the +z axis (right-hand rule).

Nodes corresponding to position are added into the components which are placed in a schematic,

creating a rigid frame which defines the physical layout of the microelectromechanical system on the sub-

strate. For example, when a horizontal beam is placed into a schematic, its left (minus) side has a rest posi-

XXp

Zero-Force

Y

Xm

L1

L2

Φ

Y
On-Chip Force

X

L1

L2

F

Φ

Y

∆X

∆Y

∆Φ

Global Motion

Figure 2. Physical systems of a crab-leg structure. (a) Zero-Force system determining
initial positions, (b) On-Chip forces causing on-chip displacements, (c) Global motion

of chip causing changes in position.

∆y
∆x

XΦ
(a) (b) (c)

8

tion (X, Y,

Φ),

and its right (plus) side has a position (X + L, Y,

Φ

). This is also true for a vertical beam,

except the beam position is oriented lengthwise from bottom to top (+y direction).

In MAST, when nodes are constrained by their through variables (

i.e.

, force sources), the template

can express its “through” variable relation in terms of its across variables, or by a specified value. In con-

trast, when nodes are constrained by their across variables (

i.e.

, position sources), an extra variable needs

to be defined to solve for the through variable between the nodes, such that the across variable is main-

tained. The constrained nodes then use this variable to represent their “through” variable relation from one

node to the other. The problem with constraining nodes by their across variables is that each defining

through variable adds an extra row and column to the Jacobian matrix, which slows simulation. Therefore,

it is important to minimize number of nodes constrained this way when creating a design.

One example of a component constrained by its across variable is a voltage source (Figure 4a). To

model the voltage source, a through variable,

i

, is defined such that the voltage across the source is main-

tained. This variable is then used to define the current flowing from one node to the other. Another example

is a position source, as shown in Figure 4b. To model the “through” variable relation in the source, a

through variable,

f

, is defined such that the position across the source is maintained. This variable is then

used to define the force through the position source.

Figure 3. (a) Conventions for positive nodes on a mechanical element, (b) Physical beam under-
going tensile forces, (c) equivalent schematic representation using through variable conventions.

+y
+x

+z

+φ
(a)

Fxb
Fxa

Beam in Tension

- +

xa xb

xa xb
Equivalent Schematic

FxbFxa

(b)

 “Negative”
Mechanical Nodes

 “Positive”
Mechanical Nodes

(c)

9

With two frames of reference, it is necessary to use two sets of variables to determine the complete

motion of each component. One set represents the voltage and local displacement relative to the chip of the

component denoted by (

x, y,

φ,

v

). The other set represents the global position relative to the outside envi-

ronment of the component denoted by (

X, Y,

Φ

). Global position is not affected by on-chip forces, only by

external or global forces. Each set of variables is placed into a set of nodes. These sets of nodes are

grouped together to create a port, (Figure 5b), which is used to connect the symbols together in a sche-

matic. Figure 6 illustrates the physical and schematic representation of a mechanical beam subjected to an

axial force

F

x

, a shearing force

F

y

, a bending moment

M

φ

, and an electrical current,

I

.

The remainder of this section goes through the modeling theory for each of the individual compo-

V i R X
f

k
(a) (b)

Figure 4. (a) Voltage source connected to a resistor, R. V defines the voltage across the
source, while the extra through variable, i, defines the current through the source
such that the voltage is maintained. (b) Position source connected to a spring, k. X

defines the position across the source, while the extra through variable, f, defines the
force through the source such that the position is maintained.

Figure 5. Beam component, (a) Physical model, (b) Schematic representation, showing
global position nodes, and on-chip displacement nodes.

−

Through variables (Fx, Fy, Mφ, I)

 length (L)width (W)

angle (ΦDC)

Global Positions
(Xa, Ya, Φa)

Global Positions
(Xb, Yb, Φb)

On-Chip Displacements
(xb, yb, φb, vb)

On-Chip Displacements
(xa, ya, φa, va) and Voltageand Voltage

+

xa xb

(a)

(b)

+y
+x

+z

+φ

Port

10

nents in the hierarchical library, starting with beams.

B. BEAMS

Beam flexures are placed together in a hierarchical fashion to create various flexures. Beams are

parameterized by a length (L), width (W), and angle (ΦDC) (Figure 5b). Their thickness, T, Young’s modu-

lus, E, and other material properties are stored in a technology file describing the process.

The rigid-body positions and angles of each end of a beam are related by

Xa = Xb + WG Lb (1)

where Xa and Xb are the position vectors at the end of the beam (in X, Y, and Φ), WG is the global rigid-

body rotation matrix, and Lb is the length vector of the beam.

Xa = ; Xb = ; WG = ; Lb = (2)

Bending and displacements are the result of an applied force or torque on the beam flexure. These

displacements are measured with respect to the substrate or chip. By altering the angle parameter, beams

can be placed into a schematic at any orientation. Calculating displacements across a beam is eased by

transforming them from the chip frame of reference to a local frame that is independent of orientation. The

+y
+x

+z

 Beam Element

Fx

Nodes

Nodes

Figure 6. Mechanical element with axial tensile force, Fx, transverse
force Fy, and bending moment Mφ, and equivalent schematic.

Through Variable

+φ

Xa=X1 Xb = X1 + L

L

Fy

Fx

ya
xa

xb
yb

Mechanical GND

Mφ

φa φb

Mφ

Fy

W

Anchor

I

vbv1

Electrical GND

Ya
Xa

Φa

Xb
Yb

Φb

I

Xa

Ya

Φa

Xb

Yb

Φb

Φacos Φasin– 0

Φasin Φacos 0

0 0 1

L

0

0

11

beam’s local y - ξ frame of reference is a frame whose ξ-axis is parallel to the length of the beam

(Figure 7).

The transformation of the flexure displacements from the chip frame of reference (uc,k(t)) to the

local frame of reference, uL(t), is

(3)

where WL is the local rotation matrix,

 (4)

(5)

(6)

Forces in the local frame are related to displacements by

FL=-kuL(t) (7)

where k is the stiffness matrix, and FL is the force vector in the local frame.

 (8)

If small angle approximations are made, then the displacements in the axial (ξ) direction of the

X
Φ

Y

φ
ξ

y

(a) (b)

Figure 7. (a) Crab-leg flexure in chip frame of reference, (b) single beam in local
frame of reference.

uL t() WL
1– uc k, t()⋅=

uc k, t() xa t() ya t() φa t() xb t() yb t() φb t()
T

=

uL t() xal t() yal t() φal t() xbl t() ybl t() φbl t()
T

=

WL

ΦDCcos ΦDCsin– 0 0 0 0

ΦDCsin ΦDCcos 0 0 0 0

0 0 1 0 0 0

0 0 0 ΦDCcos ΦDCsin– 0

0 0 0 ΦDCsin ΦDCcos 0

0 0 0 0 0 1

=

FL Fxa Fya Mφa Fxb Fyb Mφb

T
=

12

local frame are assumed to be independent of torsion or shear, and only dependent on axial loading. The

resultant force-displacement relation is,

(9)

where A is the cross-sectional area of the beam.

The shearing forces (Fya, Fyb) and bending moments (Mφa, Mφb) that cause displacements in the

local frame can be solved through fundamental beam bending theory [10], which states that for a beam

undergoing bending (Figure 8), the displacements, yL(ξ), are related to the position along the beam (ξ) by,

(10)

(11)

(12)

(13)

where q is the distributed load, Fs is the shearing force, Mb is the bending moment, T is the thickness of the

beam, w is the width of the beam, and I is the moment of inertia of the beam in φ.

For the present models, forces are constrained to being concentrated at the ends of the beam (q is

zero). Solving the differential equation in (10), and including the displacements caused by axial loading,

Fxa– Fxb
EA
L

------- xb t() xa t()–()= =

Fyb
Fya

MφbMφa

ξ

y

ξ = L

Figure 8. General beam in local frame with shearing forces and bending moments.

yal,xal,φal ybl,xbl,φbl

d4yL ξ()
dξ4

q
EI

 –=

EI
d3yL ξ()

dξ3
------------------ Fs=

EI
d2yL ξ()

dξ2
------------------ Mb=

I
Tw3

12
----------=

13

yields the distributed displacements along the beam, sL(ξ,t), such that,

(14)

where,

(15)

and a(ξ) is a matrix of shape functions [4].

(16)

The shape functions (Figure 9) define the shape of the beam for different displacement boundary condi-

tions at the end of the beam. The stiffness coefficients are determined through the force-displacement rela-

sL ξ t,() aT ξ()uL t()=

sL ξ t,() xL ξ t,() yL ξ t,()
T

=

a
1 ξ

L
---– 0 0

ξ
L
--- 0 0

0 1 2ξ3

L3
-------- 3ξ2

L2
--------–+

 ξ ξ3

L2
----- 2ξ2

L
--------–+

 0 3ξ2

L2
-------- 2ξ3

L
--------–

 ξ3

L2
----- ξ2

L
-----–

=

Figure 9. Shape functions for unit displacements in the x, y, and φ axes vs. position along
the length of the beam, (a) xa displaced, (b) ya displaced, (c) φa displaced, (d) xb displaced,

(e) yb displaced, (f) φb displaced.

(a) (b) (c)

(d) (e) (f)

14

tions in (9), (11) and (12) and rearranged as the stiffness matrix, k.

(17)

Displacements at the nodes of the beam component in the schematic are relative to the chip, and

not relative to the local coordinates of the beam. Therefore, the forces and moments are transformed back

into the chip frame of reference by multiplying the local force vector FL by the local rotation matrix, WL.

(18)

where,

 (19)

Each of the forces and moments are then added to their respective displacement nodes in the component

(i.e., Fc,k xa is subtracted from node xa).

In addition to having a stiffness, beams also have an effective mass associated with them. Effective

mass is included in the beam component by solving for the equivalent element mass matrix, m, of a uni-

form beam and multiplying by local accelerations, üL(t), at the ends of the beam.

(20)

Accelerations along the beam are required to solve for the equivalent element mass matrix. Assuming a

static mode shape across the beam, and neglecting rotary inertia and shear deformation, the shape func-

tions in (16) are used to approximate acceleration along the beam.

(21)

k
EI

L3

AL2

I
--------- 0 0 AL2

I
---------– 0 0

0 12 6L 0 12– 6L

0 6L 4L2 0 6L– 2L2

AL2

I
---------– 0 0

AL2

I
--------- 0 0

0 12– 6L– 0 12 6L–

0 6L 2L2 0 6L– 4L2

=

Fc k, WL FL⋅=

Fc k, Fc k xa, , Fc k ya, , Mc k φa, , Fc k xb, , Fc k yb, , Mc k φb, ,

T
=

FL m, muL
˙̇ t()–=

sL
˙̇ ξ t,()

t2

2

d
d aT ξ()uL t()()=

15

From principles of Lagrangian dynamics,

(22)

where n is the number of rows in the distributed displacement matrix, sL(ξ), leads to [4]

(23)

where ρ is the material density of the beam. Substituting (16) into (23), the mass matrix is

(24)

The above mass matrix is then substituted into (20) to determine the local inertial forces acting on

the beam. Inertial forces in the chip frame of reference are derived via the local transformation matrix, WL.

(25)

Inertial forces and moments in the chip frame of reference are then inserted at the ends of the beam to pro-

vide an effective mass and moment of inertia as shown in Figure 10.

C. PLATE MASSES

Plate masses are modeled as rigid-body elements. Flexural displacements within the structure are

not modeled. Plate masses contain numerous ports, and may be configured in many ways. For brevity, we

FL m, td
d

sL i,
˙∂

∂

 1

2
---m sL ξ t,()˙()

2
ξd

0

L

∫
i 1=

n

∑=

m ρAaT ξ()a ξ() ξd

0

L

∫=

m
ρAL
420

140 0 0 70 0 0

0 156 22L 0 54 13L–

0 22L 4L2 0 13L 3L2–

70 0 0 140 0 0

0 54 13L 0 156 22L–

0 13L– 3L2– 0 22L– 4L2

=

Fc m, WL FL m,⋅=

Figure 10. Final beam component model with inertial effects included.

Massless Beam Model

Mc,m,φb

φb
Fc,m,yb

ybφa

ya

Beam Component
xa xb

Fc,m,xb
Mc,m,φaFc,m,xa Fc,m,ya

16

will only discuss the plate-mass model with 3 ports on each side, plus one port on the top and bottom of the

plate (Figure 11). Each model contains nodes at the center of mass to provide inertial and damping forces

in x, y, and φ.

The method for determining the global position and angle at each node in the plate-mass compo-

nent is similar to the method used in the beam component, except that currently, there is no angle parame-

ter. Figure 11 illustrates the values and parameters used in the plate-mass component to constrain the

positions and angles across the plate mass. For example, the trigonometric equation,

 Xnw - Xmid = -L1*cos(θ - Φmid) (26)

constrains the positions along the x-axis between the NW and MID nodes (Xnw, and Xmid respectively).

Positions and angles between the midpoint and every other node are constrained in a similar manner.

Calculations for determining displacements at each node in a plate-mass model are simpler than in

the beam model. This is due to the current plate-mass model not having an angle parameter, which restricts

its orientation to a default value, and eliminates the need for a local frame of reference. As with the global

position nodes, each local displacement node is constrained to maintain a defined orientation from the cen-

ter of mass. The main difference between defining the displacements and positions in a plate mass is that

nodes have zero displacement when there is no force acting on the plate-mass, since displacements are rel-

+y
+x

+z

+φ L

W

θ

Φmid (for Global Position nodes)

L1

Figure 11. Various values for dimensions in calculating the displacements and
positions across the plate-mass component.

SW
S

W

SE

N

E

NW NE

MID
φmid (for Displacement nodes)

17

ative to the position in the system. For example, by examining Figure 11, the equation,

xnw - xmid = -(L/2)*cos(θ−φmid) + L1*cos(θ) (27)

constrains the rigid-body displacements along the x-axis between the NW and MID nodes (xnw and xmid

respectively), other displacements are constrained in a similar manner.

