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Abstract: We consider Berry’s random planar wave model (1977) for a positive Laplace
eigenvalue E > 0, both in the real and complex case, and prove limit theorems for the
nodal statistics associated with a smooth compact domain, in the high-energy limit
(E → ∞). Our main result is that both the nodal length (real case) and the number of
nodal intersections (complex case) verify a Central Limit Theorem, which is in sharp
contrast with the non-Gaussian behaviour observed for real and complex arithmetic
random waves on the flat 2-torus, see Marinucci et al. (2016) and Dalmao et al. (2016).
Our findings can be naturally reformulated in terms of the nodal statistics of a single
random wave restricted to a compact domain diverging to the whole plane. As such, they
can be fruitfully combined with the recent results by Canzani and Hanin (2016), in order
to show that, at any point of isotropic scaling and for energy levels diverging sufficently
fast, the nodal length of any Gaussian pullback monochromatic wave verifies a central
limit theorem with the same scaling as Berry’s model. As a remarkable byproduct of our
analysis, we rigorously confirm the asymptotic behaviour for the variances of the nodal
length and of the number of nodal intersections of isotropic random waves, as derived
in Berry (2002).

1. Introduction

The aim of the present paper is to prove second order asymptotic results, in the high-
energy limit, for the nodal statistics associated with the restriction of the (real and com-
plex) Berry’s random wave model [Ber02] to a smooth compact domain of R

2. Our main
result is a Central Limit Theorem (CLT) for both quantities (see Theorems 1.1 and 1.4),
yielding as a by-product a rigorous and self-contained explanation of the cancellation

phenomena for the variance asymptotics of nodal lengths and nodal intersections first
detected in [Ber02]; this complements in particular the main findings of [Wig10].

As explained below, our techniques will show that the cancellation phenomena de-
tected in [Ber02] can be explained by the partial cancellation of lower order Wiener-
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Itô chaotic projections. In particular, our findings represent a substantial addition to
a rapidly growing line of research, focussing on the analysis of nodal quantities by
means of Wiener-Itô chaotic expansions and associated techniques—see e.g. [CMW16a,
CMW16b,CM16,DNPR16,MPRW16,MRW17,MW11,PR17,RoW17]. The central
limit results proved in this paper are in sharp contrast with the non-central and non-
universal limit theorems established in [DNPR16,MPRW16] for arithmetic random
waves on the flat 2-torus, and mirror the CLTs for random spherical harmonics es-
tablished in [MRW17]. To the best of our knowledge, our findings represent the first
high-energy central limit theorems for nodal quantities associated with random Laplace
eigenfunctions defined on the subset of a non-compact manifold.

As discussed in Sect. 1.4, our results can be naturally reformulated in terms of the
nodal length and the nodal intersections of a single random wave, restricted to a compact
window increasing to the whole plane. As such, they can be fruitfully combined with
the findings of [CH16a], in order to prove CLTs for the nodal length of generic pullback

random waves, locally determined by Riemaniann monochromatic waves (on a general
compact manifold) at a given point of isotropic scaling—see Theorem 1.8 below.

Further motivations and connections with the existing literature will be discussed in
the sections to follow.

Some conventions. For the rest of the paper, we assume that all random objects are
defined on a common probability space (�,F , P), with E denoting expectation with

respect to P. We use the symbol
d−→ to denote convergence in distribution, and the

symbol
a.s.−→ to denote P -almost sure convergence. Given two positive sequences {an},

{bn}, we write an ∼ bn if an/bn → 1, as n →∞.

1.1. Berry’s random wave model. In [Ber77], Berry argued that, at least for classically
chaotic quantum billiards, wavefunctions in the high-energy limit locally look like ran-
dom superpositions of independent plane waves, having all the same wavenumber, say
k, but different directions. According to [Ber02, formula (6)], such a superposition has
the form

u J ;k(x) :=
√

2

J

J∑

j=1

cos
(
kx1 cos θ j + kx2 sin θ j + φ j

)
, J ≫ 1, (1.1)

where x = (x1, x2) ∈ R
2, and θ j and φ j are, respectively, random directions and random

phases such that (θ1, φ1, . . . , θJ , φJ ) are i.i.d. uniform random variables on [0, 2π ]). For
dynamical systems with time-reversal symmetry, these plane waves are real, while in
the absence of time-reversal symmetry, for instance when the billiard is open, they are
complex functions:

uC

J ;k(x) := u J ;k(x) + ivJ ;k(x), (1.2)

where vJ ;k(x) is given by formula (1.1) with the cosine replaced by the sine, and the
random vector (θ1, φ1, . . . , θJ , φJ ) is defined as above; see again [Ber02], as well as
the surveys [DOP09,UR13] and the references therein.

The sequence {u J ;k}J in (1.1) converges in the sense of finite-dimensional distribu-
tions, as J → +∞, to the centered isotropic Gaussian field bk =

{
bk(x) : x ∈ R

2
}
, with

covariance kernel given by

ck(x, y) = ck(x − y) := E [bk(x)bk(y)] = J0(k‖x − y‖), x, y ∈ R
2, (1.3)
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where J0 denotes the zero-order Bessel function of the first kind:

J0(t) =
+∞∑

m=0

(−1)m

(m!)2

(
t

2

)2m

, t ∈ R. (1.4)

Recall that J0 is the only radial solution of the equation

� f + f = 0

such that f (0) = 1, where � := ∂2/∂x2
1 +∂2/∂x2

2 denotes the Laplacian on the Euclidean
plane.

It is a standard fact (see e.g. [AT, Theorem 5.7.3]) that we can represent bk as a
random series

bk(x) = bk(r, θ) = ℜ
(

+∞∑

m=−∞
am J|m|(kr)eimθ

)
, (1.5)

using polar coordinates (r, θ) = x , where ℜ denotes the real part, am are i.i.d. complex
Gaussian random variables such that E[am] = 0 and E[|am |2] = 2, and Jα stands
for the Bessel function of the first kind of order α. The series (1.5) is a.s. convergent,
and uniformly convergent on any compact set, and the sum is a real analytic function
(this is due to the fact that the mapping α 	→ Jα(z) is asymptotically equivalent to
α−1/2(2z/πα)α , as α → +∞—see e.g. [AS64, formula (9.3.1)]). From (1.5) it follows
also that bk is a.s. an eigenfunction of the Laplacian � on R

2 with eigenvalue −k2, i.e.
bk solves the Helmholtz equation

�bk(x) + k2bk(x) = 0, x ∈ R
2.

A standard application e.g. of [AT, Theorem 5.7.2] also shows the following reverse
statement: if Y is an isotropic centered Gaussian field on the plane, with unit variance
and such that �Y + k2Y = 0, then necessarily Y has the same distribution as bk . This
also shows that, for every k > 0, the two Gaussian random functions x 	→ bk(x) and
x 	→ b1(kx) have the same distribution.

The ‘universal’ random field bk is known as Berry’s Random Wave Model, and is the
main object of our paper. The complex version of bk we consider is the random field

bC

k (x) := bk(x) + i b̂k(x), x ∈ R
2, (1.6)

where b̂k is an independent copy of bk . We observe that bC

k can be represented as a random
series as well, and that such a representation is obtained by removing the symbol ℜ on
the right-hand side of (1.5). It follows in particular that bC

k a.s. verifies the equation
�bC

k + k2bC

k = 0, that is, bC

k is a.s. a complex-valued solution of the Helmholtz equation
associated with the eigenvalue −k2.
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1.2. Mean and variance of nodal statistics (Berry 2002). The principal focus of our
analysis are the two nodal sets:

b−1
k (0) := {x ∈ R

2 : bk(x) = 0}, and (bC

k )−1(0) = b−1
k (0) ∩ (̂bk)

−1(0).

It is proved in Lemma 8.4 of Appendix A that b−1
k (0) is a.s. a union of smooth curves

(called nodal lines), while (bC

k )−1(0) is a.s. composed of isolated points (often referred
to as phase singularities or optical vortices—see [DOP09,UR13]).

In [Ber02], the distributions of the length lk of the nodal lines of bk and of the number
nk of nodal points of its complex version, when restricted to some fixed billiard D, were
studied. In particular, for the means of the latter quantities, Berry found that

E[lk] =
Ak

2
√

2
and E[nk] =

Ak2

4π
, (1.7)

where A denotes the area of D, while for their high-energy fluctuations, some semi-
rigorous computations led to the following asymptotic relations, valid as k →∞:

Var(lk) ∼
A

256π
log(k

√
A), and Var(nk) ∼

11Ak2

64π3 log(k
√

A). (1.8)

According to [Ber02], the unexpected logarithmic order of both variances in (1.8) is
due to an “obscure cancellation phenomenon”, corresponding to an exact simplification
of several terms appearing in the Kac–Rice formula—see the discussion below—as
applied to the computation of variances. As anticipated, our aim in this paper is to prove
a CLT both for lk and nk , yielding as a by-product a rigorous explanation of (1.8) in
terms of the partial cancellation of lower order Wiener-Itô chaotic components.

1.3. Main results. In order to make more transparent the connection with some relevant
parts of the recent literature (see Sect. 1.5), for the rest of the paper we set, for E > 0,

BE (x) := bk(x), x ∈ R
2,

where k := 2π
√

E , in such a way that the covariance of BE is given by

r E (x, y) = r E (x − y) := J0(2π
√

E‖x − y‖), x, y ∈ R
2; (1.9)

see (1.3). Analogously, for E > 0 we write

BC

E (x) := bC

k (x) = BE (x) + i B̂E (x), x ∈ R
2,

where k = 2π
√

E , and B̂E is an independent copy of BE .
Let us now fix a C1-convex body D ⊂ R

2 (that is: D is a compact convex set with C1-
boundary) such that 0 ∈ D̊ (i.e. the origin belongs to the interior of D). The restriction
of the zero set of BE to D is

B−1
E (0) ∩D = {x ∈ D : BE (x) = 0}.

According to Lemma 8.4 in Appendix A, the set B−1
E (0) intersects the boundary ∂D in

an a.s. finite number of points. The nodal length of BE restricted to D is the random
variable

LE := length(B−1
E (0) ∩D), (1.10)

which is square-integrable, by Lemma 3.3 below. The first main result of the present
paper concerns the distribution of LE in the high-energy limit.
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Theorem 1.1. The expectation of the nodal length LE is

E[LE ] = area(D)
π
√

2

√
E, (1.11)

whereas the variance of LE verifies the asymptotic relation

Var(LE ) ∼ area(D)
1

512π
log E, E →∞. (1.12)

Moreover, as E →∞,

LE − E[LE ]√
Var(LE )

d−→ Z ,

where Z ∼ N (0, 1) is a standard Gaussian random variable.

Remark 1.2. Relation (1.11) coincides with [Ber02, formula (19)] (and (1.7) above),
whereas (1.12) is consistent with [Ber02, formula (28)] (and (1.8) above).

Remark 1.3. In what follows, we will use the relation

LE
d=

1

2π
√

E
length

(
b−1

1 (0) ∩ 2π
√

E ·D
)
, (1.13)

where
d= indicates equality in distribution and, for a > 0, we set a · D := {y ∈ R

2 :
y = ax, x ∈ D}. Such an equality in distribution is an immediate consequence of the
integral representation of nodal lengths appearing e.g. in (2.23) below, as well as of the
fact that, as random functions, b1(2π

√
Ex) and BE (x) have the same distribution for

every E > 0.

We now focus on the complex Berry’s RWM BC

E , and study the nodal points (phase
singularities) of BC

E that belong to a C1 convex body D such as the one considered above
(in particular, the origin lies in the interior of D). As already observed, one has that

(BC

E )−1(0) = B−1
E (0) ∩ B̂−1

E (0),

and the set (BC

E )−1(0)∩D consists P-a.s. of a finite collection of points such that none of
them belongs to the boundary ∂D (see Lemma 8.4). We are interested in the distribution
of

NE := #
(
(BC

E )−1(0) ∩D

)
, (1.14)

for large values of E . Our second main result is the following:

Theorem 1.4. One has that

E[NE ] = area(D) π E . (1.15)

Moreover, as E →∞,

Var(NE ) ∼ area(D)
11

32π
E log E, (1.16)

and

NE − E[NE ]√
Var(NE )

d−→ Z ,

where Z ∼ N (0, 1) is a standard Gaussian random variable.
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Remark 1.5. Relation (1.15) coincides with [Ber02, (45)] (or (1.7)) above) whereas
(1.16) is consistent with [Ber02, (50)] (or (1.8) above).

We will now show how Theorem 1.1 can be combined with the findings of [CH16a],
in order to deduce local CLTs for pullback (monochromatic) random waves associated
with a general Riemaniann manifold.

1.4. Application to monochromatic random waves.

1.4.1. Random waves on manifolds. Let (M, g) be a compact, smooth, Riemannian
manifold of dimension 2. We write �g to indicate the associated Laplace-Beltrami
operator, and denote by { f j : j ∈ N} an orthonormal basis of L2(M) composed of
real-valued eigenfunctions of �g

�g f j + λ2
j f j = 0,

where the corresponding eigenvalues are such that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ↑ ∞.
According to [CH16a,Zel09], the (Riemannian) monochromatic random wave on M of
parameter λ is defined as the Gaussian random field

φλ(x) :=
1√

dim(Hc,λ)

∑

λ j∈[λ,λ+c]
a j f j (x), x ∈ M, (1.17)

where c ≥ 0 is a fixed parameter and the a j are i.i.d. standard Gaussian random variables,
and

Hc,λ :=
⊕

λ j∈[λ,λ+c]
Ker(�g + λ2

j Id),

where Id is the identity operator. The field φλ is centered Gaussian, and its covariance
kernel is given by

Kc,λ(x, y) := Cov (φλ(x), φλ(y))

=
1

dim(Hc,λ)

∑

λ j∈[λ,λ+c]
f j (x) f j (y), x, y ∈M. (1.18)

“Short window” monochromatic random waves such as φλ (in the case c = 1 and for
manifolds of arbitrary dimension) were first introduced by Zelditch in [Zel09] as general
approximate models of random Gaussian Laplace eigenfunctions defined on manifolds
not necessarily having spectral multiplicities; see [CH16a] for further discussions. The
case c = 0 typically corresponds to manifolds with spectral multiplicities like the flat
torus R

2/Z
2 or the round sphere S

2, where one can consider models of random waves liv-
ing on a single eigenspace (like arithmetic random waves [RW08], and random spherical

harmonics [Wig10])—see also the forthcoming Sect. 1.5. Plainly, for a generic metric
on a smooth compact manifold M, the eigenvalues λ2

j are simple, and one has to average
on intervals [λ, λ+c] such that c > 0 in order to obtain a non-trivial probabilistic model.
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1.4.2. Pulback random waves and isotropic scaling We keep the notation introduced in
the previous section, and follow closely [CH16a]. Fix x ∈M, and consider the tangent
plane TxM to the manifold at x . We define the pullback Riemannian random wave

associated with φλ as the Gaussian random field on TxM given by

φx
λ(u) := φλ

(
expx

(u

λ

))
, u ∈ TxM,

where expx : TxM → M is the exponential map at x . The planar field φx
λ is trivially

centered and Gaussian and, using (1.18), its covariance kernel is given by

K x
c,λ(u, v) = Kc,λ

(
expx

(u

λ

)
, expx

(v

λ

))
, u, v ∈ TxM.

