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NODAL DOMAIN THEOREMS FOR GENERAL 
ELLIPTIC EQUATIONS1 

KURT KREITH 

1. Introduction. Let A be a formally selfadjoint elliptic operator 
defined by 

ai) A«--(!^lr)+*" 
for x in a sufficiently regular bounded domain G C Rn, and let A,, 
be the selfadjoint realization defined by 

( L 2 ) *, _ sv 
-^- = S Û* ~^~cos (v> ̂  = - * ( * ) < > ; x G a G > 

where v denotes the exterior normal to G and a(x) is a piecewise 
continuous function (which is allowed to take on the value + <» to 
denote the boundary condition v = 0). A well-known theorem of 
Courant [1] asserts that the nodal lines of the fcth eigenfunction of 
A^ divide G into at most k nodal domains. That is, if N is the number 
of nodal domains of the fcth eigenfunction of A ,̂ then N ^ k. (While 
Couranfs Theorem is formulated for a somwhat narrower class of 
operators, his method of proof applies equally well to the class of 
operators defined by (1.1).) 

From a slightly different point of view Couranfs Theorem estab­
lishes an upper bound for the number of nodal domains of a solution 
of Aw = 0 in terms of the boundary behavior of u and the spectrum 
of a boundary value problem of the form (1.2). For if the domain G 
and the coefficients of A are sufficiently regular, then every solution 
of Aw = 0 determines a function 

<T(X) = 7— —(x) 
v ; u(x) dv v ' 

defined on dG. Thus every nontrivial solution of Aw = 0 becomes an 
eigenfunction of A^ corresponding to the eigenvalue X = 0. In this 
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(1.5) 

context Courantes Theorem can be formulated as follows: if N denotes 
the number of nodal domains of u(x) and if \ , has fc nonpositive eigen­
values kl<k2 = ^3= • • • S X k = 0, then N ^ fc. 

As an immediate generalization of this result, consider a real valued 
function u(x) which is a solution of 

(1.3) L u = - 2 - ^ ( a « ; - g - ) + cu = 0; xEG, 

and satisfies 

nil n1i 

(1.4) —r^-= S au -—— cos (*>, x,.) = -s(x)u; x G dG. 

If 

(i) S ( ö y "" " y ) ^ = 0 f° r all x G G and all real 

n-tuples(£ l5 • • -,{jn); 

(ii) c(x) - y(x) ^ 0 for all x £ G ; 

(iii) s(x) ^ <x(x) for all x G dG, 
then the fcth eigenvalue of Ls is at least as large as the fcth eigenvalue 
of Ao-. Furthermore, u(x) is an eigenfunction of Ls corresponding to 
the eigenvalue 1=0. If A^ has fc nonpositive eigenvalues, then Ls 

has at most fc nonpositive eigenvalues and the number N of nodal 
domains of u(x) satisfies N ^ fc. 

Proceeding along similar lines, we shall extend Courant's nodal 
domain theorem to more general second order elliptic equations 
than (1.3). In particular, estimates for N will be given when L is non­
linear and nonselfadjoint. These estimates will be given in terms of 
the spectrum of a "smaller" selfadjoint linear operator of the form A .̂ 

It is assumed throughout that the coefficients Oij(x) and Oy-(x) are 
of class C" and that c(x) and y(x) are continuous. The domain G is 
to be bounded with a boundary which is piecewise of bounded 
curvature. 

2. Nonlinear equations. Let L be a nonlinear elliptic operator 
defined by 

^ d / au \ , / du \ 
(2.1) Lu = - £ — (a,,— ) + c (*, u, —)u, 

and let u(x) be a solution of Lu = 0 having N nodal domains in G 
and satisfying 

(2.2) ^ aij(duldxi) cos (i>, x,-) 4- s(x)u = 0 



NODAL DOMAIN THEOREMS FOR ELLIPTIC EQUATIONS 421 

for x G dG. We shall obtain an upper estimate for N in terms of the 
ope ra to r^ defined by (1.2) under the assumption that 

(i) SK-^Po 
for all x G G and all real n-tuples (£1? • • *, £n); 

(2.3) (ii) c(x,u,duldxi)^y(x) 

for all x G G and all values of u and duldxi; 

(iii) s(x) S <T(X) for all x G dG. 

2.1. LEMMA. Let GÌ be a nodal domain for u(x) and let Xj* denote 
the first eigenvalue of 

Av = XH); x G Gi? 

(2.4) t> = 0; xGdGiHG, 

dvldv + av = 0; x G dGi PI ÖG. 

7/(2.3) is satisfied, then Xi* ê 0. 

PROOF. Suppose Xi* > 0 and that t ^ x ) is the eigenfunction of 
(2.4) corresponding to X^. It is well known that Xi* is a strictly de­
creasing continuous function of G; in the following sense: if G* is 
enlarged along any part of dG* where tV(x) = 0 and if the boundary 
condition v(x) = 0 is imposed on the new boundary so obtained, 
then Xi* will be reduced continuously. Therefore it is possible to 
expand G» along that portion of the boundary where ü1

i = 0 and still 
retain the inequality Xi* > 0 for the first eigenvalue of (2.4) in this 
slightly enlarged domain. The first eigenfunction of this perturbed 
problem yields a function w(x) which is positive in G», satisfies 
dwldv + aw = 0 on that part of dG where tV(x) ^ 0, and 
satisfies Aw — òw = 0 for some 8 > 0. 