Inertial effects from both external and on-chip motion are included in the plate-mass model. All

motions are referred to the global frame of reference to calculate the inertial force. Therefore, when trans-

forming back to the chip frame of reference, Coriolis effects and centrifugal forces are modeled properly.

Damping in the plate mass is determined by multiplying a damping factor, B, by local velocities. The

damping models for each component are discussed in section II.H.

When determining the inertial effects of the plate mass, the on-chip displacements, xmid, are trans-

formed into the global frame through WG, a global transformation matrix.

(28)

where xg is a vector representing the global displacements.

(29)

Global acceleration is found by taking the second time derivative of the sum of global displacement and

position. This acceleration is transformed back into the chip frame of reference and multiplied by a mass

matrix, M, to determine the on-chip inertial force Fc,mp, which is included in the force equation for the

nodes at the center of mass.

(30)

where,

(31)

xg WGxmid=

xg

xmidg

ymidg

φmidg

xmid,
xmid

ymid

φmid

WG,
Φmidcos Φmidsin– 0

Φmidsin Φmidcos 0

0 0 1

= = =

Fc mp, M WG() 1– xg
˙̇ Ẋ̇mid+()()=

M
mp 0 0

0 mp 0

0 0 I p

=

18

and

, (32)

In the plate mass, L is the length of the plate along the y-axis, W is the width of the plate along the x-axis,

and T is the thickness of the plate. For rotational inertial effects, it is important to subtract the moments cre-

ated by the forces along the edges of the mass.

Figure 12a shows a physical plate element with the forces applied in the +x direction. A single

degree of freedom model of the plate mass is shown in Figure 12b. The inertial and damping forces leading

from the center of mass must equal the sum of all the forces acting on the center of mass from the external

nodes.

D. JOINTS

Joints perform two important functions. One function is to act as an angle source in the global

frame of reference between two connecting components, enabling the simulator to properly measure the

global angle throughout the chip. A input parameter, Θ, in the joint model determines the angle between

connected components. Figure 13a illustrates the convention and formulas used by the joint to determine

mp ρTWL= I p mp
L2 W2+()

12
------------------------=

Fx1
Fx7

Fx2

Fx3Fx5

Fx6

Fx4

Fx8
x1

x3
x4

x5

x6 x2

x7 x8

xmid

maxmid + Bvxmid

(b)

Fx1Fx7

Fx2

Fx3Fx5

Fx6

Fx4

Fx8

Mass m
Damping B +y

+x

+z

+φ
(a)

Figure 12.(a) Mechanical element with applied forces, Fxi, i = 1 to 8,
(b) Equivalent schematic with position sources.

Pxne

Pxe

Pxse

Pxs

Pxsw

Pxw

Pxnw Pxn

19

the angle. Figure 13b shows a physical structure of beams utilizing a joint. Any variation in angle shows up

between the east port and south port.

The other function of the joint component is to prevent a singular Jacobian matrix from forming

when other components are placed in a closed loop configuration. In all other components, the global posi-

tion nodes are constrained by position or angle sources. If a schematic is created with a loop of these

sources, the through variable will be undefined throughout the subcircuit, which causes the simulator to

fail due to a singular Jacobian matrix. To prevent this, stiff springs are placed between global nodes in the

joint model (Figure 14). This creates a small amount of compliance in the global frame of reference, which

contributes a negligible error to the simulation. It is critical not to make the spring constants too large (over

106 N/m), to avoid an ill-conditioned matrix, which causes inaccuracies in the simulation.

The joint is modeled as a rigid body, so displacement nodes are connected directly together at the

N

S

EW M

ANGLE PARAMETER = Θ

0

Θ

ΦS − ΦN = 0
ΦS − ΦM = Θ
ΦM - ΦE = 0
ΦM - ΦW= 0

0

Θ
JOINT

(a) (b)

Figure 13. (a) Global angle conventions in joint model, (b) Physical structure using joint.

BEAM

N

S

E
W

N

S

EW M

k

k

k

k=106 N/m

(b)(a)

0 Φ

kk

Figure 14. (a) Global angle equivalent “circuit”, (b) global positions (x, and y) equivalent “circuit”.

k

M

20

center point of this body. This is accomplished by modeling the displacement nodes as zero-value position

and angle sources (i.e., short circuits), from the midpoint to the four faces of the joint. To model the electri-

cal characteristics, the joint is assumed to have a square layout. Using Van der Pauw’s method [11], the

current through any two adjacent faces is equal to 4.53 times the voltage across the opposite faces.

E. ANCHORS

Anchors are used to define points where suspended structures are connected to the substrate. The

displacements of connected components are zero, independent of any force or moment applied. This is

accomplished by modeling the anchor as a “short circuit” to ground at each displacement node (x, y, and φ)

(Figure 15). The anchor contains no connections for the global position, since anchors only constrain on-

chip displacements. In addition, the anchor is modeled as a mechanical reference, not an electrical one,

therefore there is no electrical node on the anchor. This allows the user to connect any electrical compo-

nents to the micromechanical design.

F. ELECTROSTATIC GAPS

Many MEMS use electrostatic force as their main source of actuation. In addition, electrostatic

forces can provide the designer with unwanted actuation or capacitance. For these reasons, it is important

to model and simulate these forces. The electrostatic gap model relates the electrostatic force to the dis-

placements between two components. Mechanical contact between two elements is also modeled.

The electrostatic gap model is a four-port device, as shown in Figure 16. Two ports on top connect

to each end of a beam segment, and two ports on the bottom connect to an overlapping beam segment.

Figure 15. Anchor model, x, y, and φ displacements shorted to ground.

0
0

0

x
y

φ

21

There are four input parameters used in determining the electrostatic gap size: the widths of the overlap-

ping elements (wf,top, and wf,bottom), the distance between elements, gap, and the overlap of the beams, xov.

Electrostatic force is given by [12]:

(33)

(34)

where C is the capacitance between two segments, and V is the voltage between the segments. Using the

parallel-plate approximation, the capacitance between two segments is,

(35)

where ε0 is the permittivity of air, T is the thickness of the segments, whose values are defined in a technol-

ogy file referred to in the models, and

d = gap + ybot - ytop (36)

is the space between the two overlapping segments. ytop is the y displacement at the overlapping end of the

top element, and ybot is the y displacement at the overlapping end of the bottom element. Via substitution of

the capacitance into (33) and (34), the electrostatic forces (Fex and Fey) are defined.

(37)

(38)

A_TOP

B_BOTA_BOT

B_TOP
TOP BEAM SEGMENT

BOTTOM BEAM SEGMENT

wf,top

wf,bottom

GAP

Figure 16. Symbol version of Electrostatic Gap Component. Includes all input parameters.

xov

+y

+x+φ

Fex
V2()
2

x∂

∂C
=

Fey
V2()
2

y∂

∂C
=

C
xovTε0

d
----------------=

Fex

V2Tε0

2d
---------------=

Fey

V2xovTε0

2d2
----------------------=

22

In an electrostatic gap, when electrostatic forces become greater than the restoring spring forces

acting on overlapping segments, an instability is reached causing the segments to crash into one another.

The segments release again when the electrostatic forces become smaller than the restoring spring forces.

This instability causes the simulator to fail due to the apparent singularity in force at contact (d = 0). To

remedy this problem, a separate equation must be created to handle contact between the elements.

Our model approach is to treat the electrostatic gap as a very stiff spring when the distance separat-

ing the two segments becomes smaller than a threshold. To prevent the separation from becoming zero

(which would cause a divide-by-zero error), an assumption is made that each element is surrounded by a

thin insulating layer (perhaps modeling a native layer oxide on the surface). This thickness, Tox, is used as

the threshold value after which the “gap” is modeled as a stiff spring. The complete force equations are

(39)

(40)

where Tox is set to a thickness of 20nm. In MAST, values c1 and c2 are used in the force equations through

the gap. These values are altered by crossing the threshold. When the electrostatic gap is not in contact, c1

is one, while c2 is zero. After the threshold is crossed, and the gap is modeled as a stiff spring, c1 is set to

zero, and c2 is set to E*xovT/(wf,top/2 + wf,bottom/2), where E is the Young’s modulus of polysilicon.

G. ELECTROSTATIC COMB-DRIVES

Electrostatic comb drives may be built from combinations of beams with interleaved electrostatic

gaps. However, a macromodel of the comb drive is developed to speed simulation. To properly determine

the capacitance and forces, one must input the number of rotor fingers, N, finger length, lf, finger width, wf,

gap, g, and the overlap between the fingers, xov (Figure 17).

The capacitance is defined using parallel-plate approximations between the rotor finger and its sur-

rounding stator fingers. The total capacitance is,

Fex

V2Tε0

2 c1d 1 c1–()Tox+()
---=

Fey

V2xovTε0

2 c1 d⋅() 1 c1–()Tox+()2
-- c2 Tox d–()–=

23

(41)

where ∆x and ∆y are the displacements in x and y. Electrostatic forces are then found using (33) and (34).

(42)

(43)

With a stator finger on both sides, the rotor finger is free to move in either the positive or negative x direc-

tion depending on the initial position of the finger. Ideally, the rotor finger is equidistant from both of the

stator fingers (∆x = 0), which cancels out the electrostatic forces and motion in x. The force in y is multi-

plied by an empirical value of 1.12, which improves the accuracy of the force equation [13], assuming the

geometry of the comb drive is that shown in Figure 17 with wf = g = T. The electrical current flowing

through the comb drive is equivalent to the time derivative of the charge, q.

(44)

If the rotor fingers are offset from the center of the stator fingers, they are forced to move towards

the closest finger. An instability is created when the electrostatic force becomes greater than the restoring

force of the flexure connected to the fingers. At this point, the rotor fingers will crash into stator fingers. As

mentioned in the electrostatic gap model, this instability causes simulation failure. To alleviate this prob-

 + V _

g
xov

x

x

y

N

Stator fingers

lf

wf

N = Number of rotor fingers
V = Voltage across fingers
xov = Overlap between fingers
lf = length of fingers
wf = width of fingers
g = distance between fingers

Figure 17. Interdigitated Comb-Finger. Use N of these to create an electrostatic comb-drive.

C TNε0 xov ∆y+() 1
g ∆x–()

-------------------- 1
g ∆x+()

--------------------+
 =

Fex

V2TNε0 xov ∆y+()()
2

--- 1
g ∆x–()2

---------------------- 1
g ∆x+()2

-----------------------–
 =

Fey

1.12 V2TNε0b()
2

-------------------------------------- 1
g ∆x–()

-------------------- 1
g ∆x+()

--------------------+
 =

I
td

d
CV()

td
dq= =

24

lem, two separate, but continuous, functions are needed to model the comb drive.

As with the electrostatic gap model, the electrostatic comb drive is modeled as a stiff spring when

the finger displacements cross a threshold (when the distance between the fingers is less than the native

oxide thickness, Tox). Values are used to modify the force equations to model two separate functions with-

out creating a discontinuity.

(45)

(46)

Similarly, the capacitance is also modified.

(47)

where c1, c2, s, and xox are values. Tox is set to 20nm, and s is set to either positive or negative one, depend-

ing on which direction the rotor finger is moving (+x, or -x). When the comb-fingers are separated by an air

gap, c1 is set to one, while xox and c2 are set to zero. When the fingers snap together, c1 is set to zero, c2 is

set to E*xovT/wf, and xox is s*(g-Tox).

H. DAMPING MODELS FOR COMPONENTS

Each component has a model for determining the damping forces within them. Each model multi-

plies a damping factor, B, by a directional velocity. It is unnecessary to transform velocities into the global

frame, since damping is related to the flow of air surrounding the system. Assuming the chip is packaged,

the air flow surrounding the MEMS device is unaffected by the global air flow.

The current components do not model out of plane motion. Therefore, squeeze-film damping is

neglected.

To determine the damping factor, we will assume that the damping forces are dominated by the

Coutte flow underneath the surface of the component, which results in

Fex

V2TNε0 Xov ∆y+()
2

-- 1
g c1∆x xox+()–()2

-- 1
g c1∆x xox++()2

---–
 c2 ∆x xox–()–=

Fey

1.12 V2TNε0()
2

----------------------------------- 1

g c1∆x
xox

Tox

-------+
 –

-- 1

g c1∆x
xox

Tox

-------+
 +

--+

=

C TNε0 xov ∆y+() 1
g c1∆x xox+()–()

--- 1
g c1∆x xox+()+()

--+
 =

25

(48)

where µ is the viscosity of air (17.9 µPa-s), As represents the layout areas for the component, and ga is the

air gap between the suspended structure and the substrate. For the comb-drive model, air flow between the

fingers is also included, giving a damping factor of

(49)

where Ac is the cross-sectional area of the fingers. To take into account edge and finite size effects, As and

Ac are calculated after extending the widths of each component by 4µm [13][14], which approximately tri-

ples the damping factor of comb fingers, doubles the damping factor of slightly thicker beams, and does lit-

tle to the damping of large plate masses.

III. SIMULATION EXPERIMENTS AND RESULTS

Various experiments were performed to verify the accuracy and speed of the components and

designs created in NODAS using SABER [9] and SaberSketch [15]. The first experiment in this section

compares resonant frequencies of cantilever beam models designed in both NODAS and a finite element

analysis tool, ABAQUS [16]. Other experiments compare deflections in a crab-leg flexure designed in

NODAS and ABAQUS, and the time taken to simulate a beam and plate-mass schematic with varying

numbers and types of beam components. Another set of experiments show simulation accuracy, and ability

B µ
As

ga

-----=

B µ
As

ga

Ac

g
-----+

 =

force amplitude:0u
frequency:100

pos1

pos2

ANCHOR
phi

x BEAM
l: 100u
w: 2u

angle:0
v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIa

Figure 18. Schematic representation of 100µm long by 2µm wide cantilever
beam with AC force source actuating it in the y-direction.

26

to simulate external accelerations and electrostatically induced comb crashing.