Definition 1.6 (See [CH16a]). We say that x ∈ M is a point of isotropic scaling if, for
every positive function λ 	→ r(λ) such that r(λ) = o(λ), as λ→∞, one has that

sup
u,v∈B(r(λ))

∣∣∂α∂β [K x
c,λ(u, v)− (2π)J0(‖u − v‖gx )]

∣∣→ 0, λ→∞, (1.19)

where α, β ∈ N
2 are multi-indices labeling partial derivatives with respect to u and v,

respectively, ‖ · ‖gx is the norm on TxM induced by g, and B(r(λ)) is the corresponding
ball of radius r(λ) containing the origin.

Sufficient conditions for a point x to be of isotropic scaling are discussed e.g. in
[CH16a, Sect. 2.5] or [CH16b]. In the case c = 0, one can directly verify that every
point x ∈ S

2 is of isotropic scaling for the model of random spherical harmonics evoked
above (see [Wig10]). Note that one can always choose coordinates around x to have
gx = Id, so that the limiting kernel in (1.19) coincides with (2π) × c1 in (1.3). This
implies in particular that, if x is a point of isotropic scaling, then, as λ→∞, the planar
field φx

λ converges to a multiple of Berry’s model, namely
√

2π · b1, in the sense of
finite-dimensional distributions.

1.4.3. A second order result Keeping the same notation and assumptions as above, we
now state a special case of [CH16a, Theorem 1], that we reformulate in a way that is
adapted to the notation adopted in the present paper. To this end, for every x ∈ M we
define

Z
x
λ,E := length

{
(φx

λ)−1(0) ∩ B(2π
√

E)
}

, E > 0.

The next statement shows that, if x is of isotropic scaling, then Zx
λ,E behaves, for large

values of λ as the universal random quantity given by the nodal length of Berry’s model
b1 restricted to the ball B(2π

√
E).

Theorem 1.7 (Special case of Theorem 1 in [CH16a]). Let x be a point of isotropic

scaling, and assume that coordinates have been chosen around x in such a way that

gx = Id. Fix E > 0. Then, as λ → ∞, the random variable Zx
λ,E converges in

distribution to

length
(

b−1
1 (0) ∩ B(2π

√
E)
) (

d= LE · 2π
√

E
)

,

where the identity in distribution expressed between brackets follows from (1.13).
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The next statement is a direct consequence of Theorem 1.1, and provides a second-
order counterpart to Theorem 1.7, showing in particular that nodal lengths of pullback
random waves inherit high-energy Gaussian fluctuations from Berry’s model at any
point of isotropic scaling. In order to make the statement more readable, we introduce
the notation

Z̃
x
λ,E :=

Zx
λ,E

2π
√

E
.

Theorem 1.8 (CLT for the nodal length of pullback waves). Let x be a point of isotropic

scaling, and assume that coordinates have been chosen around x in such a way that

gx = Id. Let {Em : m ≥ 1} be a sequence of positive numbers such that Em → ∞.

Then, there exists a sequence {λm : m ≥ 1} such that

Z̃x
λm ,Em

− π2√Em/2
√

log(Em)/512

d−→ Z ∼ N (0, 1). (1.20)

Proof. Let d(·, ·) be any distance metrizing the convergence in distribution between
random variables (see e.g. [NP12, Appendix C]), and let ǫ(m), m ≥ 1, be a sequence
of positive numbers such that ǫ(m) → 0. According to Theorem 1.7, for every fixed m

there exists λm > 0 such that

d

(
Z̃x

λm ,Em
− π2√Em/2

√
log(Em)/512

,
LEm − π2√Em/2√

log(Em)/512

)
≤ ǫ(m).

From this relation we deduce that, for every m,

d

(
Z̃x

λm ,Em
− π2√Em/2

√
log(Em)/512

, Z

)
≤ ǫ(m) + d

(
LEm − π2√Em/2√

log(Em)/512
, Z

)
,

and the conclusion follows at once from Theorem 1.1. ⊓⊔

It would be of course desirable to have some quantitative information about the
sequence λm , m ≥ 1 appearing in the previous statement, in particular connecting the
asymptotic behaviour of λm with the speed of divergence of Em . Some preliminary
computations have indicated us that (not suprisingly) in order to do so, one should have
explicit upper bounds on the limiting relation (1.19), that one should exploit in order
to deduce a quantitative version of Theorem 1.7. We prefer to think of this issue as a
separate problem, and leave it open for further research.

1.5. Further related work. The distribution of the nodal length on the standard flat torus
T

2 and on the unit round sphere S
2 was investigated in [RW08,KKW13,MPRW16,

PR17] and [Bera85,Wig10,MRW17], respectively. Moreover, the distribution of the
number of nodal points on T

2 was studied in [DNPR16]. The first result in higher
dimensional setting concerns the fine asymptotic behavior of the nodal area for 3-
dimensional “arithmetic random waves", i.e. Gaussian Laplace eigenfunctions on the
3-torus T

3 := R
3/Z

3 (see [Cam17]).
Remember that, as mentioned in Sect. 1.4, since these manifolds have spectral de-

generacies, one typically selects the value c = 0 in (1.17) for defining a canonical model
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of Gaussian random waves. We will now describe in more detail the theoretical contri-
butions contained in the references evoked above. A more technical comparison with
the approach adopted in the present work is deferred to Sect. 2.2.

Nodal length of real arithmetic random waves. The eigenvalues of the Laplace oper-
ator on T

2 are of the form −4π2n, where n is an integer that can be represented as the
sum of two integer squares. Write S for the collection of all integers having this property,
and, for n ∈ S, denote by �n the set of frequencies

�n = {ξ ∈ Z
2 : ‖ξ‖ =

√
n}

and by Nn the cardinality of �n (that is, Nn is the multiplicity of −4π2n). For n ∈ S,
consider the probability measure μn induced by �n on the unit circle S

1:

μn =
1

Nn

∑

ξ∈�n

δξ/
√

n .

Following [RW08], for n ∈ S, the toral random eigenfunction Tn (or arithmetic random

wave of order n) is defined as the centered Gaussian field on the torus whose covariance
function is as follows: for x, y ∈ T

2,

Cov (Tn(x), Tn(y)) =
1

Nn

∑

ξ∈�n

ei2π〈ξ,x−y〉

=
∫

S1
ei2π

√
n〈θ,x−y〉 dμn(θ). (1.21)

As discussed in [KKW13], there exists a density-1 subsequence {n j : j ≥ 1} ∈ S such
that, as j → +∞,

μn j
⇒ dθ/2π,

where dθ denotes the uniform measure on the unit circle. Let us now set Ln :=
length(T−1

n (0)). The expected nodal length was computed by Rudnick and Wigman
[RW08]:

E[Ln] =
1

2
√

2

√
4π2n,

while in [KKW13] the asymptotic variance, as Nn → +∞, was proved to be

Var(Ln) ∼
1 + μ̂n(4)2

512

4π2n

N 2
n

,

where μ̂n(4) denotes the fourth Fourier coefficients of μn . In order to have an asymptotic
law for the variance, one should select a subsequence {n j } of energy levels such that (i)
Nn j

→ +∞ and (ii) |μ̂n(4)| → η, for some η ∈ [0, 1]. Note that for each η ∈ [0, 1],
there exists a subsequence {n j } such that both (i) and (ii) hold (see [KKW13,KW16]).
For these subsequences, the asymptotic distribution of the nodal length was shown to be
non-Gaussian in [MPRW16]:

Ln j
− E[Ln j

]
√

Var(Ln j
)

d→
1

2
√

1 + η2
(2− (1− η)Z2

1 − (1 + η)Z2
2), (1.22)
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where Z1 and Z2 are i.i.d. standard Gaussian random variables. A complete quantitative
version (in Wasserstein distance) of (1.22) is given in [PR17]. Reference [RoW17]
contains Limit Theorems for the intersection number of the nodal lines T−1

n (0) and a
fixed deterministic curve with nowhere zero curvature.

Phase singularities of complex arithmetic random waves. For n ∈ S, let T̂n indicate an
independent copy of the arithmetic random wave Tn defined in the previous paragraph.
In [DNPR16], the distribution of the cardinality In of the set of nodal intersections
T−1

n (0) ∩ T̂−1
n (0) was investigated. One has that

E[In] =
4π2n

4π
= πn,

while the asymptotic variance, as Nn → +∞, is

Var(In) ∼
3μ̂n(4)2 + 5

128π2

(4π2n)2

N 2
n

.

Also in this case the asymptotic distribution is non-Gaussian (and non-universal), indeed
for {n j } such that Nn j

→ +∞ and |μ̂n j
(4)| → η ∈ [0, 1], one has that

In j
− E[In j

]
√

Var(In j
)

d→
1

2
√

10 + 6η2

(
1 + η

2
A +

1− η

2
B − 2(C − 2)

)
,

where A, B and C are independent random variables such that A
d= B

d= 2Z2
1 +2Z2

2−4Z2
3

while C
d= Z2

1 + Z2
2 (where Z1, Z2, Z3 are i.i.d. standard Gaussian random variables).

Nodal length of random spherical harmonics. The Laplacian eigenvalues on the two-
dimensional unit sphere are of the form−ℓ(ℓ + 1), where ℓ ∈ N, and the multiplicity of
the ℓ-th eigenvalue is 2ℓ+1. The ℓ-th random eigenfunction (random spherical harmonic)
on S

2 is a centered Gaussian field whose covariance kernel is

Cov (Tℓ(x)), Tℓ(y)) = Pℓ(cos d(x, y)), x, y ∈ S
2,

where Pℓ denotes the ℓ-th Legendre polynomial and d(x, y) the geodesic distance be-
tween the two points x and y (see [MP11]). The mean of the nodal length Lℓ :=
length(T−1

ℓ (0)) was computed in [Bera85] as

E[Lℓ] =
1

2
√

2

√
ℓ(ℓ + 1),

while the asymptotic behaviour of the variance was derived in [Wig10]: as ℓ→ +∞,

Var(Lℓ) ∼
1

32
log ℓ.

The second order fluctuations of Lℓ are Gaussian; more precisely, in [MRW17] it was
shown that

Lℓ − E[Lℓ]√
Var(Lℓ)

d→ Z ,

where Z is a standard Gaussian random variable.
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2. Outline of the Paper

2.1. On the proofs of the main results. A well-known consequence of the area/co-area
formulae and of the fact that BE is P-a.s. a smooth field, is that one can represent in
integral form the nodal length LE in (1.10) and the number of nodal points NE in (1.14),
respectively, as

LE =
∫

D

δ0(BE (x))‖∇BE (x)‖ dx, (2.23)

NE =
∫

D

δ0(BE (x))δ0(B̂E (x))|JacBE ,B̂E
, (x)| dx, (2.24)

where δ0 denotes the Dirac mass at 0, ∇BE is the gradient field, and JacBE ,B̂E
stands

for the Jacobian of (BE , B̂E ) (remember that B̂E is an independent copy of BE ); on
the right-hand sides of (2.23) and (2.24), integrals involving Dirac masses have to be
understood as P-a.s. limits of analogous integrals, where δ0 is replaced by an adequate
approximation of the identity. We will show in Sect. 3.1 that LE and NE are both
square-integrable random variables. Combined with (2.23) and (2.24), this will allow
us to deploy in Sect. 3.2 the powerful theory of Wiener-Itô chaos expansions (see e.g.
[NP12]), yielding that both LE and NE admit an explicit representation as orthogonal
series, both converging in L2(P), with the form

LE =
+∞∑

q=0

LE [2q], NE =
+∞∑

q=0

NE [2q], (2.25)

where LE [2q] (resp. NE [2q]) denotes the orthogonal projection of LE (resp. NE ) onto
the 2qth Wiener chaos associated with BE (and B̂E )—see Sect. 3.2 and [NP12] for
definitions and further details. We will see that chaotic decompositions rely in particular
on the fact that the sequence of renormalized Hermite polynomials {Hq/

√
q!}q=0,1,... is

an orthonormal basis for the space of square-integrable functions on the real line w.r.t. the
standard Gaussian density. Note that odd chaoses in (2.25) vanish, since the integrands
on the right-hand sides of (2.23) and (2.24) are even.

Our main argument for proving Theorem 1.1 and Theorem 1.4 relies on the investiga-
tion of those chaotic components in (2.25) such that q ≥ 1 (the 0-th chaotic component
is the mean). The second chaotic components (q = 1) is investigated in Sect. 4, where
we use the first Green’s identity in order to show that LE [2] and NE [2] both reduce to
a single boundary term, yielding that

Var(LE [2]) = O(1), Var(NE [2]) = O (E) . (2.26)

The (more difficult) investigation of fourth chaotic components is carried out in Sect. 6:
it requires in particular a careful analysis of asymptotic moments of Bessel functions on
growing domains, see Sect. 5. Our main finding from Sect. 6 is that

Var(LE [4]) ∼ area(D)
1

512π
log E,

Var(NE [4]) ∼ area(D)
11

32π
E log E . (2.27)
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In Sect. 7, we will show that the contribution of higher order chaotic components is
negligible, that is: as E → +∞,

Var

⎛
⎝∑

q≥3

LE [2q]

⎞
⎠ = o(log E),

Var

⎛
⎝∑

q≥3

NE [2q]

⎞
⎠ = o(E log E). (2.28)

This is done by exploiting isotropic property of the field, and by using a Kac–Rice
formula to control the second moments of LE and NE around the origin.

Substituting (2.26), (2.27) and (2.28) into (2.25), we deduce that the variance of the
fourth chaotic component of LE and NE is asymptotically equivalent to the correspond-
ing total variances, more precisely: as E → +∞,

LE − E[LE ]√
Var(LE )

=
LE [4]√

Var(LE [4])
+ oP(1),

NE − E[NE ]√
Var(NE )

=
NE [4]√

Var(NE [4])
+ oP(1), (2.29)

where oP(1) denotes a sequence converging to zero in probability. Both relations appear-
ing in (2.29), indicate that, in order to conclude the proofs Theorem 1.1 and Theorem 1.4,
it is sufficient to check that the normalized projections

LE [4]√
Var(LE [4])

and
NE [4]√

Var(NE [4])

have asymptotically Gaussian fluctuations. Exploiting the fact that both quantities live
in a fixed Wiener chaos, this task will be accomplished in Sect. 8, by using techniques
of Gaussian analysis taken from [NP12, Chapter 5 and 6], in particular related to the
fourth moment theorem from [NuPe05,PT05].

Remark 2.1 (Higher dimensions). It is a challenging and natural question to understand
whether the approach adopted in the present paper could be used in order to study the
fluctuations of the nodal volume (that is, the volume of the zero set, possibly restricted to
a bounded domain) associated with a Gaussian isotropic random wave Xd,k = {Xd,k(x) :
x ∈ R

d}, for d ≥ 3 and in the high-energy limit k →∞. Recall that the random field Xd,k

is by definition the unique (in distribution) unit variance and centered isotropic Gaussian
field of R

3 almost surely verifying the Helmhotz equation �Xd,k + k2 Xd,k = 0 on R
3.