Since w(x) > 0 for x G G^ a direct calculation [2] yields the fol­
lowing generalized Picone identity: 

v> d / du \ _ U^_ s? _d / du) \ 

f. dXj K"* dXi / U>fj dXj V °* dXi J 

(2-5) +l(aij-aij) du du 
dXi dXj 

_i_ y / du u dw \ ( _du_ _ dw \ 
fi j \ dXi dXi / \ dXj dXj / 
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From (2.2) and the definition ofw(x) it follows that 

(2.6) 

Integrating over G; and applying Green's Theorem yields 

(2.7) J ^ n (a - s)uHS ^ ^ (c - y + ô)u2dx, 

where the boundary integral in (2.7) is limited to that portion of 
dGi H d G where s(oc) < °°. However, our hypotheses assure that 
the left side of (2.7) is nonpositive while the right side is positive, and 
this contradiction proves that Xi* = 0. 

2.2. THEOREM. Let u(x) be a solution of Lu = 0 having N nodal 
domains in G. Let A^ be defined by (1.2) and satisfy (2.3). If A^ has 
k nonpositive eigenvalues, then N = k. 

PROOF. Suppose N > k and that Gl5 G2, ' * *, Gfc+1 are nodal 
domains of u(x). By the lemma, the first eigenvalue of (2.4) satisfies 
Xi* = 0 for i = 1, • • -, k + 1. Therefore it is possible to choose a 
subdomain Q G GÌ such that dGiD dG^ dG{ D dG and such 
that the first eigenvalue of (2.4) in Q satisfies Xi* = 0. It then follows 
from the original argument used by Courant [1, p. 393] that A^ has 
at least k + 1 nonpositive eigenvalues. 

REMARK. If in Theorem 2.2 u(x) = 0 on dG, then condition (iii) 
of (2.3) is not required. 

While Theorem 2.2 yields bounds for the number of nodal domains 
of any solution of Lu = 0, it does not assure the existence of any such 
solution. In connection with the question of existence, it is of interest 
to consider a special case of (2.1) where L is defined by 

<"> "- - J , -£-(«.-£-)+ **«> 
and the principal part of L is denoted by K, so that 

(2-9> * • - - J , - * ( * * - > 
We assume that the a# and the domain G are sufficiently regular so 
that the selfadjoint operator Kg defined by (2.9) and the boundary 
condition 
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(2.10) £ atj -f^-cos (*, %i) + su=0 

has an inverse defined by 

Ks-
1/= - j G Rs(x, €)f(i)dS, 

where Ks~
l is a positive definite compact selfadjoint operator with 

eigenvalues I C 1 ~ 1 > K 2 ~ 1 = ***. Under these assumptions (2.8), 
(2.10) become equivalent to the nonlinear Hammerstein equation 

«(*)= f RAx,Qp[€M€)]d€. 
J G 

Such equations were studied by Dolph [3] and shown to have a 
unique solution if there exist numbers fik_i and /xk such that 

(2.11) /Cfe_! < Atfe_i g FV 2 / t^^lL g Mfc < Kk 

u2 — ux 

for all x G G and all uh u2. This fact leads to the following result. 

2.3. THEOREM. Let L be defined by (2.8) and suppose that 
p(x, M2 — Wi) = p(x, u2) — p(x, Ui). Suppose further that (2.11) is 
satisfied so that Lsu = 0 has a unique solution u(x). IfN denotes the 
number of nodal domains ofu(x), then N < k. 

PROOF. We shall apply Theorem 2.2 with A^ replaced by Ks — /xfeI. 
Since 

p(x, u2) - p(x, Mi) ^ p(x, u2 - ux) 

we have 

> p(x, u2) - p(x, uY) ^ p(x, u2 - uY) 

U2 — Mi U2 — Ui 

so that Ks — /ifel is "smaller" than Ls in the sense of (2.3). Since 
Ks — fijçl has less than k nonpositive eigenvalues, it follows from 
Theorem 2.2 that N < k. 

3. Nonselfadjoint equations. In this section we shall consider a 
nonselfadjoint elliptic operator L defined by 

and let u(x) denote a solution of the boundary value problem 

(3.2) Lu = 0; x G G, « = 0; x G dG 
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In order to obtain estimates for N, the number of nodal domains of 
u(x), we shall consider a "smaller" selfadjoint operator A defined by 

The sense in which A is to be "smaller" than L is given by the con­
ditions 

(i) £(«u-«o-)£^o 

(3.3) for all x G G and all real n-tuples (£1( • • -, £„); 

(ii) c - y - J - ^ - ^ 0 for all l E G . 

3.1. LEMMA. Let Gi be a nodal domain for u(x) and let Xi' denote 
the first eigenvalue of 

(3.4) AÜ = \lv; xGGi, v = 0; x G dQ. 

Zf (3.3) is satisfied, then Ai ' = 0. 

PROOF. Suppose Ai* > 0 and that tV(x) is the eigenfunction of 
(3.4) corresponding to Ai*. Since A.!* is a continuous strictly decreasing 
function of the domain Gi, it is possible to expand d slightly and still 
retain the inequality A.1

i > 0 for the first eigenvalue of (3.4) in this 
enlarged domain. The first eigenfunction of this perturbed problem 
yields a function w(x) which is positive in Gi and satisfies Aw — 8w = 0 
for some 8 > 0. However, a comparison theorem due to Swanson 
[4] asserts that under the conditions (3.3), every solution of Aw — 8w 
= 0 must have a zero in GÌ5 and this contradiction proves that 

3.2. THEOREM. Let u(x) be a solution of 

Lu = 0; x G G, u = 0; xGdG, 

having N nodal domains in G. Let A* be defined by (3.4). If A« 
has k nonpositive eigenvalues, then N â k. 

PROOF. The proof is an exact analogy of the proof of Theorem 2.2, 
utilizing Lemma 3.1 in place of Lemma 2.1. 

REMARK. Since an arbitrary homogeneous boundary condition in 
(3.4) would not decrease the number k, we could replace the condition 
v = 0 by dvldv + (TV = 0, for arbitrary a(x). 
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