A. EXPERIMENTS IN ACCURACY

The first experiment regarding accuracy compares the resonant frequencies of cantilever beams

created in NODAS to those created using finite element analysis, both when the cantilever is uncon-

strained, and when it is constrained in φ (i.e., guided-end condition). Figure 18 shows the schematic repre-

sentation of an unconstrained cantilever beam. Table 1 shows results of NODAS simulations as compared

to the ABAQUS finite element simulations of 10 beam elements of type B32H (3-node quadratic beam ele-

ments in space, with hybrid formulation). Experiments were done where the beam was split into multiple

smaller beams of appropriate length such that the total length of the cantilever structure is 100µm long by

2µm wide. If more than one beam component is used to create the cantilever schematic, the results are

accurate to within 0.04%.

The next experiment compares the x and y displacements of a crab-leg flexure consisting of two

100µm long by 2µm wide beams actuated by a force source in the x direction (Figure 19). Figure 20

shows the results of the displacements in x and y for both ABAQUS and NODAS. The NODAS compo-

nents are linear models, thus the force-displacement curve is a straight line. The force-displacement curve

in ABAQUS exhibits a nonlinearity at large deflections. The graph shows that the NODAS simulations

match within 7% when the x-deflections are less than 10µm, and 4% with deflections less than 1µm.

Table 1: Comparison of Resonant Frequencies in Cantilever Beam Models.

DESIGN ωry (Hz) Unconstrained ωry (Hz) Constrained in φ

ABAQUS 271.8kHz 432.2kHz

NODAS, 1-100µm long beam 273.0kHz 439.2kHz

NODAS, 2-50µm long beams 271.9kHz 433.9kHz

NODAS, 4-25µm long beams 271.9kHz 432.1kHz

27

Y

X

L1=100µm

L2=100µm

Θ

Fx

l: 100u
w: 2u
angle:0

l: 100u
w: 2u
angle:90

JOINT_N
ang:90

force
1u

BEAM

BEAMANCHOR

(a) (b)

Figure 19.Crab-Leg Flexure, with force in the positive x direc-
tion, (a) Layout View, (b) SABER schematic view.

-20

-15

-10

-5

0

5

10

15

20

-4 -2 0 2 4

Saber-Y Abaqus-Y
Saber-X Abaqus-X

Displacements (µm)

Force in X (µN)

Figure 20. Graph comparing displacements vs. force for Crab-Leg
structure in SABER and ABAQUS.

28

B. EXPERIMENTS IN SPEED OF SIMULATION

This experiment examines the simulation time of a 100µs long transient analysis for a cantilever

beam structure connected to a plate mass (Figure 21). The cantilever beam consists of a varying number of

beam components with various lengths such that the total length of the cantilever beam is 100µm. Tran-

sient simulation times are compared for each design in Figure 22. The simulations were run on a 300 MHz

UltraSparc2 with 512MB of memory. The simulation times for cantilever structures made of beams with

inertia rise rapidly with the number of components due to the extra velocity and acceleration variables

solved in the simulation.

Figure 21. Schematic Representation of a Cantilever Beam Structure.

ANCHORphi
x BEAM

l:100u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIa

+y

+x

PLATE-MASS
Faces

l: 100u

w: 100u

v_l

x_b

x_r

x_t

x_l

v_t

v_r

v_b

Xl
PHIl

Xb
PHIb

PHIr
Xr

Xt PHIt

force amplitude:50n
frequency:9800

pos1

pos2

1

10

100

1000

1 10 100

Massless Beams
Beams w/ Inertia

Simulation Time vs. Number of Beam Components

S
im

ul
at

io
n

T
im

e
(s

)

Beam Components

Figure 22. Graph of Simulation Time versus Beam Components in a
Cantilever Beam Structure.

29

C. FOLDED-FLEXURE RESONATOR

This experiment demonstrates the accuracy of the NODAS components by comparing the values

of dominant (y-direction) resonant frequencies, and spring constants of folded-flexure resonator designs

[17] calculated with NODAS to an equivalent simulation with finite element analysis (Figure 23).

wsa

wsy

Lsa

Lsy

Lb

Lt

wb
wt

wba

wca

Lcy

wcy

xo

g

wc

Lc

(b)
(c)

(d) (e)

vsine

v
35.35

v
35.35

ANCHOR
phi
x

ANCHOR
phi
x

ANCHOR

phix

ANCHOR

phix

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa BEAMl: 183.4u

w: 3.8u
angle:0

v_bv_a
x_a x_b

Up
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 183.4u
w: 3.8u
angle:0

v_bv_a
x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 33.3u
w: 4.533u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

Comb-drive-Y
overlap: 22.3u

rotor_fingers: 83
gap: 2u

finger_width: 2u

finger_length: 44.7u

v_s

v_r
x_r

x_s

Xr PHIr

Xs
PHIs

Comb-drive-Y
overlap: 22.3u

rotor_fingers: 83
gap: 2u

finger_width: 2u

finger_length: 44.7u

v_s

v_r
x_r

x_s

Xr PHIr

Xs
PHIs

+y
+x

Plate-Mass
N-S

l: 10u
w: 658u

x_b

x_t
v_t

v_bXb
PHIb

Xt PHIt

+y
+x

Plate-Mass
N-S

l: 10u
w: 658u

x_b

x_t
v_t

v_bXb
PHIb

Xt PHIt

+y
+x

PLATE-MASSFaces
l: 10u

w:43.8u
v_l

x_b

x_r

x_t

x_l

v_t

v_r

v_b

Xl
PHIl

Xb
PHIb

PHIr
Xr

Xt PHIt

+y
+x

PLATE-MASSFaces
l: 10u

w:43.8u
v_l

x_b

x_r

x_t

x_l

v_t

v_r

v_b

Xl
PHIl

Xb
PHIb

PHIr
Xr

Xt PHIt

angle

amplitude:0
frequency:67

ang1

ang2

gnd

oab

10k

+y
+x

Plate-Mass
N-S

l: 89.9u
w: 17.8u

x_b

x_t
v_t

v_bXb
PHIb

Xt PHIt

JOINT
ang:90

x_s
vwvs

vn

x_w

x_n
PHInXn

PHIsXs

PHIw
Xw

JOINT
ang:90

x_s
vwvs

vn

x_w

x_n
PHInXn

PHIsXs

PHIw
Xw

JOINT
ang:90

x_s
vwvs

vn

x_w

x_n
PHInXn

PHIsXs

PHIw
Xw

JOINT
ang:90

x_s
vwvs

vn

x_w

x_n
PHInXn

PHIsXs

PHIw
Xw

JOINT
ang:90

x_s
ve

vs

vn

x_e

x_nXe
PHIe

PHInXn

PHIsXs

JOINT
ang:90

x_s
ve

vs

vn

x_e

x_nXe
PHIe

PHInXn

PHIsXs

JOINT
ang:90

x_s
ve

vs

vn

x_e

x_nXe
PHIe

PHInXn

PHIsXs

JOINT
ang:90

x_s
ve

vs

vn

x_e

x_nXe
PHIe

PHInXn

PHIsXs

(a)

(f)

Figure 23. Folded-Flexure resonators, (a) Layout view, parameterized microresonator
elements (b) shuttle mass, (c) folded flexure, (d) comb-drive with N movable rotor fingers,

(e) close-up view of comb-fingers (f) schematic view.

+y
+x

+z

+φ

30

Table 2 shows the values given to parameters (Figure 23b - Figure 23e) to give the resonator a

desired resonant frequency. Table 3 compares the resonant frequencies and spring constants found in

ABAQUS and NODAS to analytical calculations [18] for various cases of the folded-flexure topology. A

DC voltage of 50V was applied across the comb-drive to calculate the force and displacements of the reso-

nator in NODAS. The results show that SABER simulations match to within 2% of the resonant frequen-

cies and 20% of the spring constants found using finite element analysis. It was found that NODAS results

matched much more closely to the analytically calculated values for the spring constants. The difference in

the results may have come from mass in the joints, or flexibility in the plate masses that are not included in

the MAST modules.

Table 2: Parameters Used For Altering the Folded-Flexure Resonator Dimensions.

Case wb

µm

Lb

µm

Lt

µm

wt

µm

wsa

µm

wsy

µm

Lsy

µm

wcy

µm

Lcy

µm

Lf

µm

wf

µm

g

µm

xov

µm

N

A 2 327.7 46.8 3.276 12.1 10 38.1 687.5 46.6 73.5 2 4.2 36.8 56

B 3.3 320.9 46.8 5.711 20.9 10 46.9 578.6 10 72.2 2 2.4 36.1 66

C 4 238.7 38.9 6.282 22.9 10 48.9 690 10 55.7 2 2 27.9 87

D 3.8 183.4 33.3 4.533 17.8 10 43.8 658 10 44.7 2 2 22.3 83

E 2.6 71.8 21.5 7.177 22.1 10 48.1 466 10 22.4 2 2 11.2 59

F 2 34.5 16.3 7.030 19.8 10 45.8 210 10 12.6 2 2 6.3 27

Table 3: Comparison of Resonant Frequencies and Spring Constants of Folded-Flexure Resonators
found in SABER and ABAQUS

Case
ωry

Analytical
ωry

SABER
ωry

ABAQUS
ky

Analytical
ky

SABER
ky

ABAQUS

A 3.030kHz 3.040kHz 3.066kHz 0.1466 (N/m) 0.1462 (N/m) 0.1468 (N/m)

B 9.691kHz 10.02 kHz 10.17kHz 0.7029 (N/m) 0.6997 (N/m) 0.5619 (N/m)

C 19.66kHz 20.24 kHz 20.14kHz 3.0126 (N/m) 2.9859 (N/m) 2.9599 (N/m)

D 29.23kHz 29.95 kHz 29.77kHz 5.438 (N/m) 5.3846 (N/m) 5.3436 (N/m)

E 96.40kHz 97.76 kHz 95.38kHz 31.013 (N/m) 30.813 (N/m) 29.931 (N/m)

F 296.6kHz 300.8 kHz 291.9kHz 127.53 (N/m) 126.80 (N/m) 119.70 (N/m)

31

D. ELECTROSTATIC COMB-FINGERS

A schematic was created to simulate comb-finger crashing between two fingers caused by electro-

static attraction. In this design, one beam is anchored on its left side, and one beam is anchored on the

right. Between the beams, is an air gap of 2µm. The ends of the beams overlap each other by 10µm. A

pulse voltage that ramps from 0V to 100V in 10µs, with a pulse width of 50µs, and a fall time of 5µs is

applied to the top beam (Figure 24).

The threshold voltage is defined as the maximum voltage applied to the beams before they snap

together. At this voltage, the electrostatic force of the gap is equal to the restoring forces in the beams.

Based on this condition, and assuming a parallel-plate approximation at the end of the beams, and ignoring

Figure 24. Electrostatic comb-finger models, (a) layout view, (b) schematic view.

gap = 2µmoverlap = 10µm

l=100µm

l=100µm

v initial:0
pulse:100
tr:10u
tf:5u

BEAMl: 100u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb
PHIb

Xa
PHIa

BEAMl: 100uw: 2u
angle:0

v_bv_a

x_a x_b

Xb
PHIb

Xa
PHIa

phi
x

ANCHORphi
x

Electro-Static Gap
finger_w_t:1ugap:2u

overlap:10u

PHIm_t
Xm_t

x_a_t

v_a_t

x_a_b
v_a_b

PHIm_b
Xm_b

x_b_t
v_b_t

PHIp_t
Xp_t

x_b_b
v_b_b

Xp_b
PHIp_b

ANCHOR

(b)

(a)

finger_w_b:1u

V

t

100V
50µs

10µs 65µs

32

fringe-field effects, the threshold voltage between the beams is,

(50)

where k is the spring constant in the flexure. The simulation results found the threshold voltage to be

66.47V, which matches the analytically calculated value exactly. Similarly, the voltage needed to release

the beams after they have snapped together is,

(51)

where Tox is 20nm in this case. This equation yields a release voltage of 1.722V. NODAS simulations show

a release voltage of approximately 1.72V.

A transient analysis with a period of 250µs was performed on the schematic in Figure 24. The dis-

placement due to electrostatic actuation at the unconstrained ends of the beams is shown in Figures 25a

and 25b. When the voltage crosses the threshold at t = 8.264µs, the beams snap together, and remain so

Vth
4kg3

27ε0T xov

----------------------=

V
k g

Tox

2
-------–

 Tox()2

ε0T xov

--
kg Tox()2

ε0T xov

--------------------≈=

Figure 25.Transient analysis of comb finger snapping and release due to electro-
static actuation, (a) y-displacement at the left corner of the bottom beam, (b) y-

displacement at the right corner of the top beam, (c) input voltage.

ElectroStatic Actuation of Beams

 (
V

)

0.0

100.0

 t(s)
0.0 25u 50u 75u 100u 125u 150u 175u 200u 225u 250u

 (
m

)

-2u

0.0

2u

 (
m

)

-2u

0.0

2u

(c)

Vin

(b)

y_beam_top

y_beam_bottom

(a)

33

until the voltage falls below the release threshold. When the beams release at t = 65µs, they undergo a

damped oscillation at their resonance frequency of 276.8kHz.

E. CAPACITIVE ACCELEROMETER

A capacitive accelerometer shown in Figure 26a is used to demonstrate NODAS’s ability to simu-

late external accelerations. The accelerometer schematic uses crab-leg flexures made from beam compo-

nents to suspend a rectangular plate mass. Electrostatic comb drives are placed on the left and right side of

the plate mass to sense x-axis motion differentially. Transresistance amplifiers are placed at the outputs of

the comb drives to sense current created by motion (Figure 26)

A sinusoidal position source, Xin, with amplitude 1nm and frequency ωc drives the lower left

anchor node in the global frame of reference nodes to emulate external lateral motion of the chip in the x

direction. This corresponds to an external acceleration of amplitude (1nm)ωc
2 giving the transfer function

of the system a high-pass characteristic.

(52)

where m represents the effective mass of the system, B is the damping coefficient, and k is the effective

spring constant. The ac analysis results in Figure 27 display a resonant frequency of 10.24 kHz. The reso-

nant frequency was calculated as 10.39 kHz using analytical equations, and as 10.38 kHz by using finite

element methods. These values match to within 2%.