As such, one has necessarily that

E[Xd,k(x)Xd,k(y)] =
J(d−2)/2

(
k‖x − y‖

)

(k‖x − y‖)(d−2)/2
, x �= y ∈ R

3,

see e.g. [AT, Theorem 5.7.2]. Now, for every d ≥ 3, it is straightforward to apply
the co-area formula in order to deduce an explicit expression of the nodal volume of
Xd,k , analogous to the first relation in (2.25) (see e.g. [Cam17] for a similar analysis
involving arithmetic random waves on tori with dimension d ≥ 3). However, some
preliminary analysis in this direction has shown us that asymptotic relations analogous to
those appearing in (2.26) and (2.29)—involving the second, the fourth, and higher order
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chaotic projections—might fail to hold in dimension d ≥ 3. In particular, our preliminary
computations make it reasonable to conjecture that, when d ≥ 3, the projection on the
second Wiener chaos of the nodal volume of Xd,k is not negligible with respect to the
total variance. Such a striking phenomenon seems to be related to the special form of
the boundary term appearing when applying Green’s formula, in a way similar to what
is done in the proof of Lemma 4.1 below. Clearly, a complete proof of such a claim is
largely outside the scope of the present paper, and is left open for future research. We
also observe that the just described boundary effect trivially disappears in the case of
arithmetic random waves—see again [Cam17].

2.2. Further comparison with previous work. The idea of proving limit theorems for
nodal quantities of random Laplace eigenfunctions, by first deriving the chaos decom-
positions (2.25) and then by proving that the fourth chaotic projection is dominating,
first appeared in [MPRW16], and has been further developed in the already quoted refer-
ences [DNPR16,MRW17,PR17,RoW17]. While the techniques adopted in the present
paper are directly connected to such a line of research, several crucial differences with
previous contributions should be highlighted.

(i) Differently from [MPRW16,DNPR16,MRW17,PR17], the random fields consid-
ered in the present paper are eigenfunctions of the Laplace operator on a non-

compact manifold (namely, the plane), that one subsequently restricts to a smooth
compact domain D. This situation implies in particular that, throughout our proofs
and differently from [DNPR16,MPRW16,MRW17,PR17], we cannot exploit any
meaningful representation of BE (or BC

E ) in terms of a countable orthogonal basis
of Laplace eigenfunctions on D, thus making our computations considerably more
delicate. In particular, the representation (1.5) cannot be directly used in our frame-
work. This additional difficulty explains, in particular, the need of developing novel
estimates for Bessel functions on growing domains, as derived in Sect. 5.

(ii) Another consequence of the non-compactness of R
2 is that (differently from the sit-

uation in [MPRW16,DNPR16,PR17]) it is not possible to represent the dominating
chaotic projections LE [4] and NE [4] as an explicit functional of a finite collection
of independent Gaussian coefficients. This implies in particular that, in order to
show that LE [4] and NE [4] exhibit Gaussian fluctuations, one cannot rely on the
usual CLT, but one has rather to apply the analytical techniques based on the use of
contractions described in [NP12, Chapter 5]—see Sect. 8.

(iii) Differently from [MPRW16,MRW17], our proof of the variance asymptotic be-
haviour for nodal quantities (1.12) and (1.16) is done from scratch, and does not
make use of previous computations in the literature. In particular, our analysis pro-
vides a self-contained rigorous proof of Berry’s relations (1.8).

2.3. Plan. In Sect. 3 we derive the chaotic decomposition (2.25) for the nodal length
and the number of nodal points. The second chaotic components are investigated in
Sect. 4 to obtain (2.26), whereas the main results on asymptotic moments of Bessel
functions are in Sect. 5 (further technical results are collected in Appendix B). The
fourth chaotic components are studied in Sect. 6 in order to obtain (2.27), and (2.28)
is proven in Sect. 7. The Central Limit Theorem for the fourth chaotic component is
proved in Sect. 8. Finally, the proof of our main results is given in Sect. 8.2. Additional
technical lemmas are gathered together in Appendix A and Appendix C.
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3. Nodal Statistics and Wiener Chaos

3.1. Mean square approximation. In order to derive the chaotic decomposition (2.25)
for the nodal length and the number of nodal points, we will need the distribution of the
random vector (BE (x), BE (y),∇BE (x),∇BE (y)) ∈ R

6 for x, y ∈ R
2, where ∇BE is

the gradient field ∇ := (∂1, ∂2), ∂i := ∂xi
= ∂/∂xi (for i = 1, 2). Let us introduce the

following notation: for i, j ∈ {0, 1, 2}

r E
i, j (x − y) := ∂xi

∂y j
r E (x − y), (3.30)

with ∂x0 and ∂y0 equal to the identity by definition. The following result will be proved
in Appendix A.

Lemma 3.1. The centered Gaussian vector (BE (x), BE (y),∇BE (x),∇BE (y)) ∈ R
6

(x �= y ∈ R
2) has the following covariance matrix:

�E (x − y) =
(

�E
1 (x − y) �E

2 (x − y)

�E
2 (x − y)t �E

3 (x − y)

)
, (3.31)

where

�E
1 (x − y) =

(
1 r E (x − y)

r E (x − y) 1

)
,

r E being defined in (1.9),

�E
2 (x − y) =

(
0 0 r E

0,1(x − y) r E
0,2(x − y)

−r E
0,1(x − y) −r E

0,2(x − y) 0 0

)
, (3.32)

with, for i = 1, 2,

r E
0,i (x − y) = 2π

√
E

xi − yi

‖x − y‖
J1(2π

√
E‖x − y‖).

Finally,

�E
3 (x − y) =

⎛
⎜⎜⎝

2π2 E 0 r E
1,1(x − y) r E

1,2(x − y)

0 2π2 E r E
2,1(x − y) r E

2,2(x − y)

r E
1,1(x − y) r E

2,1(x − y) 2π2 E 0
r E

1,2(x − y) r E
2,2(x − y) 0 2π2 E

⎞
⎟⎟⎠ ,

where for i = 1, 2

r E
i,i (x − y) = 2π2 E

(
J0(2π

√
E‖x − y‖)

+
(

1− 2
(xi − yi )

2

‖x − y‖2

)
J2(2π

√
E‖x − y‖)

)
, (3.33)

and

r E
12(x − y) = r E

2,1(x − y)

= −4π2 E
(x1 − y1)(x2 − y2)

‖x − y‖2 J2(2π
√

E‖x − y‖). (3.34)
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For brevity, we will sometimes omit the dependence on x− y in the covariance matrix
(3.31) just above, as well as in (3.30). In view of Lemma 3.1, we define the normalized
derivatives as

∂̃i :=
∂i√

2π2 E
, i = 1, 2, (3.35)

and, accordingly, the normalized gradient ∇̃ as

∇̃ := (̃∂1, ∂̃2) =
∇

√
2π2 E

. (3.36)

Let us now consider, for ε > 0, the following random variables

L
ε
E :=

1

2ε

∫

D

1[−ε,ε](BE (x))‖∇BE (x)‖ dx, (3.37)

N
ε
E :=

1

(2ε)2

∫

D

1[−ε,ε](BE (x))1[−ε,ε](B̂E (x))
∣∣JacBE ,B̂E

(x)
∣∣ dx, (3.38)

where JacBE ,B̂E
still denotes the Jacobian of (BE , B̂E ). The random objects in (3.37)

and (3.38) can be viewed as ε-approximations of the nodal length of BE in D and of
the number of nodal points of BC

E in D, respectively (here and in what follows, 1[−ε,ε]
denotes the indicator functions of the interval [−ε, ε]). Indeed, the following standard
result holds, which will be proved in Appendix A for completeness.

Lemma 3.2. As ε → 0,

L
ε
E

a.s.−→LE , (3.39)

where Lε
E (resp. LE ) is given in (3.37) (resp. (1.10)). Moreover,

N
ε
E

a.s.−→NE , (3.40)

where N ε
E (resp. NE ) is given in (3.38) (resp. (1.14)).

The next lemma, also proved in Appendix A, shows that the convergence in Lemma 3.2
holds in L2(P).

Lemma 3.3. The nodal length LE in (1.10) and the number of nodal points NE (1.14)
are finite-variance random variables, and both convergences in (3.39) and (3.40) hold

in L2(P), i.e. as ε → 0,

E[|Lε
E − LE |2] → 0, (3.41)

E[|N ε
E −NE |2] → 0. (3.42)
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3.2. Chaotic expansions. We start by observing that the field BE can be represented as
a Wiener-Itô integral as follows:

BE (x) =
1
√

2π

∫

S1
e2π

√
Ei〈θ,x〉 dG(θ), x ∈ R

2, (3.43)

where G is a complex Hermitian Gaussian measure on the unit circle S
1 with Lebesgue

control measure (see [NP12, §2.1] and in particular Example 2.1.4). By the integral
representation [AS64, §9.1] of Bessel functions,

E[BE (x)BE (y)] =
1

2π

∫

S1
e2π

√
Ei〈θ,x−y〉 dθ = r E (x − y), x, y ∈ R

2. (3.44)

Remark 3.4. We will sometimes prefer to represent such quantities as BE (x), ∂1 BE (x)

(and so on) as stochastic integrals of deterministic kernels with respect to a real-valued
Gaussian measure (and not a complex-valued one, as in (3.43)—this is alway possible,
due to standard properties of separable real Hilbert spaces). See e.g. Sect. 8, where such
a representation is implicitly used for dealing with contraction operators.

The random variables Lε
E and N ε

E having finite variance (Lemma 3.3) functionals
of BE in (3.43), they admit a so-called chaotic expansion [NP12, §2.2], i.e. they can be
written as a random orthogonal series

L
ε
E =

+∞∑

q=0

L
ε
E [q], N

ε
E =

+∞∑

q=0

N
ε
E [q], (3.45)

converging in L2. The term Lε
E [q] (resp. N ε

E [q]) is the orthogonal projection of Lε
E (resp.

N ε
E ) onto the so-called qth Wiener chaos Cq [NP12, Definition 2.2.3]. The definition

of the latter involves the sequence of Hermite polynomials {Hn}n≥0 [NP12, Definition
1.4.1] which are a complete orthonormal basis (up to normalization) of the space of
square integrable functions on the real line w.r.t. the standard Gaussian density. We
recall here the expression of the first Hermite polynomials:

H0(t) = 1, H1(t) = t, H2(t) = t2 − 1,

H3(t) = t3 − 3t, H4(t) = t4 − 6t2 + 3. (3.46)

We recall also that, for normalized Z1, Z2 jointly Gaussian, we have for any n, n′ ∈
{0, 1, 2, . . . }

E[Hn(Z1)Hn′(Z2)] = δn′
n n!E[Z1 Z2]n . (3.47)

In view of (3.47) and Lemma 3.1, we rewrite (3.37) and (3.38) as

L
ε
E =

√
2π2 E

2ε

∫

D

1[−ε,ε](BE (x))‖∇̃BE (x)‖ dx, (3.48)

N
ε
E =

2π2 E

(2ε)2

∫

D

1[−ε,ε](BE (x))1[−ε,ε](B̂E (x))
∣∣J̃acBE ,B̂E

(x)
∣∣ dx, (3.49)

where ∇̃ is the normalized gradient (3.36), and J̃acBE ,B̂E
denotes the Jacobian of (BE , B̂E )

w.r.t. the normalized derivatives (3.35).
The chaotic expansion for Lε

E (resp. N ε
E ) can be obtained as in [MPRW16, Lemma

3.4, Lemma 3.5] (resp. as in the proof of [DNPR16, Lemma 4.4]) (the terms correspond-
ing to odd chaoses vanish, due to the parity of integrand functions in (3.37) and (3.38)).
The proof of the following result is hence omitted.
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Lemma 3.5. The chaotic components of Lε
E in (3.48) corresponding to odd chaoses

vanish, i.e.

L
ε
E [2q + 1] = 0, q ≥ 0,

while for even chaoses

L
ε
E [2q] =

√
2π2 E

q∑

u=0

u∑

m=0

βε
2q−2uα2m,2u−2m

×
∫

D

H2q−2u(BE (x))H2m (̃∂1 BE (x))H2u−2m (̃∂2 BE (x)) dx,

where {βε
2n}n≥0 is the sequence of chaotic coefficients of 1

2ε
1[−ε,ε] appearing in [MPRW16,

Lemma 3.4], while {α2n,2m}n,m≥0 is the sequence of chaotic coeffients of the Euclidean

norm in R
2 ‖ · ‖ appearing in [MPRW16, Lemma 3.5].

The chaotic components of N ε
E in (3.49) are

N
ε
E [2q + 1] = 0, q ≥ 0,

while for even chaoses

N
ε
E [2q] = 2π2 E

∑

i1+i2+i3+ j1+ j2+ j3=q

βε
i1
βε

j1
γi2,i3, j2, j3

×
∫

D

Hi1(BE (x))Hi1(B̂E (x))Hi2 (̃∂1 BE (x))

×Hi3 (̃∂2 BE (x))Hi2 (̃∂1 B̂E (x))Hi3 (̃∂2 B̂E (x)) dx,

where i1, j1 are even, and i2, i3, j2, j3 have the same parity; here the sequence {γi2,i3, j2, j3}
corresponds to the chaotic expansion of the absolute value of the Jacobian appearing

in [DNPR16, Lemma 4.2].

Let us define, as in [MPRW16, Lemma 3.4],

β2n := lim
ε→0

βε
2n . (3.50)

The sequence {β2n}n≥0 consists of the (formal) chaotic coefficients of the Dirac mass
δ0. Hence from Lemmas 3.3 and 3.5 we immediately obtain the chaotic expansions for
LE and NE .

Proposition 3.6. The chaotic expansion of the nodal length in D is

LE =
+∞∑

q=0

LE [2q] =
√

2π2 E

+∞∑

q=0

q∑

u=0

u∑

m=0

β2q−2uα2m,2u−2m

×
∫

D

H2q−2u(BE (x))H2m (̃∂1 BE (x))H2u−2m (̃∂2 BE (x)) dx, (3.51)

where {β2n}n≥0 is defined in (3.50) (see also [MPRW16, Lemma 3.4]), while {α2n,2m}n,m≥0
is the sequence of chaotic coeffients of the Euclidean norm in R

2 ‖ · ‖ appearing in

[MPRW16, Lemma 3.5].
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For the number of phase singularities in D we have

NE =
+∞∑

q=0

NE [2q] = 2π2 E

+∞∑

q=0

∑

i1+i2+i3+ j1+ j2+ j3=q

βi1β j1γi2,i3, j2, j3

×
∫

D

Hi1(BE (x))Hi1(B̂E (x))Hi2 (̃∂1 BE (x))

×Hi3 (̃∂2 BE (x))Hi2 (̃∂1 B̂E (x))Hi3 (̃∂2 B̂E (x)) dx, (3.52)

where i1, j1 are even, and i2, i3, j2, j3 have the same parity; here the sequence {γi2,i3, j2, j3}
corresponds to the chaotic expansion of the absolute value of the Jacobian appearing

in [DNPR16, Lemma 4.2].

We will need the explicit values of few chaotic coefficients for LE and NE (see
[DNPR16, Lemma 4.3] and the proofs of [MPRW16, Proposition 3.2] and [MPRW16,
Lemma 4.2]):

β0 =
1
√

2π
, β2 = −

1

2
√

2π
, β4 =

1

8
√

2π
; (3.53)

and

α0,0 =
√

2π

2
, α2,0 = α0,2 =

√
2π

8
,

α4,0 = α0,4 = −
√

2π

128
, α2,2 = −

√
2π

64
, (3.54)

finally

γ0,0,0,0 = 1, γ2,0,0,0 = γ0,2,0,0 = γ0,0,2,0 = γ0,0,0,2 =
1

4
,

γ1,1,1,1 = −
3

8
, γ2,2,0,0 = γ0,0,2,2 = −

1

32
,

γ2,0,2,0 = γ0,2,0,2 = −
1

32
, γ2,0,0,2 = γ0,2,2,0 =

5

32
,

γ4,0,0,0 = γ0,4,0,0 = γ0,0,4,0 = γ0,0,0,4 = −
3

192
.

(3.55)

4. Second Chaotic Components

In this section we investigate the second chaotic component of the nodal length and the
number of nodal components, respectively.

Lemma 4.1. For the second chaotic component of LE we have

LE [2] =
1

8π
√

2 E

∫

∂D

BE (x)〈∇BE (x), n(x)〉dx, (4.56)

where n(x) is the outward pointing normal at x, hence

Var(LE [2]) = O(1). (4.57)
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Proof. Equation (3.51) implies that the projection LE [2] of LE onto the second chaos
is given by

LE [2] =
√

2π2 E

{
β2α0,0

∫

D

H2(BE (x))dx + β0α0,2

∫

D

H2(̃∂1 BE (x))dx

+β0α2,

∫

D

H2(̃∂2 BE (x))dx

}

=
π

8

√
2E

{
−2

∫

D

BE (x)2dx +
∫

D

‖∇̃BE (x)‖2dx

}
, (4.58)

where we used the explicit expression of the second Hermite polynomial (3.46). The
first Green identity [Lee97, p. 44] (see also [Ros15, Proposition 7.3.1] and the proof of
[DNPR16, Lemma 4.4]) asserts that

∫

D

‖∇BE (x)‖2dx = −
∫

D

BE (x)�BE (x)dx +
∫

∂D

BE (x)〈∇BE (x), n(x)〉dx

where n(x) denotes the outward pointing unit normal at x . As a result,
∫

D

‖∇̃BE (x)‖2dx =
1

2π2 E

∫

D

‖∇BE (x)‖2dx

= 2
∫

D

BE (x)2dx +
1

2π2 E

∫

∂D

BE (x)〈∇BE (x), n(x)〉dx,

implying in turn from (4.58) that

LE [2] =
1

8π
√

2 E

∫

∂D

BE (x)〈∇BE (x), n(x)〉dx, (4.59)

which is (4.56). From (4.59) we deduce (4.57), indeed,

Var(LE [2]) ≤
1

128π2 E

∫

∂D

E[BE (x)2] dx ·
∫

∂D

E[‖∇BE (x)‖2] dx

=
1

64
perimeter(D)2 = O(1).

⊓⊔

Lemma 4.2. For the second chaotic component of NE we have

NE [2] =
√

2E
(
LE [2] + L̂E [2]

)
(4.60)

(with obvious notation), hence

Var(NE [2]) = O(E). (4.61)

Proof. Similarly to (4.58), from (3.52) we have

NE [2] = 2π2 E

{
β2β0γ0,0,0,0

∫

D

H2(BE (x))dx + β0β2γ0,0,0,0

∫

D

H2(B̂E (x))dx

+β2
0γ2,0,0,0

∫

D

H2(̃∂1 BE (x))dx + β2
0γ0,2,0,0

∫

D

H2(̃∂2 BE (x))dx

Giovanni PECCATI
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+β2
0γ0,0,2,0

∫

D

H2(̃∂1 B̂E (x))dx + β2
0γ0,0,0,2

∫

D

H2(̃∂2 B̂E (x))dx

}

=
π E

4

{
−2

∫

D

BE (x)2dx +
∫

D

‖∇̃BE (x)‖2dx

−2
∫

D

B̂E (x)2dx +
∫

D

‖∇̃ B̂E (x)‖2dx

}
.

That is, NE [2] =
√

2E
(
LE [2] + L̂E [2]

)
(4.60), implying in turn (4.61) (cf. (4.57))

Var(NE [2]) =
E

16
perimeter(D)2 = O(E).

⊓⊔

5. Moments of Bessel Functions

In order to investigate the fourth chaotic components of LE and NE , we first need a
technical result on moments of Bessel functions on convex bodies.

Let us define (cf. (3.30)), for k, l ∈ {0, 1, 2},

r̃ E
k,l(x, y) = r̃ E

k,l(x − y) := E
[̃
∂k BE (x )̃∂l BE (y)

]
, x, y ∈ R

2, (5.62)

with ∂̃0 BE := BE . Note that r̃ E
0,0 ≡ r E .

Since for n = 0, 1, 2,

Jn(ψ) = O

(
1
√

ψ

)

uniformly for ψ ∈ [0, +∞) (see [Sze75]), from Lemma 3.1 we have that for every
k, l ∈ {0, 1, 2},

r̃ E
k,l(z) = O

⎛
⎝ 1√√

E‖z‖

⎞
⎠ (5.63)

uniformly on z and E . Now let (φ, θ) be standard polar coordinates on R
2 (φ ∈

[0, +∞), θ ∈ [0, 2π ]). From Lemma 3.1 we have

r̃ E
0,1((φ cos θ, φ sin θ)) = cos θ J1(2π

√
Eφ),

r̃ E
0,2((φ cos θ, φ sin θ)) = sin θ J1(2π

√
Eφ),

and r̃ E
i,0 = −̃r E

0,i for i = 1, 2. Moreover

r̃ E
1,1((φ cos θ, φ sin θ)) =

(
J0(2π

√
Eφ) +

(
1− 2 cos2 θ

)
J2(2π

√
Eφ)

)
,

r̃ E
2,2((φ cos θ, φ sin θ)) =

(
J0(2π

√
Eφ) +

(
1− 2 sin2 θ

)
J2(2π

√
Eφ)

)
.
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Finally

r̃ E
1,2((φ cos θ, φ sin θ)) = −2 cos θ · sin θ J2(2π

√
Eφ) = r̃ E

2,1((φ cos θ, φ sin θ)).

Recall now that the diameter of D is defined as

diam(D) := sup
x,y∈D

‖x − y‖,

while its inner radius is

inrad(D) := sup{r > 0 : ∃x ∈ D s.t. Br (x) ⊆ D}.

As briefly anticipated above, the next two propositions contain key results to investigate
the asymptotic behavior of fourth order chaotic components variances in Sect. 6, in
particular for the proofs of Lemmas 8.5–8.19 which are collected in Appendix B. We
observe that the proof of Proposition 5.1 below can be simplified when D equals a disk
of positive radius.

Proposition 5.1. Let qi, j ≥ 0 for i, j = 0, 1, 2 and
∑2

i, j=0 qi, j = 4. Then

∫

D

∫

D

2∏

i, j=0

r̃ E
i, j (x − y)qi, j dxdy

= area(D)

∫ diam(D)

0
φ dφ

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j + O

(
1

E

)
.

(5.64)

Proof. By the co-area formula we can rewrite the l.h.s. of (5.64) as

E

∫

D

∫

D

2∏

i, j=0

r̃ E
i, j (x − y)qi, j dxdy

=
∫ diam(D)

0
dφ

∫

D

dx

∫

∂ Bφ(x)∩D

dy

2∏

i, j=0

r̃ E
i, j (x − y)qi, j

︸ ︷︷ ︸
=: f (φ)

,

where Bφ(x) = {y : ‖x − y‖ ≤ φ}, while ∂ Bφ(x) denotes its boundary. For φ ∈
[0, inrad(D)), define

Dφ := {x ∈ D : Bφ(x) ⊆ D},

then

f (φ) :=
∫

Dφ

dx

∫

∂ Bφ(x)

dy

2∏

i, j=0

r̃ E
i, j (x − y)qi, j

+
∫

D\Dφ

dx

∫

∂ Bφ(x)∩D

dy

2∏

i, j=0

r̃ E
i, j (x − y)qi, j . (5.65)
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Using polar coordinates on ∂ Bφ(x) we can rewrite the first term of the r.h.s. of (5.65) as

∫

Dφ

dx

∫

∂ Bφ(x)

dy

2∏

i, j=0

r̃ E
i, j (x − y)qi, j

= area(Dφ)

∫ 2π

0

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ dθ. (5.66)

We have

area(Dφ) = area(D)− area(D \Dφ).

Now since D ⊆ Dφ + 2φB1, where B1 = B1(0) denotes the open ball of radius 1
centered at 0,

area(D \Dφ) ≤ area(Dφ + 2φB1)− area(Dφ)

= 4W1(Dφ)φ + 4W2(Dφ)φ2,
(5.67)

where for the last equality we used Steiner formula (for a convex body K ⊆ R
2 and j =

0, 1, 2, W j (K ) is the j th quermassintegrals) and the equality W0(Dψ ) = meas(Dψ ).
Bearing in mind that if K ⊆ K ′, then W j (K ) ≤ W j (K ′) for j = 0, 1, 2 we find

area(D \Dφ) ≤ 4W1(D)φ + 4W2(D)φ2. (5.68)

Hence we find that

area(D \Dφ)

∫ 2π

0

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ dθ = O

(
1

E

)

uniformly for φ ∈ [0, inrad(D) by using (5.68) and (5.63). Therefore from (5.66) we
can write

∫

Dφ

dx

∫

∂ Bφ(x)

dy

2∏

i, j=0

r̃ E
i, j (x − y)qi, j

= area(D)

∫ 2π

0

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ dθ + O

(
1

E

)
.

The error term in (5.65) can be dealt with as before obtaining

∫

D\Dφ

dx

∫

∂ Bφ(x)∩D

dy

2∏

i, j=0

|̃r E
i, j (x − y)|qi, j

≤
∫

D\Dφ

dx

∫

∂ Bφ(x)

dy

2∏

i, j=0

|̃r E
i, j (x − y)|qi, j

= O

(
area(D \Dφ) · φ ·

1

Eφ2

)
= O

(
1

E

)
.
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Let us now consider φ ∈ [0, diam(D)), then

f (φ) = f (φ)1[0,inrad(D))(φ) + f (φ)1[inrad(D),diam(D)(φ)

= area(D)

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ

× 1[0,inrad(D))(φ) + O

(
1

E

)
+ f (φ)1[inrad(D),diam(D)(φ)

= area(D)

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ · 1[0,diam(D))(φ)

+

⎛
⎝ f (φ)− area(D)

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ

⎞
⎠

× 1[inrad(D),diam(D)(φ) + O

(
1

E

)
.

Now it suffices to note that
∣∣∣∣∣∣

f (φ)− area(D)

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j φ

∣∣∣∣∣∣
1[inrad(D),diam(D)(φ)

≤ 2 area(D)

∫ 2π

0
dθ

2∏

i, j=0

|̃r E
i, j ((φ cos θ, φ sin θ))|qi, j φ · 1[inrad(D),diam(D)(φ)

≤ 2 area(D)

∫ 2π

0
dθ

2∏

i, j=0

|̃r E
i, j ((φ cos θ, φ sin θ))|qi, j

φ2

inrad(D)
.

⊓⊔

In order to study the asymptotic behavior, as E → +∞, of (5.64), we need the
following uniform estimate for Bessel functions [Kra14, (7)]: for α ≥ −1/2

1
√

2π
μ ≤ sup

x≥0
x3/2

∣∣∣∣∣Jα(x)−
√

2

πx
cos(x − ωα)

∣∣∣∣∣ <
4

5
μ, (5.69)

where μ := |α2 − 1/4| and ωα := (2α + 1)π/4. From (5.69) we find

r E ((φ cos θ, φ sin θ)) =
1

π

√√
Eφ

cos(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE (θ)gE (φ)

+O

(
1

E3/4φ
√

φ

)

r̃ E
0,1((φ cos θ, φ sin θ)) =

√
2 cos θ

π

√√
Eφ

sin(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE

0,1(θ)gE
0,1(φ)

+O

(
1

E3/4φ
√

φ

)
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r̃ E
0,2((φ cos θ, φ sin θ)) =

√
2 sin θ

π

√√
Eφ

sin(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE

0,2(θ)gE
0,2(φ)

+O

(
1

E3/4φ
√

φ

)

r̃ E
1,1((φ cos θ, φ sin θ)) =

2 cos2 θ

π

√√
Eφ

cos(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE

1,1(θ)gE
1,1(φ)

+O

(
1

E3/4φ
√

φ

)

r̃ E
2,2((φ cos θ, φ sin θ)) =

2 sin2 θ

π

√√
Eφ

cos(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE

2,2(θ)gE
2,2(φ)

+O

(
1

E3/4φ
√

φ

)

r̃ E
1,2((φ cos θ, φ sin θ)) =

2 cos θ sin θ

π

√√
Eφ

cos(2π
√

Eφ −
π

4
)

︸ ︷︷ ︸
=:hE

1,2(θ)gE
1,2(φ)

+O

(
1

E3/4φ
√

φ

)
,

(5.70)

uniformly on (φ, θ), where the constant involved in the ‘O ′-notation does not depend
on E .

Proposition 5.2. Let qi, j ≥ 0 for i, j = 0, 1, 2 and
∑2

i, j=0 qi, j = 4. Then, as E → +∞,

∫

D

∫

D

2∏

i, j=0

r̃ E
i, j (x − y)qi, j dxdy

= area(D)

∫ 2π

0

2∏

i, j=0

h1
i, j (θ)qi, j dθ ·

1

E

∫ √
E ·diam(D)

1
ψ

×
2∏

i, j=0

g1
i, j (ψ)qi, j dψ + O

(
1

E

)
, (5.71)

where functions hi, j and gi, j are defined in (5.70).

Proof. Performing a change of variable for the first term in the r.h.s. of (5.64), we have

area(D)

∫ diam(D)

0
φ dφ

∫ 2π

0
dθ

2∏

i, j=0

r̃ E
i, j ((φ cos θ, φ sin θ))qi, j

=
area(D)

E

∫ √
Ediam(D)

0
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j
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=
area(D)

E

∫ 1

0
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j

+
area(D)

E

∫ √
Ediam(D)

1
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j . (5.72)

Since r1(ψ cos θ, ψ sin θ)→ 1, r̃1
0,i (ψ cos θ, ψ sin θ) = O(ψ) and r̃1

i,i (ψ cos θ, ψ sin θ)

→ 1, r̃1
1,2(ψ cos θ, ψ sin θ) = O(ψ2) as ψ → 0 uniformly on θ (i = 1, 2), then from

(5.72) we have

area(D)

E

∫ 1

0
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j

+
area(D)

E

∫ √
Ediam(D)

1
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j

= O

(
1

E

)
+

area(D)

E

∫ √
Ediam(D)

1
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j .