F. VIBRATORY-RATE GYROSCOPE

A vibratory-rate gyroscope was simulated to demonstrate the ability to analyze relatively complex

inertial microsystems using NODAS. The vibratory rate gyroscope shown in Figure 28 consists of a sys-

tem of beams and masses which are designed with three-fold symmetry to match mechanical modes in the

Xout ωc() Xin

mωc
2

1
mωc

k

2

–
Bωc

k

2

+

--=

34

y

x
θ

Figure 26. Crab-leg accelerometer (a) Layout view, (b) Schematic view.

BEAMl: 20u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIaBEAMl: 20u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIa

BEAMl: 20u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIaBEAMl: 20u
w: 2u
angle:0

v_bv_a

x_a x_b

XbXbXb

PHIb

Xa

PHIa

Comb-drive-X

overlap: 15u

rotor_fingers: 35

gap: 2u
finger_width: 2u

finger_length: 20u

v_s
v_r

x_rx_s

Xr

PHIr

Xs

PHIs

Comb-drive-X

overlap: 15u

rotor_fingers: 35

gap: 2u
finger_width: 2u

finger_length: 20u

v_s
v_r

x_rx_s

Xr

PHIr

Xs

PHIs

JOINT_S
ang:90

x_s
vwve

vs

x_wx_e

Xe

PHIe

PHIs
Xs

PHIw

Xw

JOINT_S
ang:90

x_s
vwve

vs

x_wx_e

Xe

PHIe

PHIs
Xs

PHIw

Xw

JOINT_N
ang:90

vwve

vn

x_wx_e

x_nXe

PHIe

PHInXn

PHIw

Xw
JOINT_N
ang:90

vwve

vn

x_wx_e

x_nXe

PHIe

PHInXn

PHIw

Xw

BEAMl: 200u
w: 2u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 200u
w: 2u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 200u
w: 2u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

BEAMl: 200u
w: 2u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

ANCHOR

phix

ANCHOR

phix

ANCHOR

phix

ANCHOR

phix

ANCHOR
phi

x
ANCHOR

phi

x

v
10

1000000

gnd

oab

1000000

gnd

oab

+y

+x

PLATE-MASS
CENTER

l: 200u

w: 300u
x_sex_sw

x_nw x_ne

v_se

v_nev_nw

v_sw

v_l

x_b

x_r

x_t

x_l

v_t

v_r

v_b

Xsw

PHIsw

Xl

PHIl

Xnw

PHInw

Xb
PHIb

PHIse

Xse

PHIr

Xr

PHIne

XneXt
PHIt XmYmPHIm

position
amplitude:1n
frequency:10.25k

pos1

pos2

Xin

Bias Voltage

Central Mass

Voutr

Voutr

X-position
sensors

(a)

(b)

35

Crab-Leg Accelerometer

 d
B

(m
)

-240.0

-220.0

-200.0

-180.0

-160.0

-140.0

 f(Hz)
1k 2k 3k 5k 7k 10k 20k 30k 50k 70k 100k

x_mid
10.24kHz

Figure 27. AC Analysis of the crab-leg accelerometer.

+y

+x

PLATE-MASS
Faces

l: 250u

w:30u

JOINT

ang:90

JOINT

ang:90

JOINT

ang:90

JOINT

ang:90

JOINT_N

ang:90

JOINT_N

ang:90

JOINT_S

ang:90

JOINT_S

ang:90

+y

+x

PLATE-MASS
Faces

l: 250u

w: 30u

+y

+x

PLATE-MASS
Faces

l: 30u

w: 250u

+y

+x

PLATE-MASS
Faces

l: 30u

w: 250u

BEAM
l: 175u

w: 2u

angle:0

BEAM
l: 175u

w: 2u

angle:0

BEAM
l: 175u

w: 2u

angle:0

BEAM
l: 175u

w: 2u

angle:0

BEAM
l: 175u

w: 2u

angle:0
BEAM

l: 175u

w: 2u

angle:0

BEAM
l: 175u

w: 2u

angle:0

BEAMl: 175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

BEAMl:175u

w: 2u

angle:90

BEAMl: 175u

w: 2u

angle:90

ANCHOR

ANCHOR

ANCHOR
ANCHOR

ANCHOR

ANCHOR

Comb-drive-Y

overlap: 5u

rotor_fingers: 30

gap: 2u

finger_width: 2u

finger_length: 10u
oab

oab

Comb-drive-X

overlap: 5u

rotor_fingers: 30

gap: 2u

finger_width: 2u

ger_length: 10u

ANCHOR
ANCHOR

+y

+x

PLATE-MASS
CORNERS

l: 250u

w: 250u

Multiplier

oab

BEAM
l: 175u

w: 2u

angle:0

Comb-drive-Y

overlap: 5u

rotor_fingers: 30

gap: 2u

finger_width: 2u

finger_length: 10u

Comb-drive-X

overlap: 5u

rotor_fingers: 30

gap: 2u

finger_width: 2u

finger_length: 10u

Figure 29.Equivalent schematic view of vibratory rate gyroscope.

Output V
(outb)

X-position
driver
(v_drive)

Input Rotation
(PHIin)

Output V
(outt)

Differential
output
(diff out)

Filtered
output
(filter out)

36

Central Plate Mass

Flexures

Driving
comb
drives

Sensing comb drives

Anchors

Figure 28. Vibratory Rate Gyroscope (a) SEM of polysilicon gyroscope, (b) layout.

(a)

(b)

37

x and y directions [19]. Further details of this gyroscope design and simulation can be found in [20]. The

gyroscope uses these two degrees of motion to detect rotation. One direction (in this case, x) is chosen to

be the direction in which the gyroscope is actuated. It is driven at the resonant frequency of the system to

maximize displacements and increase sensitivity. External rotation in Φ generates a Coriolis force acting in

the orthogonal direction (in this case, y) that is proportional to rotational rate.

An equivalent schematic of the vibratory-rate gyroscope, shown in Figure 29, was created using

the beam, plate, joint, anchor, and comb-drive components. The entire movable structure is connected to a

dc bias source. Differential electrostatic comb drives are located in the x and y axis. The left-hand x-axis

comb actuator is driven with a sinusoidal input voltage (v_drive) operating at the mechanical resonant fre-

quency. The right-hand x-axis comb in conjunction with a transresistance amplifier is used to detect the

sinusoidal drive velocity. This signal is then used to demodulate the differential output signal.

The comb drives and transresistance amplifiers mounted on the y-axis sense motion due to the

Coriolis force. An angle source (PHIin) in the global frame of reference was attached at the center of mass

of the system to simulate external rotation of the chip. To verify the accuracy of the mechanical models, an

AC analysis was first performed with NODAS and compared to a modal analysis done with finite elements.

As shown in Table 4, the analyses match to within 1.5%. The symmetry of the design is also shown in the

ac analysis by the equivalence of the x and y resonant frequencies (16.23kHz).

A transient analysis of the gyroscope is shown in Figure 30. The simulation had a period of 0.022s,

with a step time of 2µs. The x-axis drive voltage (v_drive) was assigned an amplitude of 5 Vpp and a fre-

Table 4: Comparison of Methods Used to Find Resonant Frequencies of a Vibratory Rate
Gyroscope.

Resonant Frequencies SABER ABAQUS (FEA)

ωrx (Hz) 16.23k 16.00k

ωry (Hz) 16.23k 16.00k

ωrφ (Hz) 56.95k 57.1k

38

quency of 16.23kHz. An external angle source (PHIin) was set to rotate the chip with an amplitude of 1

radian at a frequency of 50 Hz. A 40V dc bias was set on the movable structure to enable a motional cur-

rent in the y-axis comb sensors. Figure 30a shows the envelope of the x-axis motion of the system caused

by the sinusoidal input drive voltage. It took approximately 1410 seconds to run the simulation.

When the input rotation (PHIin) is applied (Figure 30b), motional current in the y direction arising

from the Coriolis force is sensed by the upper and lower transresistance amplifiers, as seen in the output

voltage in Figure 30c. In order to eliminate common-mode disturbances, the difference of the top and bot-

tom output signals are computed and shown in Figure 30d. Finally, this signal is demodulated with the

electrical output from the drive signal (v_drive) and fed through a low-pass filter to eliminate the drive har-

monics (Figure 30e). The phase shift in the final output is an artifact of the low-pass filter.

Figure 30.Transient analysis of vibratory rate gyroscope, (a) X axis motion due to input driv-
ing voltage (v_drive), (b) external rotation (PHIin), (c)top combdrive’s electrical output (outt),

(d) differential output signal (diff_out), (e) demodulated, and filtered output (filter_out).

(a)

(b)

(c)

(d)

(e)

Vibratory Rate Gyroscope, Transient Analysis

 t(s)0.0 0.005 0.01 0.015 0.02

 (
-)

-4u
-2u
0.0
2u
4u

 (
-)

-0.001

0.0

0.001

 (
V

)

-600u-400u-200u0.0200u400u600u

 (
ra

d)

-1.0

0.0

1.0

 (
m

)

-2u

0.0

2u

filter_out

diff_out

_outt

PHIin

x_mid

39

IV. CONCLUSIONS

This paper describes a methodology for Nodal Design of Actuators and Sensors (NODAS) which

uses a hierarchical representation of MEMS components implemented in an analog hardware description

language and simulated with a nodal simulator. The NODAS design methodology will allow a designers to

quickly and easily create complex MEMS designs and build up a hierarchical parts library for reuse in

future designs. An example of the power of this methodology is the ability to design a fully customized

microelectromechanical system with a control system and test it in a global frame of reference. In previous

design methodologies it was nearly impossible to create and simulate a fully customized MEMS design

with a control system at the circuit level of abstraction. NODAS also enables the user to perform all the

analyses that can be done in a circuit simulator.

There are many options for future work on the components. Modeling of other degrees of freedom,

z translation, rotation about x and rotation about y, is necessary. Component models may also include other

energy domains such as thermal energy. The comb-drive and electrostatic gap components can include

force-displacement and torque-rotation relations for fingers that overlap at angles relative to one another.

Another advancement in the models is including parameters for stress and buckling to let the designer

know if the design is manufacturable. Work may also be done to transform the entire NODAS methodol-

ogy from SABER into other HDL simulators. Research can also be done on using external variables to rep-

resent the accelerations and rotations acting on the chip [21][22], which would replace the “position”

nodes, thus cutting the size of the Jacobian matrix by approximately one half, speeding up simulation.

V. ACKNOWLEDGEMENTS

This research effort is sponsored by NSF CAREER Award MIP-9625471, and by the Defense

Advanced Research Projects Agency (DARPA) and U. S. Air Force Research Laboratory, under agreement

number F30602-96-2-0304. The U. S. Government is authorized to reproduce and distribute reprints for

governmental purposes not with standing any copyright notation thereon. The views and conclusions con-

40

tained herein are those of the authors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of DARPA, the U. S. Air Force Research Labora-

tory, or the U. S. Government.

I personally would like to thank my fiancée, Tina and the rest of my family for supporting me. I

would like to thank Gary and Tamal for being patient with me, and helping me out. I would also like to

thank Mike Kranz, Sitaraman Iyer, and the rest of the MEMS group. Finally, I would like to thank Darrell

Teegarden and the rest of the people at ANALOGY for helping with SABER and MAST.

VI. REFERENCES

[1] J.M. Karam, B. Courtois, K. Hofmann, A. Poppe, M. Rencz, and M. Glesner, “Microsystems Model-
ing at System Level,” APCHDL ‘96, Bangalore, India, 8-10 January, 1996.
[2] E. C. Berg, N. R. Lo, J. N. Simon, H. J. Lee, and K. S. J. Pister, “Synthesis and Simulation for MEMS
Design”, ACM SIGDA Physical Design Workshop, Reston VA, April 1996, pp. 66-70.
[3] J. Scholliers, T. Yli-Pietilä, “A SPICE-based Library for Mechatronic Systems,” Proc. IEEE Intl. Con-
ference on Robotics and Automation, Nagoya, Japan, 21-27 May 1995, vol. 3, pp.2847-52.
[4] S. P. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York, New York, 1968.
[5] J. E. Vandemeer, M. S. Kranz, G. K. Fedder, “Nodal Simulation of Suspended MEMS With Multiple
Degrees of Freedom”, ASME Winter Annual Conference, Dallas, TX, 16-21 November, 1997.
[6] J. E. Vandemeer, M.S. Kranz and G.K. Fedder, “Hierarchical Representation and Simulation of Micro-
machined Inertial Sensors”, Proc. Modeling and Simulation of Microsystems Workshop, Santa Clara, CA,
April 6-8, 1998.
[7] J. Clark, N. Zhou, S. Brown and K. S. J. Pister, “Nodal Analysis for MEMS Simulation and Design”,
Proc. Modeling and Simulation of Microsystems Workshop, Santa Clara, CA, April 6-8, 1998.
[8] MAST Reference Manual, Release 4.2, Analogy Inc., Beaverton OR, 1997.
[9] Analyzing Designs Using Saber Designer for the Cadence Design Framework II, Release 4.2, Analogy
Inc., Beaverton OR, 1997.
[10] S. P. Timoshenko and J.M. Gere, Mechanics of Materials, 2nd ed., Wadsworth, Belmont, 1984.
[11] R. C. Jaeger, Introduction to Microelectronic Fabrication (Modular Series on Solid State Devices;
volume 5), Addison-Wesley Publishing, Reading, Massachusetts, 1993.
[12] G. K. Fedder, Simulation of Microelectromechanical Systems, PhD thesis, Dept. of Electrical Engi-
neering and Computer Sciences, University of California at Berkeley, September 1994.
[13] S. Iyer, T. Muhkerjee, and G. Fedder, “Multi-mode Sensitive Layout Syntheses of Microresonators,”
Modeling and Simulation of Microsystems, Santa Clara, CA, April 6-8, 1998.
[14] X. Zhang and W. C. Tang, “Viscous Air Damping in Laterally Driven Microresonators,” Sensors and
Materials, v. 7, no. 6, 1995, pp. 415-430.
[15] SaberDesigner Reference, SaberSketch Reference, Release 4.2, Analogy Inc., Beaverton OR, 1997.
[16] ABAQUS/Standard User’s Manual, Version 5.6, Volume II, Hibbitt, Karlson and Sorenson Inc., Paw-
tucket RI, 1996.
[17] W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic Comb Drive of Lateral Pol-

41

ysilicon Resonators,” Sensors and Actuators A, vol.21, no. 1-3, pp. 328-31, Feb. 1990.
[18] G. K. Fedder, and Tamal Muhkerjee, “Physical Design for Surface Micromachined MEMS”, Proceed-
ings of the 5th ACM/SIGDA Physical Design Workshop, Reston, VA, April 15-17, 1996, pp. 53-60.
[19] M. Kranz, G. K. Fedder “Micromechanical Vibratory Rate Gyroscopes Fabricated in Conventional
CMOS”, Symposium Gyro Technology 1997, Stuttgart, Germany, pp. 3.0-3.8.
[20] M. Kranz, Design, Simulation, and Implementation of Two Novel Micromechanical Vibratory-Rate
Gyroscopes, M.S. Thesis, Department of Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, May 1998.
[21] G. Lorenz, R. Neul “Network-Type Modeling of Micromachined Sensor Systems”, Proc. Modeling
and Simulation of Microsystems Workshop, Santa Clara, CA, April 6-8, 1998.
[22] Darrell Teegarden, G. Lorenz, R. Neul “Designing Inertial Microsensor Systems”, IEEE Spectrum,
Summer 1998.
[23]SaberDesigner Reference, Customizing SaberDesigner Using AIM, Release 4.2, Analogy Inc., Beaver-
ton OR, 1997.
[24]SaberDesigner Reference, SaberScope Reference, Release 4.2, Analogy Inc., Beaverton OR, 1997.