(5.73)

Substituting (5.70) into the last term in the r.h.s. of (5.73) we get

area(D)

E

∫ √
E ·diam(D)

1
ψ dψ

∫ 2π

0
dθ

2∏

i, j=0

r̃1
i, j ((ψ cos θ, ψ sin θ))qi, j

= area(D)

∫ 2π

0

2∏

i, j=0

h1
i, j (θ)qi, j dθ ·

1

E

∫ √
E ·diam(D)

1
ψ

2∏

i, j=0

g1
i, j (ψ)qi, j dψ

+ O

(
1

E

∫ √
E ·diam(D)

1

1

ψ2

)

= area(D)

∫ 2π

0

2∏

i, j=0

h1
i, j (θ)qi, j dθ ·

1

E

∫ √
E ·diam(D)

1

×
2∏

i, j=0

g1
i, j (ψ)qi, j dψ + O

(
1

E

)
. (5.74)

Substituting (5.74) into (5.73) we prove (5.71). ⊓⊔

6. Fourth Chaotic Components

6.1. Case of LE . From Equation (3.51) LE [4], i.e. the projection of LE onto the fourth
chaos, is
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LE [4] =
√

2π2 E

{
β4α0,0

∫

D

H4(BE (x))dx

+ β0α4,0

∫

D

(
H4(∂̃1 BE (x)) + H4(∂̃2 BE (x))

)
dx

+ β0α2,2

∫

D

H2(∂̃1 BE (x))H2(∂̃2 BE (x))dx

+β2α2,0

∫

D

H2(BE (x))
(
H2(∂̃1 BE (x)) + H2(∂̃2 BE (x))

)
dx

}

=
√

2π2 E

128

{
8
∫

D

H4(BE (x))dx −
∫

D

(
H4(∂̃1 BE (x)) + H4(∂̃2 BE (x))

)
dx

−2
∫

D

H2(∂̃1 BE (x))H2(∂̃2 BE (x))dx

−8
∫

D

H2(BE (x))
(
H2(∂̃1 BE (x)) + H2(∂̃2 BE (x))

)
dx

}

=
√

2π2 E

128

{
8a1,E − a2,E − a3,E − 2a4,E − 8a5,E − 8a6,E

}
, (6.75)

where we used (3.53) and (3.54), and we have set

a1,E :=
∫

D

H4(BE (x))dx, a2,E :=
∫

D

H4(̃∂1 BE (x))dx,

a3,E :=
∫

D

H4(̃∂2 BE (x))dx,

a4,E :=
∫

D

H2(̃∂1 BE (x))H2(̃∂2 BE (x))dx,

a5,E :=
∫

D

H2(BE (x))H2(̃∂1 BE (x))dx,

a6,E :=
∫

D

H2(BE (x))H2(̃∂2 BE (x))dx .

Proposition 6.1. The variance of the fourth chaotic component (6.75) of the nodal length

satisfies

Var(LE [4]) =
π2 E

8192
Var

(
8a1,E − a2,E − a3,E − 2a4,E − 8a5,E − 8a6,E

)

∼
area(D) log E

512π
,

(6.76)

where the last asymptotic equivalence holds as E → +∞.

In order to prove Proposition 6.1 we need to find the asymptotics, as E → +∞, of
Cov (ai,E , a j,E ) for any i, j ∈ {1, 2, 3, 4, 5, 6} (these results are collected in Lemma 8.5
in Appendix B for simplifying the discussion, and give immediately Proposition 6.1).

Recall first that whenever U, V, W, Z ∼ N (0, 1) are jointly Gaussian with E[U V ] =
E[W Z ] = 0:
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E[H2(U )H2(V )H2(W )H2(Z)] = 4E[U W ]2E[VZ ]2 + 4E[U Z ]2E[V W ]2

+16E[U W ]E[U Z ]E[V W ]E[V Z ]
E[H2(U )H2(V )H4(W )] = 24E[U W ]2E[V W ]2

E[U V W Z ] = E[U W ]E[V Z ] + E[U Z ]E[V W ]. (6.77)

Thanks to (6.77), for any i, j ∈ {1, 2, 3, 4, 5, 6}, Cov (ai,E , a j,E ) can be written as a
finite linear combination of terms of the same form as the l.h.s. of (5.71).

Recall now that

cos2 x =
1

2
+

1

2
cos(2x),

cos4 x =
3

8
+

1

8
cos(4x) +

1

2
cos(2x),

cos6 x =
5

16
+

1

32
cos(6x) +

3

16
cos(4x) +

15

32
cos(2x),

cos8 x =
35

128
+

1

128
(56 cos(2x) + 28 cos(4x)

+8 cos(6x) + cos(8x)). (6.78)

Taking advantage of (6.78), we can find the asymptotic behavior, as E → +∞, of the
first term in the r.h.s. of (5.71), thus obtaining the asymptotic behavior of Cov (ai,E , a j,E )

for any i, j ∈ {1, 2, 3, 4, 5, 6}.

6.2. Case of NE . Using the results of Sect. 3.2 we see that NE [4], the projection of NE

onto the fourth chaos, is given by

NE [4] = aE + âE + bE , (6.79)

where

aE =
π E

64

{
8a1,E − a2,E − 2a3,E − 8a4,E

}

with ai,E , i = 1, . . . , 4 defined in Sect. 6.1, where âE is defined as aE except that we
use B̂E instead of BE , and where

bE =
π E

8

{
2b1,E − b2,E − b3,E − b4,E − b5,E

−
1

4
b6,E −

1

4
b7,E +

5

4
b8,E +

5

4
b9,E − 3b10,E

}
,

with

b1,E =
∫

D

H2(BE (x))H2(B̂E (x))dx

b2,E =
∫

D

H2(BE (x))H2(̃∂1 B̂E (x)dx

b3,E =
∫

D

H2(BE (x))H2(̃∂2 B̂E (x))dx
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b4,E =
∫

D

H2(̃∂1 BE (x))H2(B̂E (x))dx

b5,E =
∫

D

H2(̃∂2 BE (x))H2(B̂E (x))dx

b6,E =
∫

D

H2(̃∂1 BE (x))H2(̃∂1 B̂E (x))dx

b7,E =
∫

D

H2(̃∂2 BE (x))H2(̃∂2 B̂E (x))dx

b8,E =
∫

D

H2(̃∂1 BE (x))H2(̃∂2 B̂E (x))dx

b9,E =
∫

D

H2(̃∂2 BE (x))H2(̃∂1 B̂E (x))dx

b10,E =
∫

D

∂̃1 BE (x )̃∂2 BE (x )̃∂1 B̂E (x )̃∂2 B̂E (x)dx .

Proposition 6.2. The variance of the fourth chaotic component NE [4] of NE is

Var(NE [4]) = 2Var(aE ) + Var(bE ) ∼
11area(D)

32π
E log E, (6.80)

where the last asymptotics holds as E → +∞.

In order to prove Proposition 6.2, observe first from Sect. 6.1 that aE =
√

2ELE [4]. As
a result, as E →∞, from Proposition 6.1

Var(̂aE ) = Var(aE ) ∼
area(D) log E

256π
. (6.81)

So, it remains to consider bE . From Lemma 8.11, which is collected in Appendix B to
simplify the discussion, we have the following.

Lemma 6.3.

Var(bE ) =
π2 E2

64
Var

(
2b1,E − b2,E − b3,E − b4,E − b5,E −

1

4
b6,E −

1

4
b7,E

+
5

4
b8,E +

5

4
b9,E − 3b10,E

)
∼

43area(D)

128π
E log E,

where the last asymptotics holds as E → +∞.

Proof of Proposition 6.2. From (6.81), observing that aE , âE and bE are indeed uncor-
related from Lemma 8.11 and Lemma 6.3, we obtain (6.80). ⊓⊔

7. Higher Order Chaotic Components

7.1. Preliminaries. Let us start with the following result, whose proof is elementary
(see Lemma 3.1) and hence omitted.



Nodal Statistics of Planar Random Waves 127

Lemma 7.1. The map (see (1.9))

R
2 ∋ x 	→ r E

(
x/
√

E
)

and its derivatives up to the order two are Lipschitz with a universal Lipschitz constant

c > 0, in particular independent of E.

Let us now consider a square Q of side length d = diam(D) which contains D, and
M := ⌈γ

√
E⌉, where γ will be chosen in a while. Let {Qi : 1, . . . , M2} be a partition of

Q in M2 squares of side length d/M . Let 0 < ε < 1/1000 be a fixed small number, and

now choose γ ≥ 4
√

2c·d
ε

, where c is the Lipschitz constant in Lemma 7.1. The following
is inspired by [ORW08,RW16].

Definition 7.2. The pair (Qi , Q j ) is singular if there exists (x, y) ∈ Qi × Q j , as well
as k, l ∈ {0, 1, 2}, such that (see (5.62))

|̃r E
k,l(x − y)| ≥ ε.

Lemma 7.3. If (Qi , Q j ) is singular, then ∃k, l ∈ {0, 1, 2} such that ∀(x, y) ∈ Qi × Q j

we have

|̃r E
k,l(x − y)| ≥

ε

2
.

Proof. Assume that (x, y) ∈ Qi×Q j is such that r E (x− y) ≥ ε. For (z, w) ∈ Qi×Q j

we have, from Lemma 7.1,

|r E (z − w)− r E (x − y)| =

∣∣∣∣∣r
E

(
(z − w)

√
E

√
E

)
− r E

(
(x − y)

√
E

√
E

)∣∣∣∣∣

≤ c ·
√

E |(z − x)− (w − y)| ≤ 2c ·
√

E ·
√

2 · d
M

.

It hence follows that (recall the definition of M)

r E (z − w) ≥ r(x − y)− 2c ·
√

E ·
√

2 · d
M

≥
ε

2
.

The proof for r E (x − y) ≤ −ε is similar, as well as that one in the case of singularities
w.r.t. derivatives. ⊓⊔

For each Qi consider D ∩ Qi and, if it is not empty, set Di := D ∩ Qi . The set
{Di } is hence a partition of D. Let D1, Q1 be the sets containing the origin (note that for
sufficiently large E , D1 and Q1 coincide). In view of Lemma 7.3 we give the following.

Definition 7.4. We say that (Di ,D j ) is singular if (Qi , Q j ) is singular.

The proof of the following result is analogous to the proof of Lemma 6.3 in [DNPR16],
and hence omitted.
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Lemma 7.5. For a fixed cell Di , the number Ni of j ∈ {1, 2, . . . , M2} such that (Di ,D j )

is singular is

Ni = O

(
E · max

k,l∈{0,1,2}

∫

D

∫

D

r̃ E
k,l(x − y)6 dxdy

)
,

where the constant involved in the ′O ′-notation depend nor on E neither on i .

The following lemma will be proven in Appendix C.

Lemma 7.6. ∀k, l ∈ {0, 1, 2}, as E → +∞,

∫

D

∫

D

r̃ E
k,l(x − y)6 dxdy = o

(
log E

E

)
.

Lemma 7.7. Let LE (D1) denote the nodal length of BE inside D1. Then

E

[
LE (D1)

2
]
= O

(
1

E

)
.

Proof. It follows from the proof of Lemma 3.3 that

E

[
LE (D1)

2
]

=
∫

D1

∫

D1

E[‖∇BE (x)‖‖∇BE (y)‖|BE (x) = BE (y) = 0]p(BE (x),BE (y))(0, 0) dxdy

≪
∫

D1

∫

D1

E
√

E‖x − y‖
dxdy = O

(
1

E

)
.

⊓⊔

7.2. Residual terms. For a random variable F in L2(P), let us denote by F |C≥6 the
projection of F onto C≥6 :=

⊕+∞
q=6 Cq .

Let us start investigating the case of the nodal length. We can write

Var
(
LE |C≥6

)
=

∑

(Di ,D j ) sing.

Cov
(
proj(LE (Di )|C≥6), proj(LE (D j )|C≥6)

)

+
∑

(Di ,D j ) non-sing.

Cov
(
proj(LE (Di )|C≥6), proj(LE (D j )|C≥6)

)

=: X (E) + Y (E).

We are going to separately investigate the two terms X (E) and Y (E).

Lemma 7.8. The contribution of non-singular pairs of cells is, as E → +∞,

Y (E) = o (log E) .
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Proof. Reasoning as in the second part of the proof of Lemma 2 in [PR17], we find

|Y (E)| ≤ 2π2 E
∑

q≥3

∑

i1+i2+i3=q

∑

j1+ j2+ j3=q

|β2i1α2i2,2i3 ||β2 j1α2 j2,2 j3 |

× 1i1+i2+i3= j1+ j2+ j3 |U (i1, i2, i3, j1, j2, j3)|, (7.82)

where U (i1, i2, i3, j1, j2, j3) (for i1 + i2 + i3 = q) is a sum of at most (2q)! terms of the
form

∑

(Di ,D j ) non-sing.

∫

Di

∫

D j

2q∏

u=1

r̃ E
lu ,ku

(x − y) dxdy, (7.83)

where lu, ku ∈ {0, 1, 2}. Since 2q ≥ 6, and we are working on non-singular pairs of
cells (see Definition 7.2), from (7.83) we can write

∣∣∣∣∣∣
∑

(Di ,D j ) non-sing.

∫

Di

∫

D j

2q∏

u=1

r̃ E
lu ,ku

(x − y) dxdy

∣∣∣∣∣∣

≤ ε2q−6
∫

D

∫

D

6∏

u=1

|̃r E
lu ,ku

(x − y)| dxdy. (7.84)

Substituting (7.84) into (7.82) we get

|Y (E)| ≤ 2π2 E
∑

q≥3

(2q)!
∑

i1+i2+i3=q

∑

j1+ j2+ j3=q

|β2i1α2i2,2i3 ||β2 j1α2 j2,2 j3 |

× εi1+i2+i3ε j1+ j2+ j3

∫
D

∫
D

∏6
u=1 |̃r E

lu ,ku
(x − y)| dxdy

ε6

≤ 2π2 E
∑

q≥3

(2q)!
∑

i1+i2+i3=q

∑

j1+ j2+ j3=q

|β2i1α2i2,2i3 ||β2 j1α2 j2,2 j3 |

× εi1+i2+i3ε j1+ j2+ j3
maxlu ,ku∈{0,1,2}

∫
D

∫
D

∏6
u=1 |̃r E

lu ,ku
(x − y)| dxdy

ε6

= 2π2 E · S ·
maxlu ,ku∈{0,1,2}

∫
D

∫
D

∏6
u=1 |̃r E

lu ,ku
(x − y)| dxdy

ε6
, (7.85)

where

S :=
∑

q≥3

(2q)!
∑

i1+i2+i3=q

∑

j1+ j2+ j3=q

|β2i1α2i2,2i3 ||β2 j1α2 j2,2 j3 |εi1+i2+i3ε j1+ j2+ j3 .

As E → +∞,

maxlu ,ku∈{0,1,2}
∫
D

∫
D

∏6
u=1 |̃r E

lu ,ku
(x − y)| dxdy

ε6 = o

(
log E

E

)
. (7.86)
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(The proof of (7.86) is analogous to the proof in Appendix C of Lemma 7.6 and hence
omitted.) Reasoning as in the proof of [DNPR16, Lemma 3.5] (or the proof of [PR17,
Lemma 2]) we have

S ≤
∑

q≥0

(2q)!
∑

i1+i2+i3=q

∑

j1+ j2+ j3=q

|β2i1α2i2,2i3 ||β2 j1α2 j2,2 j3 |εi1+i2+i3ε j1+ j2+ j3

≤
∑

i1,i2,i3

(2i1 + 2i2 + 2i3)! |β2i1α2i2,2i3 |2εi1+i2+i3 < +∞.
(7.87)

Substituting (7.87) and (7.86) into (7.85) we conclude the proof. ⊓⊔

Lemma 7.9. The contribution of singular pairs of cells is, as E → +∞,

X (E) = o (log E) .