42

APPENDIX A: SCHEMATIC IMPLEMENTATION

This appendix describes how to generate and simulate schematics using SABER [9] and Saber-

Sketch [15]. The first part of this appendix describes what each of the nodes on the symbols represent, and

how to connect them together. This is followed by an explanation of NODAS design rules, and how to cre-

ate schematics in accordance with them. The final part of this section describes how to optimize schemat-

ics, and how to efficiently simulate and analyze them.

A. CREATING A MEMS SCHEMATIC IN SABER SKETCH

As mentioned earlier (refer to section II.A), each symbol contains ports consisting of two sets of

nodes that interconnect with other symbols. Since MAST is not case sensitive, the labels for these nodes on

the symbols and templates can not be distinguished by the letter case alone. To solve this problem, global

position nodes are characterized by capital letters (X, Y, PHI) followed immediately by a descriptive term

(e.g. a, b...). On-chip displacement and voltage nodes are characterized by a lower case letter (x, y, phi, v)

followed by an underscore, and a descriptive term (e.g. _a, _b...) (Figure 31).

Symbols are connected together at the ports, with each set of nodes connecting to the appropriate

set (e.g. global position to global position). The symbols were specifically designed to make this process as

painless as possible, however one must be certain that the snap spacing variable in SaberSketch’s [15]

schematic preferences menu is set to a value less than or equal to four in order to snap the symbols

together. When using beams in a schematic, the angle parameter must be equivalent to the angle the beam

l: 100u
w: 2u
angle:0

v_bv_a

x_a x_b

Xb

PHIb

Xa
PHIa BEAM }

}global
positions

on-chip
displacements

voltagePort

Figure 31. Beam Symbol, with ports, global position nodes, chip displacement
nodes, and electrical nodes.

43

has relative to the chip frame of reference. In addition, when joints are used in a design, the angle parame-

ter given to them must be consistent with adjacent elements. For example, when a rotated beam is con-

nected to the south port on a joint, and the joint has an angle parameter of 90˚, the east and west ports

contain a global angle of 0˚, thus a port with a global angle of 0˚ must be connected to those ports to make

the schematic consistent (Figure 32). It is important to remember that while angle parameters are defined

in degrees, the angle across the nodes is measured in radians, making it necessary to put external angle

sources in terms of radians.

Currently, plate masses and comb drives do not contain an angle parameter, and therefore can not

be placed in a rotated orientation on the chip. Plate-masses contain many ports at both 0˚ and 90˚ relative to

the chip. It is the users decision to determine connections to the plate-mass. Their are two separate models

for the comb drive, one vertical and one horizontal. Actuation in the x direction, is accomplished with a

horizontal comb drive (combdrive_x), while y actuation is accomplished with a vertical comb drive

(combdrive_y).

Anchor symbol

Global frame grounded
Beam symbol
set at 90˚

 (displacements = 0)

Electrical Ground

Joint symbol
(ang = 90˚)

Beam symbol
set at 0˚

Angle = 90˚

Figure 32. Schematic of Crab-leg structure. Angles must be set according
to the chip frame of reference.

y

x

φ
Chip frame
of reference

BEAM
l: 100u
w: 2u

angle:0
v_bv_a

x_a x_b

Xb

PHIb

Xa

PHIa

ANCHORphi
x

l: 100u
w: 2u
angle:90

v_b

v_ax_a

x_bXb PHIb

Xa PHIa

JOINT_N
ang:90

vwve

vn

x_wx_e

x_nXe
PHIe

PHIaXn

PHIw

Xw

force
1upos1

pos2

BEAM

Force Source
in X-direction

44

The user must make certain that each schematic has a reference to the global frame on one, and

only one, of their components (Figure 33). If one wishes to make a design that is stationary, a constant

source must be used at the global reference node. Another important characteristic about the global frame

of reference is that when elements loop together, one must be certain that the positions across all the com-

ponents are defined so that the total position around the loop is zero. This is equivalent to a Kirchhoff Volt-

age Loop. If the positions are incorrectly defined, then the design will not simulate correctly. Finally, when

referencing the chip to the global coordinate system, be certain to determine the values of the global angle

and positions according to the global reference frame, not the chip’s reference frame (Figure 33). There are

no incorrect input values for the global position and angle references, however, evaluation may be difficult

if the chip is not at the same angle and position the user thinks it is.

CHIP

REFERENCE

DESIGN

X

Y

Global SourcesX=0 Y=0 Φ=0

Global Frame

CHIP

X

Y

Global Frame

CHIP

REFERENCE

DESIGN

X

Y

Global SourcesX=0 Y=0 Φ=π/2

Global Frame

CHIP
DESIGN

X

Y Global Frame

(a)

(b)

Figure 33.Comparison of schematic views and real chips in the global frame of reference, (a)
Schematic with global angle reference=0, (b) Schematic with global reference angle = π/2.

SCHEMATIC REAL WORLD

DESIGN

45

In the chip displacement nodes, the anchor acts as a reference node, therefore there is no need to

connect them to reference. The electrical nodes must also have a reference node. If the electrical circuitry

is not connected to a reference, the circuit will not be complete, resulting in a singular Jacobian matrix.

B. SIMULATING AND ANALYZING A MEMS DESIGN IN SABER

Once a MEMS schematic has been completed, the next step is simulating the design. While the

process of simulating the design is simple, it can also be rather time consuming. This section will describe

methods for efficient design, simulation and data analysis.

The first step in reducing simulation time is creating an efficient schematic. There are numerous

methods for optimizing a schematic. One way is to make certain the schematic uses joints and plate-masses

with the minimum number of connections needed to complete a design. Ports that are not connected to

other components add to the size of the Jacobian matrix, but provide no functionality. Another method for

reducing simulation time is to use less advanced models when the functionality of the design does not rely

heavily on those components. For example, if a design has a large plate mass, the mass added by beams

would not be significant, therefore if the user replaced the beam models with “massless” beams, the design

still operates similarly, while the simulation time is reduced. When needed, the user can also use plate

models without global acceleration effects. Simulation time is also reduced by routing all anchored ports

into one anchor, which reduces the number of nodes, and sacrifices only aesthetics. An additional method

for reducing simulation time is using “cosinusoidal” sources (adding a phase of 90˚ to sinusoidal signals).

Using a cosine waveform to input sources eliminates the initial impulses in force at the first time step. This

allows the simulator to start at a more accurate value, and continue the simulation more quickly.

Once the design is optimized there are some methods for reducing the simulation time via the sim-

ulator control panel [15]. If the user sets the “Monitor Progress” option on the simulator control panel to a

non-zero value, he or she can monitor the simulation of their design. If the simulator is having trouble, the

user can hit the “Update Probes” button on the SaberSketch menu to see the waveforms being produced by

the simulator. If they do not look correct, the user can stop the simulation and examine the design, instead

46

of waiting for the simulation to finish. Another method used to expedite simulation time is the “Min Time

Step” option under the “Integration Control” menu of the control panel. If this value is set between five and

twenty times smaller than the initial time step, it prevents the simulator from taking time steps that are too

small, thereby reducing the simulation time significantly. If one has a design or group of designs that needs

to be simulated or analyzed, an AIM script file can be written [23]. Using a script allows the user to run a

sequence of operations on multiple designs. In addition, scripts enable the user to simulate designs in batch

mode. Finally, these results were obtained by setting the “Method” option in the “Integration Control”

menu of the transient analysis control panel to “TRAP” instead of “GEAR”. When the “GEAR” method of

integration was used, unexplained inaccuracies were encountered.

There are three ways to analyze the data collected after a simulation, through measurements, prob-

ing, and using SaberScope [24]. When the “Batch Measures” option in the Analyses menu in SaberSketch

window is used, measurements can be taken on the variables calculated in the simulation of the current

design. The results from these measurements appear in the SaberGuide Transcript window, they are also

stored in a “.out” file which can be read by other programs. Probes can be used for a quick display of the

across variable values at each node. No calculations can be done with the waveforms in the probes. The

advantage of using the probes is that they give the user a quick overview of the design. A third, and most

powerful, option for analyzing designs is viewing waveforms of a plotfile in SaberScope [24]. SaberScope

allows the user to perform calculations and measurements (as with the Batch Measures option) on your

waveforms in addition to letting the user view the waveform (as with the probes). The disadvantage of

using SaberScope is that it requires the user to call up a separately running program.

47

APPENDIX B: MAST FILES

This appendix contains the MAST files used to model the components.

A. ANCHOR

#MAST Code for an Anchor
#with respect to the x, y and phi directions
#
#Jan E. Vandemeer, M. Kranz
#Carnegie Mellon University
#1/23/98
#
#**

element template anchor x y phi

translational_posy, #reference position of x and y
x

rotational_angphi #angle that will be maintained at reference

{
var frc_N fx, fy
var tq_Nm tphi

equations{
fx: pos_m(x) = 0
fy: pos_m(y) = 0
tphi: ang_rad(phi) = 0

frc_N(x) += fx
frc_N(y) += fy
tq_Nm(phi) += tphi
}

}

48

B. BEAM

MAST Code for a Simple flexible BEAM (small deflections)
with respect to the x, y and phi directions
This model is broken up into position and displacement
#
Jan E. Vandemeer and Michael Kranz
Carnegie Mellon University. Copyright 1998, All rights reserved
4/24/98
#
#**

element template beam x_a x_b Xa Xb y_a y_b Ya Yb \
 phi_a phi_b PHIa PHIb v_a v_b = l, w, angle

translational_pos x_a, #x-displacement at port “x_a”
 x_b, #x-displacement at port “x_b”
 y_a, #y-displacement at port “y_a”

 y_b, #y-displacement at port “y_b”
 Xa, #x-position at the a port

 Xb, #x-position at the b port
 Ya, #y-position at the a port

 Yb #y-position at the b port

rotational_ang phi_a, #angle displacement at port “phi_a”
 phi_b, #angle displacement at port “phi_b”

 PHIa, #Angle of beam at a node
 PHIb #Angle of beam at b node

electrical v_a,#Voltage at a node
 v_b #Voltage at b node

number w, #width of beam
 l, #length of beam

 angle #Angle of beam (about z-axis)
{

#Include tech files
<tech_file.sin

number ms, #mass of beam (density*volume)
 I, #moment of inertia about z-axis
 r, #reistance through beam
 rad, #Convert degrees to radians
 B #Damping coefficient

numberc12, c6, ea, c4, c2#Coefficients for spring constants
numbercos_dc, sin_dc #Trig functions of the “static” angle
numberk1, k2, k3, k4 #Coefficients for effective mass

49

valpos_m px, py #Position values (x,y)
valang_radphi #Position values (phi)
valpos_mdx, dy #Displacements across the beam in local frame
valpos_mchip_x, chip_y #Chip frame displacements
valpos_mchip_xa, chip_ya #Chip frame displacements at a
valpos_mchip_xb, chip_yb #Chip frame displacements at b
valpos_ml_xa, l_ya #Local frame displacements at a
valpos_ml_xb, l_yb #Local frame displacements at b
valfrc_NFxda, Fyda #Values for the displacement forces (at node a)
valfrc_NFxdb, Fydb #Values for the displacement forces (at node b)
valfrc_NFchipxa, Fchipya #Values for on-chip displacement forces
valfrc_NFchipxb, Fchipyb #Values for on-chip displacement forces
valtq_NmTqa, Tqb #Values for the torques
valfrc_NFichipxa, Fichipya #Values for the inertial forces
valfrc_NFichipxb, Fichipyb #Values for the inertial forces
valpos_mfil_yb, fil_ya #Local frame inertial forces
valpos_mfil_xb, fil_xa #Local frame inertial forces
valpos_mtql_b, tql_a #Local frame torques