Proof. Reasoning as in the first part of the proof of Lemma 2 in [PR17]

X (E)≪ E · N1 · E
[
LE (D1)

2
]
≪ E · max

k,l∈{0,1,2}

∫

D

∫

D

r̃ E
k,l(x − y)6 dxdy = o(log E),

where for the last step we used Lemma 7.5, (7.86) and Lemma 7.7. ⊓⊔

Let us now investigate the case of nodal points.

Lemma 7.10. As E → +∞,

Var
(
NE |C≥6

)
= o (E log E) .

Proof. Let us first write

Var
(
NE |C≥6

)
=

∑

(Di ,D j ) sing.

Cov
(
proj(NE (Di )|C≥6), proj(NE (D j )|C≥6)

)

+
∑

(Di ,D j ) non-sing.

Cov
(
proj(NE (Di )|C≥6), proj(NE (D j )|C≥6)

)

=: X (E) + Y (E). (7.88)

The contribution of the singular part corresponding to the term X (E) can be investigated
as in the proof of Lemma 3.4 in [DNPR16]:

∣∣∣∣∣∣
∑

(Di ,D j ) sing.

Cov
(
proj(NE (Di )|C≥6), proj(NE (D j )|C≥6)

)
∣∣∣∣∣∣

≪ E · N1 · (E[NE (D1)(NE (D1)− 1)] + E[NE (D1)]) ,

(7.89)

where N1 is defined in Lemma 7.5, and D1 still denotes the cell around the origin.
From Theorem 1.4, in particular (1.15), we have E[NE (D1)] = O(1), while from
standard Kac–Rice formula for the second factorial moment of NE restricted to D1 and
Lemma 8.20 it follows that

E[NE (D1)(NE (D1)− 1)] = O(1). (7.90)
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Substituting (7.90) into (7.89), from Lemma 7.5 we obtain, as E → +∞,

X (E) = o(E log E). (7.91)

The remaining term Y (E) which corresponds to the non-singular part can be investigated
as in the proof of Lemma 3.5 in [DNPR16] and the proof of Lemma 7.8 (the details ore
omitted for the sake of brevity): as E → +∞,

Y (E) = o(E log E). (7.92)

Substituting (7.92) and (7.91) into (7.88) we can conclude the proof. ⊓⊔

8. Proofs of the Main Results

8.1. Central limit theorems. In this section we implicitly represent BE and its first
derivatives in terms of a real Gaussian measure (cf. (3.43)), allowed by isometric property
between Hilbert spaces. We prove asymptotic Gaussianity, as E → +∞, for fourth order
components LE [4] and NE [4] in (6.75) and (6.79), respectively. According to [PT05]
and because we already checked the convergence of covariances (of summands in both
(6.75) and (6.79)) in Sect. 6 (and in Lemmas 8.5–8.19), it suffices to prove that each
of those summands satisfies a CLT. To this aim, we apply Fourth Moment Theorem
[NP12,NuPe05]; this technique requires to control the asymptotic behavior of non-
trivial contraction norms (see [NP12, §B.4]) of each term mentioned above. The latter
goal is achieved by using the key result contained in the following statement (see the
proof of Proposition 8.2).

Lemma 8.1. Fix integers 1 ≤ a1, . . . , a4 ≤ 2 and 1 ≤ b1, . . . , b4 ≤ 3 such that

b1 + . . . + b4 = 8. Then the quantity

E2

log2 E

∫

D4

∣∣Ja1(2π
√

E‖x1 − x2‖)
∣∣b1
∣∣Ja2(2π

√
E‖x2 − x3‖)

∣∣b2

×
∣∣Ja3(2π

√
E‖x3 − x4‖)

∣∣b3
∣∣Ja4(2π

√
E‖x4 − x1‖)

∣∣b4 dx1 . . . dx4

=: uE

goes to zero, as E →∞.

Proof. Performing a change of variables we can write

uE =
1

E2 log2 E

∫

(
√

ED)4

∣∣Ja1(2π‖x1 − x2‖)
∣∣b1
∣∣Ja2(2π‖x2 − x3‖)

∣∣b2

×
∣∣Ja3(2π‖x3 − x4‖)

∣∣b3
∣∣Ja4(2π‖x4 − x1‖)

∣∣b4 dx1 . . . dx4.

If, for all i > j we had that bi + b j > 4, then we would have 3(b1 + . . . + b4) > 24,
which contradicts that b1 + . . . + b4 = 8. By symmetry, we can thus assume without loss
of generality that b1 + b2 ≤ 4 and then use that xb1 yb2 ≤ xb1+b2 + yb1+b2 . This way, we
get that uE is less than

1

E2 log2 E

∫

(
√

ED)4

∣∣Ja1(2π‖x1 − x2‖)
∣∣b1+b2

∣∣Ja3(2π‖x3 − x4‖)
∣∣b3

×
∣∣Ja4(2π‖x4 − x1‖)

∣∣b4 dx1 . . . dx4 (8.93)
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plus a similar term. Now, let us apply the change of variables u = x1− x2, v = x3− x4,
w = x4 − x1 and z = x1 in (8.93). We obtain that (8.93) is less or equal than

Area(D)

E log2 E

∫
√

E(D−D)

∣∣Ja1(2π‖u‖)
∣∣b1+b2 du

×
∫
√

E(D−D)

∣∣Ja3(2π‖v‖)
∣∣b3 dv

∫
√

E(D−D)

∣∣Ja4(2π‖w‖)
∣∣b4 dw. (8.94)

But |Ja(2πr)| ≤ cst(a) r−
1
2 for any r > 0 and a ∈ {0, 1, 2} so that, for any b ∈

{1, 2, 3, 4},
∫
√

E(D−D)

|Ja(2π‖u‖)|bdu ≤ cst(a, b)

∫ √
E

r1− b
2 dr

≤ cst(a, b)

{
E1− b

4 if b = 1, 2, 3
log E if b = 4

. (8.95)

Substituting (8.95) in (8.94) and recalling that 1 ≤ b1 + b2 ≤ 4, 1 ≤ b3, b4 ≤ 3 and
b1 + . . . + b4 = 8, we obtain that (8.94) is less or equal than

area(D)

E log2 E
× E1− b1+b2

4 log E × E1− b3
4 × E1− b4

4 = O((log E)−1)→ 0, as E →∞.

⊓⊔
We can now prove the main result of this subsection.

Proposition 8.2. As E → +∞,

LE [4]√
Var(LE [4])

d→ Z ,

and

NE [4]√
Var(NE [4])

d→ Z ,

where Z is a standard Gaussian random variable.

Remark 8.3. The proof of Proposition 8.2 provided below follows a standard strategy,
that can be roughly described as follows (see [NP12, Chapter 5] for an exhaustive
discussion):

1. for every E > 0, represent the random variable

U (E) =
LE [4]√

Var(LE [4])
or

NE [4]√
Var(NE [4])

as a linear combination of unit variance multiple integral of order 4, that is, random
variables with the form

I4( fE ) =
∫

A

· · ·
∫

A

fE (x1, ..., x4)G(dx1) · · ·G(d4),

where G is a Gaussian measure over some measurable space (A,A ), controlled by
a σ -finite deterministic positive measure μ (see [NP12, p. 24]), and fE is a suitable
symmetric kernel;
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2. apply [NP12, Theorem 5.2.7] to deduce the asymptotic normality of each I4( fE )

by showing that the two non-trivial contractions (see [NP12, §B.4]) fE ⊗1 fE and
fE ⊗2 fE converge to zero in square norm;

3. recall the definitions

fE ⊗1 fE (x1, x2, x3, y1, y2, y3) :=
∫

A

fE (x1, x2, x3, z) fE (y1, y2, y3, z)μ(dz),

fE ⊗2 fE (x1, x2, y1, y2, ) :=
∫

A

∫

A

fE (x1, x2, v, z) fE (y1, y2, v, z)μ(dv)μ(dz);

4. use the main result in [PT05] to deduce the asymptotic normality of U (E) by using the
fact that all covariances between the multiple integrals at the previous item converge
to appropriate limits, as E →∞ (this corresponds to the content of Sect. 6 above).

Proof of Proposition 8.2. Recall the expressions for fourth order chaotic components in
(6.75) and (6.79). According to [PT05] and because we already checked the convergence
of covariances in Sect. 6, it remains to check that the two non-trivial contractions (see

the discussion above) associated with the fourth order Wiener-Itô integrals
√

E
log E

ai,E

(1 ≤ i ≤ 6) and
√

E
log E

b j,E (1 ≤ j ≤ 10) in (6.75) and (6.79) go to zero as E →∞.

Due to the high number of terms that are involved, we only show how to check this on
a particular term that is representative of the difficulty. All the other calculations follow
exactly the same line, relying on Lemma 8.1. Let us consider

√
E

log E
b2,E = I4 (α̃E ) ,

with

αE (u1, . . . , u4) :=

√
E

log E

∫

D

fE (x, u1) fE (x, u2)gE (x, u3)gE (x, u4)dx .

Here fE (x, ·) and gE (x, ·) are chosen so that BE (x) = I1( fE (x, ·)) and ∂̃1 B̂E (x) =
I1(gE (x, ·)) respectively, where Ik indicates a multiple integral of order k with respect
to an appropriate real-valued Gaussian measure—see Remark 3.4. The symmetrization
α̃E of αE is given by

α̃E (u1, . . . , u4) :=
1

6

√
E

log E

∫

D

{
fE (x, u1) fE (x, u2)gE (x, u3)gE (x, u4)

+ fE (x, u1)gE (x, u2) fE (x, u3)gE (x, u4)

+ fE (x, u1)gE (x, u2)gE (x, u3) fE (x, u4)

+gE (x, u1) fE (x, u2) fE (x, u3)gE (x, u4)

+gE (x, u1) fE (x, u2)gE (x, u3) fE (x, u4)

+gE (x, u1)gE (x, u2) fE (x, u3) fE (x, u4)
}

dx .

Let us now consider, for instance, the first contraction α̃E ⊗1 α̃E . It is given by a sum of
36 terms. They are all of the same order. For instance, it contains the term
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(u1, u2, u3, v1, v2, v3) 	→
E

36 log E

∫

D2
fE (x1, u1) fE (x1, u2)

× gE (x1, u3) fE (x2, v1)gE (x2, v2)gE (x2, v3)E[̃∂1 B̂E (x1)BE (x2)]dx1dx2. (8.96)

Then, ‖α̃E ⊗1 α̃E‖2 is given by a sum of 362 terms, which all behave the same way. One
of them (corresponding to (8.96) above) is given by

E2

362 log2 E

∫

D4
E[BE (x1)BE (x3)]2E[̃∂1 B̂E (x1)̃∂1 B̂E (x3)]E[BE (x2)BE (x4)]

× E[̃∂1 B̂E (x2)̃∂1 B̂E (x4)]2E[̃∂1 B̂E (x1)BE (x2)]
× E[̃∂1 B̂E (x3)BE (x4)]dx1 . . . dx4. (8.97)

Using Lemma 3.1, we obtain that the absolute value of (8.97) is less or equal than (up
to universal constants whose exact value are immaterial)

E2

log2 E

∫

D4

(∣∣J0(2π
√

E‖x1 − x3‖)
∣∣3 +

∣∣J2(2π
√

E‖x1 − x3‖)
∣∣3
)

×
(∣∣J0(2π

√
E‖x2 − x4‖)

∣∣3 +
∣∣J2(2π

√
E‖x2 − x4‖)

∣∣3
)

×
∣∣J1(2π

√
E‖x1 − x2‖)

∣∣×
∣∣J1(2π

√
E‖x3 − x4‖)

∣∣dx1 . . . dx4

and thus goes to zero as E →∞ thanks to Lemma 8.1. ⊓⊔

8.2. Proofs of Theorems 1.1 and 1.4. In this subsection we prove our main results.

Proof of Theorem 1.1. Consider the chaotic expansion for the nodal length LE in (3.51).
For the 0-th chaotic component we have

LE [0] = E[LE ] = area(D)
√

2π2 Eβ0α0,0 = area(D)
π
√

2

√
E,

where we used (3.53) and (3.54). By (4.57), (6.76) and Lemmas 7.9, 7.8 we deduce
that, as E → +∞,

Var(LE ) ∼ Var(LE [4])

and

LE − E[LE ]√
Var(LE

=
LE [4]√

Var(LE [4]
+ oP(1),

where oP(1) denotes a sequence converging to zero in probability. Proposition 8.2 allows
to conclude the proof. ⊓⊔

Proof of Theorem 1.4. The proof of this theorem is analogous to the proof of Theo-
rem 1.1. Consider the chaotic expansion for the nodal length NE in (3.52). For the 0-th
chaotic component we have

NE [0] = E[NE ] = area(D) · 2π2 E · β2
0γ0,0,0,0 = area(D)π E,
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where we used (3.53) and (3.55). By (4.61), (6.80) and Lemma 7.10 we deduce that, as
E → +∞,

Var(NE ) ∼ Var(NE [4])

and

NE − E[NE ]√
Var(NE

=
NE [4]√

Var(NE [4]
+ oP(1),

where oP(1) denotes a sequence converging to zero in probability. Proposition 8.2 allows
to conclude the proof. ⊓⊔
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Appendix A

Proof of Lemma 3.1. It is a standard fact that for any m1, m2, n1, n2 ∈ N≥0

E

[
∂m1+m2

∂x
m1
1 ∂x

m2
2

BE (x)
∂n1+n2

∂y
n1
1 ∂y

n2
2

BE (y)

]
=

∂m1+m2+n1+n2

∂x
m1
1 ∂y

n1
1 ∂x

m2
2 ∂y

n2
2

E[BE (x)BE (y)]

=
∂m1+m2+n1+n2

∂x
m1
1 ∂y

n1
1 ∂x

m2
2 ∂y

n2
2

r E (x − y), (8.98)

where r E is defined as in (1.9). Let us first prove that for x ∈ R
2, the covariance matrix

of the centered Gaussian vector (BE (x),∇BE (x)) is

(
1 0
0 2π2 E I2

)
, (8.99)

where I2 denotes the 2×2-identity matrix. Recall from (3.44) that the following integral
representation holds:

J0(2π
√

E‖x‖) =
1

2π

∫

S1
ei2π

√
E〈θ,x〉 dθ, x ∈ R

2, (8.100)

where dθ stands for the uniform measure on the unit circle. By (8.98) and (8.100), (8.99)
immediately follows. Note now that, from (8.98), in particular we have

E[BE (x)∂1 BE (y)] = −i
√

E

∫

S1
θ1e2π

√
Ei〈θ,x−y〉 dθ; (8.101)
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in order to find an explicit expression for (8.101), let us first compute
∫

S1 θ1eir〈θ,u〉 dθ

for r ∈ [0, +∞) and any u ∈ S
1. Let us denote by rτ the rotation of angle τ (the latter

is the angle between θ and u), then we have
∫

S1
θ1 eir〈θ,u〉dθ =

∫ π

−π

(rτ (u))1 eir cos τ dτ

=
∫ π

−π

(cos τu1 − sin τu2) eir cos τ dτ

= −
∫ π

−π

(sin τu1 + cos τu2) e−ir sin τ dτ

= −
∫ π

−π

(sin τu1 + cos τu2)
(

cos(r sin τ)− i sin(r sin τ)
)
dτ

= −u2

∫ π

−π

cos τ cos(r sin τ)dτ + iu1

∫ π

−π

sin τ sin(r sin τ)dτ

= −πu2
(
J1(r) + J−1(r)

)
+ iπu1

(
J1(r)− J−1(r)

)

= 2iπu1 J1(r),

where we used integral representation formulas for α-order Bessel functions of the first
kind Jα [AS64, §9.1], so that, whenever x �= y,

E[BE (x)∂1 BE (y)] = 2π
√

E
x1 − y1

‖x − y‖
J1(2π

√
E‖x − y‖). (8.102)

Analogously, we get

E[BE (x)∂2 BE (y)] = 2π
√

E
x2 − y2

‖x − y‖
J1(2π

√
E‖x − y‖); (8.103)

(8.102) and (8.103) prove (3.32). For k, l ∈ {1, 2} from (8.98) and (3.44) we have

E[∂k BE (x)∂l BE (y)] = 2π E

∫

S1
zk zl e2iπ〈z,

√
E(x−y)〉dz.