#Helpful, time cutting value
val ang_rad chip_phi #Sum of angles across the beam

var frc_N Fxp, Fyp #Variables for the position forces
var tq_NmTpp #Variables fot the angular torques
varvel_mpsVyda, Vydb #Local Velocity in x and y
varaccl_mps2Ayda, Aydb #Local Acceleration in x and y
varvel_mpsVxda, Vxdb #Local Velocity in x and y
varaccl_mps2Axda, Axdb #Local Acceleration in x and y
varw_radpsVphia, Vphib #Angular velocity
vardw_radps2Aphia, Aphib #Angular acceleration

parameters{
 ms = poly1_t*w*l*poly_den

I = (poly1_t*(w**3))/12
r = poly1_rho*(l/w)
B = visc_air*(l*(w+4u))/(air_gap) #Neglect skin depth
c12 = 12*E*I/(l**3)
c6 = 6*E*I/(l**2)
ea = E*poly1_t*w/l
c4 = 4*E*I/l
c2 = 2*E*I/l

rad = angle*PI/180
cos_dc = cos(rad)
sin_dc = sin(rad)
k1 = ms/420
k2 = ms/6
k3 = l*k1
k4 = 156/420

}

50

values{
px = pos_m(Xb,Xa)
py = pos_m(Yb,Ya)
phi = ang_rad(PHIb,PHIa)
chip_x = pos_m(x_b,x_a)
chip_y = pos_m(y_b,y_a)
chip_xa = pos_m(x_a)
chip_ya = pos_m(y_a)
chip_xb = pos_m(x_b)
chip_yb = pos_m(y_b)

chip_phi = ang_rad(phi_b) + ang_rad(phi_a)

#rotate into local frame
l_xa = cos_dc*chip_xa + sin_dc*chip_ya
l_ya = cos_dc*chip_ya - sin_dc*chip_xa
l_xb = cos_dc*chip_xb + sin_dc*chip_yb
l_yb = cos_dc*chip_yb - sin_dc*chip_xb
dx = cos_dc*chip_x + sin_dc*chip_y
dy = cos_dc*chip_y - sin_dc*chip_x

#Solve for the inertial forces and moments in the local frame
fil_xa = k2*(2*Axda + Axdb) + B*Vxda
fil_xb = k2*(Axda + 2*Axdb) + B*Vxdb
fil_ya = k1*(l*(22*Aphia-13*Aphib)+ 156*Ayda +54*Aydb) +B*Vyda
fil_yb = k1*(l*(13*Aphia-22*Aphib)+ 54*Ayda +156*Aydb) +B*Vydb
tql_a = k3*(l*(4*Aphia-3*Aphib) + 22*Ayda +13*Aydb)
tql_b = k3*(l*(-3*Aphia+4*Aphib) - 13*Ayda -22*Aydb)

#Solve for the forces and torques
Fxda = -ea*dx
Fxdb = ea*dx
Fyda = -c12*dy + c6*chip_phi
Fydb = c12*dy - c6*chip_phi
Tqa = -c6*dy + c4*ang_rad(phi_a) + c2*ang_rad(phi_b)
Tqb = -c6*dy + c4*ang_rad(phi_b) + c2*ang_rad(phi_a)

#Rotate back from local frame to CHIP frame
Fchipxb = Fxdb*cos_dc - Fydb*sin_dc
Fchipyb = Fydb*cos_dc + Fxdb*sin_dc
Fchipxa = Fxda*cos_dc - Fyda*sin_dc
Fchipya = Fyda*cos_dc + Fxda*sin_dc

#Inertial forces (in chip frame)
Fichipxb = fil_xb*cos_dc - fil_yb*sin_dc
Fichipyb = fil_xb*sin_dc + fil_yb*cos_dc
Fichipxa = fil_xa*cos_dc - fil_ya*sin_dc
Fichipya = fil_xa*sin_dc + fil_ya*cos_dc

}

51

equations {
#Current through the beam

i(v_b->v_a) += v(v_b,v_a)/r

#Forces at the end of the beams
frc_N(x_b) -= Fchipxb
frc_N(x_a) -= Fchipxa
frc_N(y_b) -= Fchipyb
frc_N(y_a) -= Fchipya

#Moment at end of beam
tq_Nm(phi_a) -= Tqa
tq_Nm(phi_b) -= Tqb

#Effective Mass and damping
frc_N(y_a) -= fichipya
frc_N(y_b) -= fichipyb
frc_N(x_a) -= fichipxa
frc_N(x_b) -= fichipxb

 tq_Nm(phi_a) -= tql_a
tq_Nm(phi_b) -= tql_b

#Beams positions
frc_N(Xa->Xb) += Fxp
frc_N(Ya->Yb) += Fyp
tq_Nm(PHIa->PHIb) += Tpp

Fxp: px = l*cos(ang_rad(PHIa))
Fyp: py = l*sin(ang_rad(PHIa))
Tpp: phi = 0

#Velocities
Vyda: Vyda = d_by_dt(l_ya)
Vydb: Vydb = d_by_dt(l_yb)
Vxda: Vxda = d_by_dt(l_xa)
Vxdb: Vxdb = d_by_dt(l_xb)
Vphia: Vphia = d_by_dt(ang_rad(phi_a))
Vphib: Vphib = d_by_dt(ang_rad(phi_b))

#Accelerations
Ayda: Ayda = d_by_dt(Vyda)
Aydb: Aydb = d_by_dt(Vydb)
Axda: Axda = d_by_dt(Vxda)
Axdb: Axdb = d_by_dt(Vxdb)
Aphia: Aphia = d_by_dt(Vphia)
Aphib: Aphib = d_by_dt(Vphib)
}

}

52

C. PLATE MASS

#MAST Code for a solid-plate mass
#with respect to the x, y and phi directions
#Its split into displacement and position
#
#Jan E. Vandemeer, Michael Kranz
#Carnegie Mellon University
#5/1/98
#
#**

element template plate_mass y_l y_r y_b y_t y_ne y_nw y_se y_sw \
 Yl Yr Yb Yt Yne Ynw Yse Ysw \
 x_l x_r x_b x_t x_ne x_nw x_se x_sw \
 Xl Xr Xb Xt Xne Xnw Xse Xsw \
 phi_l phi_r phi_b phi_t \
 phi_ne phi_nw phi_se phi_sw \
 PHIl PHIr PHIb PHIt PHIne PHInw PHIse PHIsw \
 v_l v_r v_b v_t v_ne v_nw v_se v_sw = l, w

translational_pos y_l, y_r, y_b, y_t, #Y-displacements
 y_ne, y_nw, y_se, y_sw

translational_pos Yl, Yr, Yb, Yt, Yne, Ynw, Yse, Ysw #Y-positions

translational_pos x_l, x_r, x_b, x_t, #X-displacements
 x_ne, x_nw, x_se, x_sw

translational_pos Xl, Xr, Xb, Xt, Xne, Xnw, Xse, Xsw #X-positions

electrical v_l, v_r, v_b, v_t, #Voltages
 v_ne, v_nw, v_se, v_sw

rotational_ang phi_l, phi_r, phi_b, phi_t, #Change in angle
 phi_ne, phi_nw, phi_se, phi_sw

rotational_ang PHIl, PHIr, PHIb, PHIt, #Angles
 PHIne, PHInw, PHIse, PHIsw

number w, #width of mass plate
l #length of mass plate

{
#Internal nodes at the midpoint
translational_pos Ym, y_mid, Xm, x_mid
electricalv_mid
rotational_angPHIm, phi_mid

#System variables to solve force in the y-direction

53

var frc_N f_l_mid, f_r_mid, f_b_mid, f_t_mid
var frc_N f_ne_mid, f_nw_mid, f_se_mid, f_sw_mid

var frc_N F_nw, Fx_nw, F_t, Fx_t, F_ne, Fx_ne,
 F_r, Fx_r, F_se, Fx_se, F_b, Fx_b,
 F_sw, Fx_sw, F_l, Fx_l

#System variables to solve force in the x-direction
var frc_N f_x_l_mid, f_x_r_mid, f_x_b_mid, f_x_t_mid

var frc_N f_x_ne_mid, f_x_nw_mid, f_x_se_mid, f_x_sw_mid

#System variables to find the torque about the mid-point
var tq_Nm t_l_mid, t_r_mid, t_b_mid, t_t_mid
var tq_Nm t_ne_mid, t_nw_mid, t_se_mid, t_sw_mid

var tq_Nm T_nw, T_sw, T_t, T_ne, T_se, T_r, T_b, T_l

#System variables for global velocity and acceleration
var vel_mps Vx, Vy

var accl_mps2 Ax, Ay

<tech_file.sin

number ms,#mass of plate
I, #moment of inertia
r, #Resistance of plate
arc, #Angle between midpoint, and corner
sinarc, #Sine of that angle
cosarc, #Cosine of that angle
Lngth, #hypotenuse between midpoint and corner
By #Damping coefficient

valpos_mpos_mid #value of y at the center of mass
valpos_mpos_x_mid #value of x at the center of mass
valang_rad ang_mid #value of phi at the center of mass

valang_rad ANG #Overall angle of the center mass

varw_radpsangv_mid #angular velocity of plate
vardw_radps2 anga_mid #angular acceleration of plate
valang_radphi_off_1 #offset angle between midpoint and corners
valang_rad phi_off_2 #tan-1(l/w) - phi_mid
valpos_msin_off_1, #values to help simplify the equations,

sin_off_2, #trigonemtric equations
cos_off_1,
cos_off_2,
l_cos_mid,
w_cos_mid,

54

l_sin_mid,
w_sin_mid

valpos_mLcos, Lsin, Wcos, Wsin, #Trigonemetric vals for position
PHIoff1, PHIoff2,
Sinoff1, Sinoff2,
Cosoff1, Cosoff2

valpos_mxg, yg #Global displacements

parameters{
ms = poly1_t*w*l*poly_den
I = ms*(l**2 + w**2)/12
r = poly1_rho*(l/w)
Lngth = sqrt((w/2)**2 + (l/2)**2)
arc = atan(l/w)
sinarc = sin(arc)*Lngth
cosarc = cos(arc)*Lngth
By = visc_air*(l*w)/(air_gap)
}

values{
pos_mid = pos_m(y_mid)
pos_x_mid = pos_m(x_mid)
ang_mid = ang_rad(phi_mid)
ANG = ang_rad(PHIm)

phi_off_1 = arc + ang_mid
phi_off_2 = arc - ang_mid
sin_off_1 = Lngth*sin(phi_off_1)
sin_off_2 = Lngth*sin(phi_off_2)
cos_off_1 = Lngth*cos(phi_off_1)
cos_off_2 = Lngth*cos(phi_off_2)
l_cos_mid = (l/2)*cos(ang_mid)
w_cos_mid = (w/2)*cos(ang_mid)
l_sin_mid = (l/2)*sin(ang_mid)
w_sin_mid = (w/2)*sin(ang_mid)

PHIoff1 = arc + ANG
PHIoff2 = arc - ANG

Lcos = (l/2)*cos(ANG)
Lsin = (l/2)*sin(ANG)
Wcos = (w/2)*cos(ANG)
Wsin = (w/2)*sin(ANG)
Sinoff1 = Lngth*sin(PHIoff1)
Sinoff2 = Lngth*sin(PHIoff2)
Cosoff1 = Lngth*cos(PHIoff1)
Cosoff2 = Lngth*cos(PHIoff2)

55

#Place displacements in global frame
xg = pos_x_mid*cos(ANG) - pos_mid*sin(ANG)
yg = pos_x_mid*sin(ANG) + pos_mid*cos(ANG)
}

equations {

#Inertial forces, translational
frc_N(x_mid) -= ms*(cos(ANG)*(Ax)+sin(ANG)*(Ay))+ d_by_dt(By*pos_x_mid)
frc_N(y_mid) -= ms*(-sin(ANG)*(Ax)+cos(ANG)*(Ay))+ d_by_dt(By*pos_mid)

#Rotational inertial forces
tq_Nm(phi_mid) -= I*anga_mid + \
w_cos_mid*(f_r_mid - f_l_mid) + l_sin_mid*(f_b_mid - f_t_mid) + \
w_sin_mid*(f_x_l_mid - f_x_r_mid) + l_cos_mid*(f_x_b_mid - f_x_t_mid)+\
Lngth*(sin(phi_off_1)*(f_x_sw_mid - f_x_ne_mid) + \
cos(phi_off_1)*(f_ne_mid - f_sw_mid) + \
sin(phi_off_2)*(f_x_se_mid - f_x_nw_mid) + \
cos(phi_off_2)*(f_se_mid - f_nw_mid))

#Solving for the through variables at each node
frc_N(y_b->y_mid) += f_b_mid
frc_N(y_l->y_mid) += f_l_mid
frc_N(y_r->y_mid) += f_r_mid
frc_N(y_t->y_mid) += f_t_mid
frc_N(y_ne->y_mid) += f_ne_mid
frc_N(y_nw->y_mid) += f_nw_mid
frc_N(y_se->y_mid) += f_se_mid
frc_N(y_sw->y_mid) += f_sw_mid

frc_N(x_b->x_mid) += f_x_b_mid
frc_N(x_l->x_mid) += f_x_l_mid
frc_N(x_r->x_mid) += f_x_r_mid
frc_N(x_t->x_mid) += f_x_t_mid
frc_N(x_ne->x_mid) += f_x_ne_mid
frc_N(x_nw->x_mid) += f_x_nw_mid
frc_N(x_se->x_mid) += f_x_se_mid
frc_N(x_sw->x_mid) += f_x_sw_mid

tq_Nm(phi_b->phi_mid) += t_b_mid
tq_Nm(phi_l->phi_mid) += t_l_mid
tq_Nm(phi_r->phi_mid) += t_r_mid
tq_Nm(phi_t->phi_mid) += t_t_mid
tq_Nm(phi_ne->phi_mid) += t_ne_mid
tq_Nm(phi_nw->phi_mid) += t_nw_mid
tq_Nm(phi_se->phi_mid) += t_se_mid
tq_Nm(phi_sw->phi_mid) += t_sw_mid

frc_N(Ynw->Ym) += F_nw
frc_N(Yt->Ym) += F_t

56

frc_N(Yne->Ym) += F_ne
frc_N(Yr->Ym) += F_r
frc_N(Yse->Ym) += F_se
frc_N(Yb->Ym) += F_b
frc_N(Ysw->Ym) += F_sw
frc_N(Yl->Ym) += F_l

frc_N(Xnw->Xm) += Fx_nw
frc_N(Xt->Xm) += Fx_t
frc_N(Xne->Xm) += Fx_ne
frc_N(Xr->Xm) += Fx_r
frc_N(Xse->Xm) += Fx_se
frc_N(Xb->Xm) += Fx_b
frc_N(Xsw->Xm) += Fx_sw
frc_N(Xl->Xm) += Fx_l

tq_Nm(PHIb->PHIm) += T_b
tq_Nm(PHIr->PHIm) += T_r
tq_Nm(PHIt->PHIm) += T_t
tq_Nm(PHIne->PHIm) += T_ne
tq_Nm(PHInw->PHIm) += T_nw
tq_Nm(PHIse->PHIm) += T_se
tq_Nm(PHIsw->PHIm) += T_sw
tq_Nm(PHIl->PHIm) += T_l

#Current through the mass
i(v_l->v_mid) += v(v_l,v_mid)/r
i(v_r->v_mid) += v(v_r,v_mid)/r
i(v_b->v_mid) += v(v_b,v_mid)/r
i(v_t->v_mid) += v(v_t,v_mid)/r
i(v_ne->v_mid) += v(v_ne,v_mid)/r
i(v_nw->v_mid) += v(v_nw,v_mid)/r
i(v_se->v_mid) += v(v_se,v_mid)/r
i(v_sw->v_mid) += v(v_sw,v_mid)/r

#Solving for the system variables

T_nw: ang_rad(PHInw,PHIm) = 0
T_sw: ang_rad(PHIsw,PHIm) = 0
T_t: ang_rad(PHIt,PHIm) = PI/2
T_b: ang_rad(PHIb,PHIm) = PI/2
T_ne: ang_rad(PHIne,PHIm) = 0
T_se: ang_rad(PHIse,PHIm) = 0
T_r: ang_rad(PHIr,PHIm) = 0
T_l: ang_rad(PHIl,PHIm) = 0

F_nw: pos_m(Ynw,Ym) = Sinoff2
Fx_nw: pos_m(Xnw,Xm) = -Cosoff2
F_t: pos_m(Yt,Ym) = Lcos
Fx_t: pos_m(Xt,Xm) = -Lsin

57

F_ne: pos_m(Yne,Ym) = Sinoff1
Fx_ne: pos_m(Xne,Xm) = Cosoff1
F_r: pos_m(Yr,Ym) = Wsin
Fx_r: pos_m(Xr,Xm) = Wcos
F_se: pos_m(Yse,Ym) = -Sinoff2
Fx_se: pos_m(Xse,Xm) = Cosoff2
F_b: pos_m(Yb,Ym) = -Lcos
Fx_b: pos_m(Xb,Xm) = Lsin
F_sw: pos_m(Ysw,Ym) = -Sinoff1
Fx_sw: pos_m(Xsw,Xm) = -Cosoff1
F_l: pos_m(Yl,Ym) = -Wsin
Fx_l: pos_m(Xl,Xm) = -Wcos

f_b_mid:pos_m(y_b,y_mid) = -l_cos_mid + l/2
f_l_mid:pos_m(y_l,y_mid) = -w_sin_mid
f_r_mid:pos_m(y_r,y_mid) = w_sin_mid
f_t_mid:pos_m(y_t,y_mid) = l_cos_mid - l/2
f_ne_mid:pos_m(y_ne,y_mid) = sin_off_1 - sinarc #Lngth*sin(arc)
f_nw_mid:pos_m(y_nw,y_mid) = sin_off_2 - sinarc #Lngth*sin(arc)
f_se_mid:pos_m(y_se,y_mid) = sinarc - sin_off_2 #Lngth*sin(arc)
f_sw_mid:pos_m(y_sw,y_mid) = sinarc - sin_off_1 #Lngth*sin(arc)

f_x_b_mid :pos_m(x_b,x_mid) = l_sin_mid
f_x_l_mid :pos_m(x_l,x_mid) = -w_cos_mid + w/2
f_x_r_mid :pos_m(x_r,x_mid) = w_cos_mid - w/2
f_x_t_mid :pos_m(x_t,x_mid) = -l_sin_mid
f_x_ne_mid :pos_m(x_ne,x_mid) = cos_off_1 - cosarc #Lngth*cos(arc)
f_x_nw_mid :pos_m(x_nw,x_mid) = cosarc - cos_off_2 #Lngth*cos(arc)
f_x_se_mid :pos_m(x_se,x_mid) = cos_off_2 - cosarc #Lngth*cos(arc)
f_x_sw_mid :pos_m(x_sw,x_mid) = cosarc - cos_off_1 #Lngth*cos(arc)

t_l_mid : ang_rad(phi_l,phi_mid) = 0
t_r_mid :ang_rad(phi_r,phi_mid) = 0
t_b_mid :ang_rad(phi_b,phi_mid) = 0
t_t_mid :ang_rad(phi_t,phi_mid) = 0
t_ne_mid :ang_rad(phi_ne,phi_mid) = 0
t_nw_mid :ang_rad(phi_nw,phi_mid) = 0
t_se_mid :ang_rad(phi_se,phi_mid) = 0
t_sw_mid :ang_rad(phi_sw,phi_mid) = 0

angv_mid :angv_mid = d_by_dt(ang_mid+ANG)
anga_mid :anga_mid = d_by_dt(angv_mid)

#Velocities and accelerations
Vx: Vx = d_by_dt(pos_m(Xm)+xg)
Vy: Vy = d_by_dt(pos_m(Ym)+yg)
Ax: Ax = d_by_dt(Vx)
Ay: Ay = d_by_dt(Vy)

}
}

58

D. Y-AXIS COMB DRIVE

MAST Code for a Comb-Drive Actuator
with respect to the x, y and phi directions
#
Jan E. Vandemeer and Michael Kranz
Carnegie Mellon University
4/17/97
#
#**

element template combdrive_y x_r Xr x_s Xs y_r Yr y_s Ys \
 phi_r PHIr phi_s PHIs v_r v_s = \
 rotor_fingers, overlap, gap, finger_width, finger_length

translational_pos x_r, y_r, #displacement of the rotors “r”
 x_s, y_s #and stators “s”

translational_pos Xr, Yr, #Position of the rotors “r”
 Xs, Ys #and stators “s”

rotational_ang phi_r, PHIr, phi_s, PHIs #Angle and angle displacement

electricalv_r, v_s #voltage

number finger_width,#width of fingers
 finger_length, #length of fingers

 overlap, #initial overlap of fingers
 gap, #gap between fingers
 rotor_fingers #number of rotor fingers

{
<tech_file.sin

number ntv_ox_t = 20n#Native oxide thickness

number ms, #mass of rotor fingers
 I, #moment of inertia
 B, #Damping factor
 Area #Cross-sectional area of comb-fingers

val c cap #capacitance between comb-fingers
val v vlt #voltage across fingers.
val v vltg #voltage squared, times area divided by eps0.
valq q #Charge in coulombs

valpos_mpx, py #Position across comb-drive
valpos_mdx, dy #Displacement across comb-drive

valpos_movrlp #overlap just incase combs crash in y.

59

valnu sign #If dx is + or -

valang_radphi #angle across comb-drive
valang_rad dphi #Angle displacement in comb-drive

val nu const, #on or off-alternates force fcn
const2, #the spring constant of poly-Si (after crashing)
intcpt1

varvel_mps velxr, velyr #Velocity of rotor
varvel_mps velxs, velys #Velocity of stator

varnu dvlt #Derivative of the voltage

varfrc_NFx, Fy #Forces through comb-drive (position nodes)
valfrc_NFxd, Fyd #Forces through comb-drive
vartq_NmTphi #Torque accross comb-drive

valpos_mskin_depth #Skin depth for damping

#whenever you have the two beams crash!! Make sure the simulator is accurate
when(threshold((gap-abs(pos_m(x_r,x_s))),ntv_ox_t)){
schedule_next_time(time)
}

parameters{
Area = rotor_fingers*poly1_t
ms = rotor_fingers*finger_length*finger_width*poly1_t*poly_den
B = visc_air*((finger_length+4u)*(finger_width+4u)*\
 rotor_fingers/air_gap + (finger_length+4u)*(poly1_t)/gap)
}

values{
dphi = ang_rad(phi_r,phi_s)
dx = pos_m(x_r,x_s)
dy = pos_m(y_r,y_s)

px = pos_m(Xr,Xs)
py = pos_m(Yr,Ys)
phi = ang_rad(PHIr,PHIs)

if(dc_domain){
skin_depth = sqrt((visc_air/PI)*0.001*air_den)

}
else if(time_domain){
#Approximation for time domain

skin_depth = sqrt((visc_air/PI)*30k*air_den)
}
else{

skin_depth = sqrt((visc_air/PI)*(1+freq_mag)*air_den)

60

}

#Check for crashing in y-direction

if(dy > overlap){
ovrlp = -overlap

}
else if(dy < (overlap - finger_length)){

ovrlp = -overlap + finger_length
}
else{

ovrlp = -dy
}

#check for sign value
if(dx < 0){

sign = -1
}
else{

sign = 1
}

if((gap-abs(pos_m(x_r,x_s))) < ntv_ox_t){
const = 0
const2 = E*poly1_t*overlap/finger_width
intcpt1 = sign*(gap-ntv_ox_t)

}
else{

const = 1
const2 = 0
intcpt1 = 0

}

vlt = v(v_r,v_s)
vltg = (vlt**2)*Area*eps0/2

cap= Area*eps0*(overlap+ovrlp)*((1/(gap-(const*dx + intcpt1))) + \
 (1/(gap+(const*dx + intcpt1))))

Fyd = 1.12*vltg*((1/(gap-(const*dx + intcpt1/ntv_ox_t)))+ \
(1/(gap+(const*dx + intcpt1/ntv_ox_t))))

Fxd = (vltg*(overlap+ovrlp))*((1/((gap - (const*dx + intcpt1))**2)) - \
 (1/((gap + (const*dx + intcpt1))**2))) - const2*(dx-intcpt1)

q = cap*vlt

}

equations {

61

dvlt: dvlt = d_by_dt(vlt)
velxr: velxr = d_by_dt(pos_m(x_r))
velyr: velyr = d_by_dt(pos_m(y_r))
velxs: velxs = d_by_dt(pos_m(x_s))
velys: velys = d_by_dt(pos_m(y_s))

i(v_r->v_s) += d_by_dt(q)

frc_N(y_r->y_s) += Fyd
frc_N(x_r->x_s) += Fxd

frc_N(y_r) -= d_by_dt(ms*velyr) + (B*velyr*(1 + air_gap/skin_depth))
frc_N(y_s) -= d_by_dt(ms*velys) + (B*velys*(1 + air_gap/skin_depth))
frc_N(x_r) -= d_by_dt(ms*velxr) + (B*velxr*(1 + air_gap/skin_depth))
frc_N(x_s) -= d_by_dt(ms*velxs) + (B*velxs*(1 + air_gap/skin_depth))

#Rotational stuff (none thus far!)
tq_Nm(phi_r->phi_s) += 1meg*dphi

frc_N(Xr->Xs) += Fx
frc_N(Yr->Ys) += Fy
tq_Nm(PHIr->PHIs) += Tphi

Fx: px = (-2*finger_length + overlap)*cos(ang_rad(PHIr))
Fy: py = (-2*finger_length + overlap)*sin(ang_rad(PHIr))
Tphi: phi = 0
}
}

62

E. X-AXIS COMB DRIVE

MAST Code for a Comb-Drive Actuator
with respect to the x, y and phi directions
#
Jan E. Vandemeer and Michael Kranz
Carnegie Mellon University
4/17/97
#
#**

element template combdrive_x x_r Xr x_s Xs y_r Yr y_s Ys \
 phi_r PHIr phi_s PHIs v_r v_s = \

 rotor_fingers, overlap, gap, finger_width, finger_length

translational_pos x_r, y_r, #displacement of the rotors “r”
 x_s, y_s #and stators “s”

translational_pos Xr, Yr, #Position of the rotors “r”
 Xs, Ys #and stators “s”

rotational_ang phi_r, PHIr, phi_s, PHIs #Angle and angle displacement

electricalv_r, v_s #voltage

number finger_width,#width of fingers
 finger_length, #length of fingers

 overlap, #initial overlap of fingers
 gap, #gap between fingers
 rotor_fingers #number of rotor fingers

{

<tech_file.sin

number ntv_ox_t = 20n

number ms, #mass of rotor fingers
 I, #moment of inertia
 B, #Damping factor

Area #Cross-sectional area of comb-fingers

val c cap #capacitance between comb-fingers
val v vlt #voltage across fingers.
val v vltg #voltage squared, times area divided by eps0.
valq q #Charge in coulombs

valpos_mpx, py #Position across comb-drive
valpos_mdx, dy #Displacement across comb-drive

63

valpos_movrlp #overlap just incase combs crash in y.
valnu sign #If dx is + or -

valang_radphi #angle across comb-drive
valang_rad dphi #Angle displacement in comb-drive

val nu const, #on or off-alternates force fcn
const2, #the spring constant of poly-Si (after crashing)
intcpt1 #constant offset for after crashing

varvel_mps velxr, velyr #Velocity of rotor
varvel_mps velxs, velys #Velocity of stator

varnu dvlt #Derivative of the voltage

varfrc_NFx, Fy #Forces through comb-drive (position nodes)
valfrc_NFxd, Fyd #Forces causing displacement in comb-drive
vartq_NmTphi #Torque accross comb-drive

valpos_mskin_depth #Skin depth for damping

#whenever you have the two beams crash!! Adjust the force function
when(threshold((gap-abs(pos_m(y_r,y_s))),ntv_ox_t)){
schedule_next_time(time)
}
parameters{
Area = rotor_fingers*poly1_t
ms = rotor_fingers*finger_length*finger_width*poly1_t*poly_den
B = visc_air*((finger_length+4u)*(finger_width+4u)*\
 rotor_fingers/air_gap+ (finger_length+4u)*(poly1_t)/gap)
}

values{
dphi = ang_rad(phi_r,phi_s)
dx = pos_m(x_r,x_s)
dy = pos_m(y_r,y_s)

px = pos_m(Xr,Xs)
py = pos_m(Yr,Ys)
phi = ang_rad(PHIr,PHIs)

if(dc_domain){
skin_depth = sqrt((visc_air/PI)*0.001*air_den)