Let us first compute
∫

S1 z2
1 eir〈z,u〉dz for (r, u) ∈ [0,∞) × S

1: we have, again with rτ

denoting the rotation of angle τ ,
∫

S1
z2

1 eir〈z,u〉dz =
∫ π

−π

(rτ (u))2
1 eir cos τ dτ

=
∫ π

−π

(cos τu1 − sin τu2)
2 eir cos τ dτ =

∫ π

−π

(sin τu1 + cos τu2)
2 e−ir sin τ dτ

=
∫ π

−π

(
sin2 τ u2

1 + cos2 τ u2
2 + 2 cos τ sin τu1u2

)(
cos(r sin τ)− i sin(r sin τ)

)
dτ

=
∫ π

−π

(
sin2 τ u2

1 + cos2 τ u2
2

)
cos(r sin τ)dτ − i u1u2

∫ π

−π

sin(2τ) sin(r sin τ)dτ

=
1

2

∫ π

−π

(
1 + (1− 2u2

1) cos(2τ)
)

cos(r sin τ)dτ

= π J0(r) +
π

2
(1− 2u2

1)(J2(r) + J−2(r)) = π J0(r) + (1− 2u2
1)π J2(r).



Nodal Statistics of Planar Random Waves 137

Similarly

∫

S1
z2

2 eir〈z,u〉dz = π J0(r) + (1− 2u2
2)π J2(r) = π J0(r) + (2u2

1 − 1)π J2(r),

whereas
∫

S1
z1z2 eir〈z,u〉dz =

∫ π

−π

(rτ (u))1(rτ (u))2 eir cos τ dτ

=
∫ π

−π

(cos τu1 − sin τu2)(sin τu1 + cos τu2) eir cos τ dτ

= −
∫ π

−π

(sin τu1 + cos τu2)(cos τu1 − sin τu2) e−ir sin τ dτ

=
∫ π

−π

(1

2
sin(2τ) (1− 2u2

1)− cos(2τ)u1u2
)(

cos(r sin τ)− i sin(r sin τ)
)
dτ

= −u1u2

∫ π

−π

cos(2τ) cos(r sin τ)dτ

= −u1u2π(J2(r) + J−2(r)) = −2u1u2π J2(r).

Thus, when x �= y,

E[∂1 BE (x)∂1 BE (y)] = 2π2 E
(

J0(2π
√

E‖x − y‖)

+

(
1− 2

(x1 − y1)
2

‖x − y‖2

)
J2(2π

√
E‖x − y‖)

)

E[∂2 BE (x)∂2 BE (y)] = 2π2 E
(

J0(2π
√

E‖x − y‖)

+

(
1− 2

(x2 − y2)
2

‖x − y‖2

)
J2(2π

√
E‖x − y‖)

)

E[∂1 BE (x)∂2 BE (y)] = −4π2 E
(x1 − y1)(x2 − y2)

‖x − y‖2 J2(2π
√

E‖x − y‖),

which are (3.33) and (3.34). ⊓⊔

The following result concerns some (known) properties of the nodal sets of BE and
its complex version.

Lemma 8.4. 1. The value 0 is not singular for BE a.s., i.e.

P(∃x : BE (x) = 0,∇BE (x) = 0) = 0;

2. the nodal set B−1
E (0) is a smooth one dimensional submanifold of R

2 a.s.;

3. B−1
E (0) ∩ ∂D consists of a finite number of points a.s.;

4. the nodal set (BC

E )−1(0) = B−1
E (0) ∩ B̂−1

E (0) consists of isolated points a.s.;

5. the number of nodal points (BC

E )−1(0) in D is a.s. finite and none of them lies on ∂ D

a.s.



138 I. Nourdin, G. Peccati, M. Rossi

Proof. 1. Proposition 6.12 in [AW] ensures that 0 is not a singular value a.s. Indeed,
the hypothesis of Proposition 6.12 are satisfied, the random variables BE (x), ∂1 BE (x),
∂2 BE (x) being independent for fixed x ∈ R

2 (Point 2. in Lemma 3.1).
2. It follows from Point 1 by Sard’s lemma.
3. Let γ be a unit speed parameterization of the boundary ∂D. The restriction of BE to

∂D is the one-dimensional Gaussian process t 	→ BE (γ (t)) whose first time-derivative
is

BE (γ (t))′ = 〈∇BE (γ (t)), γ̇ (t)〉. (8.104)

From (8.104) and the arguments used in the proof of Point 1. We deduce that

P(∃t : BE (γ (t)) = BE (γ (t))′ = 0) = 0,

i.e. the value 0 is not singular a.s. for BE (γ ), hence the zeros of BE on ∂D are isolated
points a.s. (by a standard application of the inverse mapping theorem), and their number
is finite (see [AT, p.269]).

4. Let us consider the two-dimensional Gaussian field on the plane (BE , B̂E ), where
we recall B̂E to be an independent copy of BE . In view of Point 1., the value (0, 0) is
not singular for (BE , B̂E ), hence a standard application of the inverse mapping theorem
entails that the common zeros of BE and B̂E are isolated points.

5. The value 0 being not singular for (BE , B̂E ), from [AT, p.269] the number of nodal
points in D is finite a.s. We can apply Lemma 11.2.10 in [AT] to the two-dimensional
random field (BE , B̂E ) restricted to the boundary ∂D to get that (BC

E )−1(0) ∩ ∂D = ∅
a.s. ⊓⊔
Proof of Lemma 3.2. We can rewrite (3.37) by means of the co-area formula [AW,
Proposition 6.13] as

L
ε
E =

1

2ε

∫ ε

−ε

length(B−1
E (s) ∩D) ds, (8.105)

where B−1
E (s) = {x ∈ R

2 : BE (x) = s}. Theorem 3 in [APP16] ensures that the map
s 	→ length(B−1

E (s)) is a.s. continuous at 0, so that by the Foundamental Theorem of
Calculus we have

lim
ε→0

L
ε
E = lim

ε→0

1

2ε

∫ ε

−ε

length(B−1
E (s) ∩D) ds = LE , a.s.

In order to prove (3.40) we apply Theorem 11.2.3 in [AT], the hypothesis being satisfied.
⊓⊔

Proof of Lemma 3.3. We have LE ∈ L2(P), the nodal length of BE being a.s. bounded
in D [DF88]. The collection of random variables {Lε

E }ε>0 is in L2(P) since

L
ε
E ≤

1

2ε

∫

D

‖∇BE (x)‖ dx,

hence

E[(Lε
E )2] ≤

1

4ε2

∫

(D)2
E[‖∇BE (x)‖ · ‖∇BE (y)‖] dxdy

≤ area(D)
1

4ε2

∫

D

E[‖∇BE (x)‖2] dx = (area(D))2 π2 E

ε2 < +∞.
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In view of Lemma 3.2, in order to prove that Lε
E converges to the nodal length in L2(P)

it suffices to show that

lim
ε→0

E[(Lε
E )2] = E[L2

E ] (8.106)

(see also [Ros15, Lemma 7.2.1]). By Fatou’s lemma and (8.105) we get

E[L2
E ] ≤ lim inf

ε→0
E[(Lε

E )2] ≤ lim sup
ε→0

E

[(
1

2ε

∫ ε

−ε

LE (s) ds

)2
]

.

By Jensen’s inequality

E[L2
E ] ≤ lim sup

ε→0
E

[(
1

2ε

∫ ε

−ε

LE (s) ds

)2
]
≤ lim sup

ε→0

1

2ε

∫ ε

−ε

E
[
LE (s)2] ds = E

[
L

2
E

]
,

the last step following from the continuity of the map s 	→ E[LE (s)2] at 0 which will
be proven just below. Standard Kac–Rice formula [AW, Theorem 6.9] allows to write

E[LE (s)2]

=
∫

(D)2
E[‖∇BE (x)‖‖∇BE (y)‖|BE (x) = s, BE (y) = s]p(BE (x),BE (y))(s, s) dxdy,

(8.107)

where p(BE (x),BE (y)) denotes the density of the random vector (BE (x), BE (y)). It suffices
to show that, for δ > 0, there exists a measurable function g = g(x, y) integrable on
(D)2 such that

E[‖∇BE (x)‖‖∇BE (y)‖|BE (x) = s, BE (y) = s]p(BE (x),BE (y))(s, s)

≤ g(x, y), ∀s ∈ [−δ, δ].

It is immediate that

p(BE (x),BE (y))(s, s) ≤ p(BE (x),BE (y))(0, 0) =
1

2π

√
1− J0(2π

√
E‖x − y‖)2

.

From Lemma 3.1, the vector ∇BE (x) conditioned to BE (x) = BE (y) = s is Gaussian
with mean

s
∇xr E (x − y)

1 + r E (x − y)

and covariance matrix

�E (x − y)

:= 2π2 E I2 −
1

1− r E (x − y)2

×
(

(∂x1r E (x − y))2 ∂x1r E (x − y)∂x2r E (x − y)

∂x1r E (x − y)∂x2r E (x − y) (∂x2r E (x − y))2

)
. (8.108)
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Jensen’s inequality yields

E[‖∇BE (x)‖‖∇BE (y)‖|BE (x) = s, BE (y) = s]
≤ E[‖∇BE (x)‖2|BE (x) = s, BE (y) = s]
= Var(∂1 BE (x)|BE (x) = s, BE (y) = s)

+ Var(∂2 BE (x)|BE (x) = s, BE (y) = s)

+ E[∂1 BE (x)|BE (x) = s, BE (y) = s]2 + E[∂2 BE (x)|BE (x) = s, BE (y) = s]2

= 4π2 E −
4π2 E J1(2π

√
E‖x − y‖)2

1− J0(2π
√

E‖x − y‖)2

+ s2 4π2 E J1(2π
√

E‖x − y‖)2

(1 + J0(2π
√

E‖x − y‖))2

≤ 2π2 E + s2 4π2 E J1(2π
√

E‖x − y‖)2

(1 + J0(2π
√

E‖x − y‖))2

≤ 2π2 E + δ2 4π2 E J1(2π
√

E‖x − y‖)2

(1 + J0(2π
√

E‖x − y‖))2
. (8.109)

If we set

g(x, y) :=
1

2π

√
1− J0(2π

√
E‖x − y‖)2

(
2π2 E + δ2 4π2 E J1(2π

√
E‖x − y‖)2

(1 + J0(2π
√

E‖x − y‖))2

)
,

then the proof of (3.41) is concluded.
The proof of (3.42) relies on the same argument as that of (3.41). Let us first show

that NE ∈ L2(P). Theorem 6.3 in [AW] ensures that the second factorial moment of
NE has the following integral representation

E[NE (NE − 1)]

=
∫

(D)2
E

[
|JacBE ,B̂E

(x)||JacBE ,B̂E
(y)|

∣∣∣

BE (x) = 0, BE (y) = 0, B̂E (x) = 0, B̂E (y) = 0
]

× p(BE (x),BE (y))(0, 0) dxdy. (8.110)

Reasoning as in the proof of [DNPR16, Lemma 3.4], we have

E
[
|JacBE ,B̂E

(x)||JacBE ,B̂E
(y)||BE (x) = 0, BE (y) = 0,

B̂E (x) = 0, B̂E (y) = 0
]

≪
det(�E (x − y))

1− J0(2π
√

E‖x − y‖)2
, (8.111)

where, for any s ∈ R, �E (x − y) denotes the covariance matrix of ∇BE (x) conditioned
to BE (x) = BE (y) = s. Lemma 8.20 ensures that the double integral over D of the rhs
of (8.111) is finite.
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Let us now prove that the map s 	→ E[NE (s)2] is continuous at 0. Note first that we
can write

E[NE (s)2] = E[NE (s)(NE (s)− 1)] + E[NE (s)]. (8.112)

To evaluate the mean, we use Kac–Rice formula [AW, Thereom 6.2] and Lemma 3.1

E[NE (s)] =
∫

D

E
[
|JacBE ,B̂E

(x)|
]

p(BE (x),B̂E (x))(s, s) dx . (8.113)

Since E
[
|JacBE ,B̂E

(x)|
]
= 2π2 E and p(BE (x),B̂E (x))(s, s) ≤ 1

2π
for every s, then s 	→

E[NE (s)] is continuous.
Let us now deal with the second factorial moment, again using Kac–Rice formula

[AW, Theorem 6.3].

E[NE (s)(NE (s)− 1)]

=
∫

(D)2
E

[
|JacBE ,B̂E

(x)||JacBE ,B̂E
(y)||BE (x) = B̂E (x) = BE (y) = B̂E (y) = s

]

×p(BE (x),B̂E (x),BE (y),B̂E (y))(s, s, s, s) dxdy. (8.114)

Jensen’s inequality yields

E

[
|Jac(x)||Jac(y)||BE (x) = B̂E (x) = BE (y) = B̂E (y) = s

]

≤ E

[
|Jac(x)|2|BE (x) = B̂E (x) = BE (y) = B̂E (y) = s

]

= 2
(
E[X2]E[Y 2] − E[XY ]2

)
, (8.115)

where (X, Y ) is a random vector with the same distribution as ∇BE (x)|BE (x) =
BE (y) = s. Hence some straightforward computations lead to

E[X2]E[Y 2] − E[XY ]2 = 2π2 E

(
2π2 E −

(∂x1r E (x − y))2 + (∂x2r E (x − y))2

1− r E (x − y)2

)

+ 2π2 Es2 (∂x1r E (x − y))2 + (∂x2r E (x − y))2

(1 + r E (x − y))2

≤ 2π2 E

(
2π2 E −

(∂x1r E (x − y))2 + (∂x2r E (x − y))2

1− r E (x − y)2

)

+ 2π2 Eδ2 (∂x1r E (x − y))2 + (∂x2r E (x − y))2

(1 + r E (x − y))2 , (8.116)

for s ∈ [−δ, δ], which is integrable on D ×D. ⊓⊔

Appendix B

Lemma 8.5. As E → +∞, we have

(i) Var(a1,E ) = 24
∫

D

∫

D

r E (x − y)4dxdy ∼ 9
area(D)

π3 ×
log E

E
,
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Cov(a1,E , a2,E ) = 24
∫

D

∫

D

r̃ E
0,1(x − y)4 dxdy ∼

27

2

area(D)

π3 ×
log E

E
,

Cov(a1,E , a3,E ) = 24
∫

D

∫

D

r̃ E
0,2(x − y)4 dxdy ∼

27

2

area(D)

π3 ×
log E

E
,

Cov(a1,E , a3,E ) = 24
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
9

2

area(D)

π3 ×
log E

E
,

Cov(a1,E , a5,E ) = 24
∫

D

∫

D

r E (x − y)2̃r E
0,1(x − y)2 dxdy ∼ 3

area(D)

π3
×

log E

E
,

Cov(a1,E , a6,E ) = 24
∫

D

∫

D

r E (x − y)2̃r E
0,2(x − y)2 dxdy ∼ 3

area(D)

π3 ×
log E

E
.