}
else if(time_domain){

#Approximation for time domain
skin_depth = sqrt((visc_air/PI)*30k*air_den)

}
else{

skin_depth = sqrt((visc_air/PI)*(1+freq_mag)*air_den)

64

}

#Check for crashing in y-direction

if(dx > overlap){
ovrlp = -overlap

}
else if(dx < (overlap - finger_length)){

ovrlp = -overlap + finger_length
}
else{

ovrlp = -dx
}

#check for sign value
if(dy < 0){

sign = -1
}
else{

sign = 1
}

if((gap-abs(pos_m(y_r,y_s))) < ntv_ox_t){
const = 0
const2 = E*poly1_t*overlap/finger_width
intcpt1 = sign*(gap-ntv_ox_t)

}
else{

const = 1
const2 = 0
intcpt1 = 0

}

vlt = v(v_r,v_s)
vltg = (vlt**2)*Area*eps0/2

cap= Area*eps0*(overlap+ovrlp)*\
 ((1/(gap-(const*dy + intcpt1)))+(1/(gap+(const*dy + intcpt1))))

Fxd = 1.12*vltg*((1/(gap-(const*dy + intcpt1/ntv_ox_t)))+ \
(1/(gap+(const*dy + intcpt1/ntv_ox_t))))

Fyd = vltg*(overlap+ovrlp)*((1/((gap - (const*dy + intcpt1))**2))-\
 (1/((gap + (const*dy + intcpt1))**2))) - const2*(dy-intcpt1)

q = cap*vlt
}

equations {
dvlt: dvlt = d_by_dt(vlt)

65

velxr: velxr = d_by_dt(pos_m(x_r))
velyr: velyr = d_by_dt(pos_m(y_r))
velxs: velxs = d_by_dt(pos_m(x_s))
velys: velys = d_by_dt(pos_m(y_s))

i(v_r->v_s) +=d_by_dt(q)

frc_N(x_r->x_s) += Fxd
frc_N(y_r->y_s) += Fyd
frc_N(y_r) -= d_by_dt(ms*velyr) + (B*velyr*(1 + air_gap/skin_depth))
frc_N(y_s) -= d_by_dt(ms*velys) + (B*velys*(1 + air_gap/skin_depth))
frc_N(x_r) -= d_by_dt(ms*velxr) + (B*velxr*(1 + air_gap/skin_depth))
frc_N(x_s) -= d_by_dt(ms*velxs) + (B*velxs*(1 + air_gap/skin_depth))

tq_Nm(phi_r->phi_s) += 10meg*dphi

#Rotational stuff (none thus far!) Assumed stiff!!

frc_N(Xr->Xs) += Fx
frc_N(Yr->Ys) += Fy
tq_Nm(PHIr->PHIs) += Tphi

Fy: py = (-2*finger_length + overlap)*cos(ang_rad(PHIr))
Fx: px = (-2*finger_length + overlap)*sin(ang_rad(PHIr))
Tphi: phi = 0
}
}

66

F. ELECTROSTATIC GAP

MAST Code for an electrostatic gap in the x-direction
#
Jan E. Vandemeer and Michael Kranz
#MAST Model for an electrostatic gap!
Carnegie Mellon University
5/2/98
#
#**

element template es_gap Xm_t Xm_b Xp_t Xp_b Ym_t Ym_b Yp_t Yp_b \
 x_a_t x_b_t x_a_b x_b_b y_a_t y_a_b y_b_t y_b_b \
 PHIm_t PHIm_b PHIp_t PHIp_b \

 phi_a_t phi_a_b phi_b_t phi_b_b \
 v_a_t v_a_b v_b_t v_b_b \
 = finger_w_t, finger_w_b, gap, overlap

translational_pos x_a_t, #x-displacement and force at port “x_a_t”
 y_a_t, #y-displacement and force at port “y_a_t”
 x_a_b, #x-displacement and force at port “x_a_b”
 y_a_b, #y-displacement and force at port “y_a_b”

 x_b_t, #x-displacement and force at port “x_b_t”
 y_b_t, #y-displacement and force at port “y_b_t”
 x_b_b, #x-displacement and force at port “x_b_b”
 y_b_b, #y-displacement and force at port “y_b_b”
 Xm_t, #X-position at “Xm_t”
 Xm_b, #X-position at “Xm_b”
 Ym_t, #Y-position at “Ym_t”
 Ym_b, #Y-position at “Ym_b”
 Xp_t, #X-position at “Xp_t”
 Xp_b, #X-position at “Xp_b”
 Yp_t, #Y-position at “Yp_t”
 Yp_b #Y-position at “Yp_b”

rotational_ang phi_a_t, #Angle displacement about z angle and torque
 phi_a_b, #Angle displacement about z angle and torque

 phi_b_t, #Angle displacement about z angle and torque
 phi_b_b, #Angle displacement about z angle and torque
 PHIm_t, #Rotation about z angle
 PHIm_b,
 PHIp_t, #Rotation about z angle
 PHIp_b

electricalv_a_t, v_a_b, v_b_t, v_b_b #input & output voltage

number finger_w_t = 2u#width of the top finger
number finger_w_b = 2u#width of the bottom finger
number gap = 2u #Gap between the two beams
number overlap = 10u #X-overlap between the beams

67

{

<tech_file.sin

varfrc_Npyp, pxm #Position source for y and x

number slope = E*overlap*poly1_t/(finger_w_t/2 + finger_w_b/2),
ntv_ox_t = 20n #Native oxide thickness around the fingers

valfrc_Nfyd1, fyd2 #Electrostatic force in y
valfrc_Nfxd1, fxd2 #Electrostatic force in x

valpos_movrlp #overlap of beams

valpos_mppt, ppb, pmt, pmb #Positions at +/- on top and bottom

valpos_mdy #The displacements in y
number ydc #The DC value of y position.

valang_radphi, dphi
valv vlt

valarea_m2Area #Cross sectional Area of fingers
val c cap #capacitance between comb-fingers
valv vltg
valnu caparea
val nu test

val nu const, #state, digital on or off-alternates force function
const2 #the spring constant (after crashing)

#whenever you have the two beams crash, shorten time steps to help simulator
when(threshold((gap - dy),(ntv_ox_t))){ #,before,after)){
schedule_next_time(time)
}

#Parameters section
parameters{
ydc = gap + finger_w_t/2 + finger_w_b/2
}

#values section
values{
ppt = pos_m(Xp_t)
ppb = pos_m(Xp_b)
pmt = pos_m(Xm_t)
pmb = pos_m(Xm_b)

test = 0

68

if ((ppt > ppb) & (ppb > pmt) & (pmt > pmb)) {
test = 1
ovrlp = ppb - pmt
dy = pos_m(y_b_b,y_a_t)
vlt = v(v_b_b,v_a_t)

}
else{

test = 2
ovrlp = ppt - pmb
dy = pos_m(y_a_b,y_b_t)
vlt = v(v_a_b,v_b_t)

}

if((gap - dy) > ntv_ox_t){
const = 1
const2 = 0

}
else{

const = 0
const2 = slope

}

phi = ang_rad(PHIp_t,PHIm_b)

Find coeff. in cap. eq.

Area = (ovrlp)*poly1_t
vltg = (vlt)**2
caparea = Area*eps0
cap = caparea/((1-const)*ntv_ox_t + const*(gap - dy))

if (pmt < pmb) {
dphi = ang_rad(phi_b_t,phi_a_b)

fxd1 = (vltg*eps0*poly1_t)/(2*(const*(gap - dy) + (1 - const)*ntv_ox_t)) - \
 const2*pos_m(x_b_t,x_a_b)

fxd2 = 0

fyd1 = (vltg*(caparea) /(2*(const*(gap - dy) +(1-const)*ntv_ox_t)**2)) - const2*(-(gap - dy) + \
 ntv_ox_t)

fyd2 = 0
}
else{
dphi = ang_rad(phi_a_t,phi_b_b)

fxd1 = 0

69

fxd2 = -(vltg*eps0*poly1_t)/(2*(const*(gap - dy) + (1-const)*ntv_ox_t)) - \
 const2*pos_m(x_a_t,x_b_b)

fyd2 = (vltg*(caparea) /(2*(const*(gap - dy) +(1-const)*ntv_ox_t)**2)) - const2*(-(gap - dy) + \
 ntv_ox_t)

fyd1 = 0
}

}

equations {
i(v_a_t->v_a_b) += d_by_dt(v(v_a_t,v_a_b)*cap)
i(v_b_t->v_b_b) += d_by_dt(v(v_b_t,v_b_b)*cap)

frc_N(x_b_t->x_a_b) -= fxd1
frc_N(x_a_t->x_b_b) -= fxd2

frc_N(y_b_t->y_a_b) -= fyd1
frc_N(y_a_t->y_b_b) -= fyd2

 tq_Nm(phi_b_t->phi_b_b) -= 0
 tq_Nm(phi_a_t->phi_a_b) -= 0

#Positions

tq_Nm(PHIp_b->PHIm_t) += 1meg*ang_rad(PHIp_b,PHIm_t)
tq_Nm(PHIp_t->PHIm_b) += 1meg*ang_rad(PHIp_t,PHIm_b)

frc_N(Yp_t,Yp_b) += pyp
frc_N(Yp_t,Ym_t) += 1meg*pos_m(Yp_t,Ym_t)
frc_N(Yp_b,Ym_b) += 1meg*pos_m(Yp_b,Ym_b)

frc_N(Xm_b,Xm_t) += pxm
frc_N(Xp_t,Xm_t) += 1meg*pos_m(Xp_t,Xm_t)
frc_N(Xp_b,Xm_b) += 1meg*pos_m(Xp_b,Xm_b)
frc_N(Xp_t,Xp_b) += 1meg*pos_m(Xp_t,Xp_b)

pyp: pos_m(Yp_t,Yp_b) = gap+(finger_w_t+finger_w_b)/2
pxm: pos_m(Xm_b,Xm_t) = pos_m(Xp_t) - overlap
}
}

70

G. JOINT

#MAST Code for a rotational joint
#with respect to the x, y and phi directions
#
#Jan E. Vandemeer, M. Kranz
#Carnegie Mellon University,
#Copyright 1998, All rights reserved.
#5/1/98
#
#**

element template jointx_w x_e x_n x_s Xw Xe Xn Xs \
 y_w y_e y_n y_s Yw Ye Yn Ys \
 phi_w phi_e phi_n phi_s PHIw PHIe PHIn PHIs \
 vw ve vn vs = ang

translational_posy_w, y_s, y_n, y_e, #Y displacement
 x_w, x_s, x_n, x_e #X displacement

translational_posYw, Ys, Yn, Ye,#Y position
 Xw, Xs, Xn, Xe #X position

rotational_angphi_w, phi_s, phi_n, phi_e, #Angular displacement
 PHIw, PHIs, PHIn, PHIe #Global Angle

electricalvw, vn, ve, vs

number ang#Angle between the east and south ports (in degrees)

{

rotational_angPHIm

<tech_file.sin

number offset

#system variables for position (and displacement) sources
var frc_N xSbend, ySbend, xNbend, yNbend, xEbend, yEbend

#system variables for angle sources
var tq_Nm phiSbend, phiNbend, phiEbend
var tq_Nm PHIsb, PHInb

parameters{
 offset = ang*PI/180#From degrees to radians
}

equations {

71

#Voltage sources (short circuits)
 i(vn->vw) += 4.53*v(vs,ve) #/poly1_rho
 i(vs->vw) += 4.53*v(vn,ve) #/poly1_rho
 i(ve->vs) += 4.53*v(vw,vn) #/poly1_rho
 i(ve->vn) += 4.53*v(vw,vs) #/poly1_rho

#Damping from joint
 frc_N(Xw) -= d_by_dt(1n*pos_m(Xw))
 frc_N(Yw) -= d_by_dt(1n*pos_m(Yw))
 tq_Nm(PHIm) -= d_by_dt(1n*ang_rad(Phim))

#Actual solutions for the forces at nodes
frc_N(x_w->x_s) += xSbend
frc_N(y_w->y_s) += ySbend
frc_N(Xw->Xs) += 1meg*pos_m(Xw,Xs)
frc_N(Yw->Ys) += 1meg*pos_m(Yw,Ys)
frc_N(x_w->x_n) += xNbend
frc_N(y_w->y_n) += yNbend
frc_N(Xw->Xn) += 1meg*pos_m(Xw,Xn)
frc_N(Yw->Yn) += 1meg*pos_m(Yw,Yn)
frc_N(x_w->x_e) += xEbend
frc_N(y_w->y_e) += yEbend
frc_N(Xw->Xe) += 1meg*pos_m(Xw,Xe)
frc_N(Yw->Ye) += 1meg*pos_m(Yw,Ye)
tq_Nm(PHIw->PHIm) += 1meg*ang_rad(PHIw,PHIm)
tq_Nm(phi_w->phi_s) += phiSbend
tq_Nm(PHIm->PHIs) += PHIsb
tq_Nm(phi_w->phi_n) += phiNbend
tq_Nm(PHIs->PHIn) += PHInb
tq_Nm(phi_w->phi_e) += phiEbend
tq_Nm(PHIm->PHIe) += 1meg*ang_rad(PHIm,PHIe)

#Solution for system variables

xSbend:pos_m(x_w,x_s) = 0
ySbend:pos_m(y_w,y_s) = 0
xNbend:pos_m(x_w,x_n) = 0
yNbend:pos_m(y_w,y_n) = 0
xEbend:pos_m(x_w,x_e) = 0
yEbend:pos_m(y_w,y_e) = 0

phiSbend: ang_rad(phi_w,phi_s) = 0
PHIsb: ang_rad(PHIm,PHIs) = -offset
phiNbend: ang_rad(phi_w,phi_n) = 0
PHInb: ang_rad(PHIs,PHIn) = 0
phiEbend: ang_rad(phi_w,phi_e) = 0
}
}