Proof. Let us prove (i). From Proposition 5.2,

Var(a1,E ) = 24
∫

D

∫

D

r E (x − y)4 dxdy

= 24area(D)
2π

E

∫ √
E ·diam(D)

1

× ψ

(
1

π
√

ψ
cos

(
2πψ −

π

4

))4

dψ + O

(
1

E

)

= 24area(D)
2

π3 E

∫ √
E ·diam(D)

1

1

ψ

× cos4
(

2πψ −
π

4

)
dψ + O

(
1

E

)
. (8.117)

Thanks to (6.78) we have that, as E → +∞,

24area(D)
2

π3 E

∫ √
E ·diam(D)

1

1

ψ
cos4

(
2πψ −

π

4

)
dψ

∼ 24area(D)
2

π3 E
·

3

8
· log

√
E

=
9

π3 E
area(D) log E,

that allows to conclude. The proof for the remaining terms is analogous to the proof of
(i), and hence omitted. ⊓⊔

The proofs of the following lemmas follow from an application of Proposition 5.2,
completely analogous to the one appearing in the proof of Lemma 8.5.

Lemma 8.6. As E → +∞, we have

Var(a2,E ) = 24
∫

D

∫

D

r̃ E
1,1(x − y)4 dxdy ∼

315

8

area(D)

π3 ×
log E

E
,

Cov(a2,E , a3,E ) = 24
∫

D

∫

D

r̃ E
1,2(x − y)4 dxdy ∼

27

8

area(D)

π3 ×
log E

E
,

Cov(a2,E , a4,E ) = 24
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
45

8

area(D)

π3 ×
log E

E
,
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Cov(a2,E , a5,E ) = 24
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,1(x − y)2 dxdy ∼
15

2

area(D)

π3 ×
log E

E
,

Cov(a2,E , a6,E ) = 24
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
3

2

area(D)

π3 ×
log E

E
.

Lemma 8.7. As E → +∞, we have

Var(a3,E ) = 24
∫

D

∫

D

r̃ E
2,2(x − y)4 dxdy ∼

315

8

area(D)

π3 ×
log E

E
,

Cov(a3,E , a4,E ) = 24
∫

D

∫

D

r̃ E
2,2(x − y)2̃r E

1,2(x − y)2dxdy

∼
45

8

area(D)

π3 ×
log E

E
,

Cov(a3,E , a5,E ) = 24
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,2(x − y)2dxdy

∼
3

2

area(D)

π3 ×
log E

E
,

Cov(a3,E , a6,E ) = 24
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

2,2(x − y)2dxdy

∼
15

2

area(D)

π3 ×
log E

E
.

Lemma 8.8. As E → +∞, we have

Var(a4,E ) = 4
∫

D

∫

D

(̃r E
1,1(x − y)2̃r E

2,2(x − y)2 + r̃ E
1,2(x − y)4

+ 4̃r E
1,1(x − y)̃r E

2,2(x − y)̃r E
1,2(x − y)2)dxdy

∼
27

8

area(D)

π3 ×
log E

E
,

Cov(a4,E , a5,E ) = 4
∫

D

∫

D

(̃r E
0,1(x − y)2̃r E

1,2(x − y)2 + r̃ E
0,2(x − y)2̃r E

1,1(x − y)2

+ 4̃r E
0,1(x − y)̃r E

0,2(x − y)̃r E
1,1(x − y)̃r E

1,2(x − y))dxdy

∼
3

2

area(D)

π3 ×
log E

E
,

Cov(a4,E , a6,E ) = 4
∫

D

∫

D

(̃r E
0,1(x − y)2̃r E

2,2(x − y)2 + r̃ E
0,2(x − y)2̃r E

1,2(x − y)2

+ 4̃r E
0,1(x − y)̃r E

0,2(x − y)̃r E
2,2(x − y)̃r E

1,2(x − y))dxdy

∼
3

2

area(D)

π3 ×
log E

E
.
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Lemma 8.9. As E → +∞, we have

Var(a5,E ) = 4
∫

D

∫

D

(
r E (x − y)2̃r E

1,1(x − y)2 + r̃ E
0,1(x − y)4

− 4r E (x − y)̃r E
1,1(x − y)̃r E

0,1(x − y)2) dxdy ∼
3

2

area(D)

π3 ×
log E

E
,

Cov(a5,E , a6,E ) = 4
∫

D

∫

D

(r E (x − y)2̃r E
2,2(x − y)2 + r̃ E

0,2(x − y)4

− 4r E (x − y)̃r E
0,2(x − y)2̃r E

2,2(x − y)) dxdy ∼
1

2

area(D)

π3 ×
log E

E
.

Lemma 8.10. As E → +∞, we have

Var(a6,E ) = 4
∫

D

∫

D

(
r E (x − y)2̃r E

2,2(x − y)2 + r̃ E
0,2(x − y)4

− 4r E (x − y)̃r E
2,2(x − y)̃r E

0,2(x − y)2) dxdy ∼
3

2

area(D)

π3 ×
log E

E
.

Lemma 8.11. As E → +∞, we have

Var(b1,E ) = 4
∫

D

∫

D

r E (x − y)4(u) dxdy ∼
3

8

area(D)

π3 ×
log E

E
,

Cov(b1,E , b2,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
0,1(x − y)2 dxdy ∼

1

8

area(D)

π3 ×
log E

E
,

Cov(b1,E , b3,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
0,2(x − y)2 dxdy ∼

1

8

area(D)

π3 ×
log E

E
,

Cov(b1,E , b4,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
0,1(x − y)2 dxdy ∼

1

8

area(D)

π3 ×
log E

E

Cov(b1,E , b5,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
0,2(x − y)2 dxdy ∼

1

8

area(D)

π3 ×
log E

E
,

Cov(b1,E , b6,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)4 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b1,E , b7,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)4 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b1,E , b8,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
3

16

area(D)

π3 ×
log E

E
,

Cov(b1,E , b9,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
3

16

area(D)

π3 ×
log E

E
,

Cov(b1,E , b10,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
3

16

area(D)

π3 ×
log E

E
.

Lemma 8.12. As E → +∞, we have

Var(b2,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
1,1(x − y)2 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b2,E , b3,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
1,2(x − y)2 dxdy ∼

3

16

area(D)

π3 ×
log E

E
,
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Cov(b2,E , b4,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)4 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b2,E , b5,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
3

16

area(D)

π3 ×
log E

E
,

Cov(b2,E , b6,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,1(x − y)2 dxdy ∼
5

16

area(D)

π3 ×
log E

E
,

Cov(b2,E , b7,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3
×

log E

E
,

Cov(b2,E , b8,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
.

Cov(b2,E , b9,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,1(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b2,E , b10,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)̃r E

0,2(x − y)̃r E
1,1(x − y)̃r E

1,2(x − y) dxdy

∼
1

16

area(D)

π3 ×
log E

E
.

Lemma 8.13. As E → +∞, we have

Var(b3,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
2,2(x − y)2 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b4,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

0,2(x − y)2 dxdy ∼
3

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b5,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)4 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b6,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b7,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

2,2(x − y)2 dxdy ∼
5

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b8,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

2,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b9,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b3,E , b10,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)̃r E

0,2(x − y)̃r E
2,2(x − y)̃r E

1,2(x − y) dxdy

∼
1

16

area(D)

π3 ×
log E

E
.

Lemma 8.14. As E → +∞, we have

Var(b4,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
1,1(x − y)2 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b4,E , b5,E ) = 4
∫

D

∫

D

r E (x − y)2̃r E
1,2(x − y)2) dxdy ∼

3

16

area(D)

π3 ×
log E

E
,

Cov(b4,E , b6,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,1(x − y)2 dxdy ∼
5

16

area(D)

π3 ×
log E

E
,
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Cov(b4,E , b7,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b4,E , b8,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,1(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b4,E , b9,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b4,E , b10,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)̃r E

0,2(x − y)̃r E
1,1(x − y)̃r E

1,2(x − y) dxdy

∼
1

16

area(D)

π3 ×
log E

E
.

Lemma 8.15. As E → +∞, we have

Var(b5,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)4 dxdy ∼

9

16

area(D)

π3 ×
log E

E
,

Cov(b5,E , b6,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b5,E , b7,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

2,2(x − y)2 dxdy ∼
5

16

area(D)

π3
×

log E

E
,

Cov(b5,E , b8,E ) = 4
∫

D

∫

D

r̃ E
0,2(x − y)2̃r E

1,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b5,E , b9,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)2̃r E

2,2(x − y)2 dxdy ∼
1

16

area(D)

π3 ×
log E

E
,

Cov(b5,E , b10,E ) = 4
∫

D

∫

D

r̃ E
0,1(x − y)̃r E

0,2(x − y)̃r E
2,2(x − y)̃r E

1,2(x − y) dxdy

∼
1

16

area(D)

π3 ×
log E

E
.

Lemma 8.16. As E → +∞, we have

Var(b6,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)4 dxdy ∼

105

64

area(D)

π3 ×
log E

E
,

Cov(b6,E , b7,E ) = 4
∫

D

∫

D

r̃ E
1,2(x − y)4 dxdy ∼

9

64

area(D)

π3 ×
log E

E
,

Cov(b6,E , b8,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
15

64

area(D)

π3 ×
log E

E
,

Cov(b6,E , b9,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

1,2(x − y)2) dxdy ∼
15

64

area(D)

π3 ×
log E

E

Cov(b6,E , b10,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

1,2(x − y)2 dxdy ∼
15

64

area(D)

π3
×

log E

E
.
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Lemma 8.17. As E → +∞, we have

Var(b7,E ) = 4
∫

D

∫

D

r̃ E
2,2(x − y)4dxdy

∼
105

64

area(D)

π3 ×
log E

E
,

Cov(b7,E , b8,E ) = 4
∫

D

∫

D

r̃ E
2,2(x − y)2̃r E

1,2(x − y)2dxdy

∼
15

64

area(D)

π3 ×
log E

E
,

Cov(b7,E , b9,E ) = 4
∫

D

∫

D

r̃ E
2,2(x − y)2̃r E

1,2(x − y)2dxdy

∼
15

64

area(D)

π3 ×
log E

E
,

Cov(b7,E , b10,E ) = 4
∫

D

∫

D

r̃ E
2,2(x − y)2̃r E

1,2(x − y)2dxdy

∼
15

64

area(D)

π3 ×
log E

E
.

Lemma 8.18. As E → +∞, we have

Var(b8,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

2,2(x − y)2dxdy

∼
9

64

area(D)

π3 ×
log E

E
,

Cov(b8,E , b9,E ) = 4
∫

D

∫

D

r̃ E
1,2(x − y)4dxdy

∼
9

64

area(D)

π3 ×
log E

E
,

Cov(b8,E , b10,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)̃r E

2,2(x − y)̃r E
1,2(x − y)2dxdy

∼
9

64

area(D)

π3 ×
log E

E
.

Lemma 8.19. As E → +∞, we have

Var(b9,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)2̃r E

2,2(x − y)2dxdy

∼
9

64

area(D)

π3 ×
log E

E
,

Cov(b9,E , b10,E ) = 4
∫

D

∫

D

r̃ E
1,1(x − y)̃r E

2,2(x − y)̃r E
1,2(x − y)2dxdy

∼
9

64

area(D)

π3 ×
log E

E
,
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Var(b9,E ) =
∫

D

∫

D

(̃r E
1,1(x − y)2̃r E

2,2(x − y)2

+ 2̃r E
1,1(x − y)̃r E

2,2(x − y)̃r E
1,2(x − y)2

+ r̃ E
1,2(x − y)4) dxdy ∼

9

64

area(D)

π3 ×
log E

E
.

Appendix C

Proof of Lemma 7.6. Reasoning as in the proof of Proposition 5.1, we have
∫

D

∫

D

r̃ E
k,l(x − y)6 dxdy = area(D)

∫ diam(D)

0
dφ φ

∫ 2π

0
r̃ E

k,l(φ cos θ, φ sin θ)6 dθ

+ O

(∫ diam(D)

0
dφ φ2

∫ 2π

0
r̃ E

k,l(φ cos θ, φ sin θ)6 dθ

)
.

(8.118)

Performing the change of variable θ = ψ/
√

E in the first term on the r.h.s. of (8.118)
we obtain

area(D)

∫ diam(D)

0
dφ φ

∫ 2π

0
r̃ E

k,l(φ cos θ, φ sin θ)6 dθ

= area(D)
1

E

∫ √
E ·diam(D)

0
dψ ψ

∫ 2π

0
r̃1

k,l(ψ cos θ, ψ sin θ)6 dθ. (8.119)

Since r1(ψ cos θ, ψ sin θ)→ 1, r̃1
0,i (ψ cos θ, ψ sin θ) = O(ψ) and r̃1

i,i (ψ cos θ, ψ sin θ)

→ 1, r̃1
1,2(ψ cos θ, ψ sin θ) = O(ψ2) as ψ → 0 uniformly on θ (i = 1, 2), then we can

rewrite (8.119) as

area(D)
1

E

∫ √
E ·diam(D)

0
dψ ψ

∫ 2π

0
r̃1

k,l(ψ cos θ, ψ sin θ)6 dθ

= O

(
1

E

)
+ area(D)

1

E

∫ √
E ·diam(D)

1
dψ ψ

∫ 2π

0
r̃1

k,l(ψ cos θ, ψ sin θ)6 dθ.

(8.120)

Now using (5.63) for the second term on the r.h.s. of (8.120), as E → +∞, we have

1

E

∫ √
E ·diam(D)

1
dψ ψ

∫ 2π

0
r̃1

k,l(ψ cos θ, ψ sin θ)6 dθ

≪
1

E

∫ √
E ·diam(D)

1

dψ

ψ2 ∼
1

E
. (8.121)

For the error term on the r.h.s. of (8.118) an analogous argument yields, as E → +∞,
∫ diam(D)

0
dφ φ2

∫ 2π

0
r̃ E

k,l(φ cos θ, φ sin θ)6 dθ ≍
log E

E
√

E
. (8.122)

Thanks to (8.121) and (8.122), (8.118) concludes the proof. ⊓⊔
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From (8.108), the covariance matrix of∇BE (x) conditioned to BE (x) = BE (0) = 0
is

�E (x) = 2π2 E I2 −
∇r E (x)t ∇r E (x)

1− r E (x)2 ,

and its determinant is

det(�E (x)) = 2π2 E

(
2π2 E −

‖∇r E (x)‖2

1− r E (x)2

)
.

Lemma 8.20. As x → 0, it holds

�E (x) :=
|det(�E (x))|
1− r E (x)2 =

1

8
(2π2 E)2 + E3 O(‖x‖2),

where the constant involved in the “O"-notation does not depend on E.

Proof. The Taylor development of r E centered at 0 is

r E (x) = 1− 2π2 E
‖x‖2

2
+

(2π2 E)2‖x‖4

16
+ E3 O(‖x‖6), (8.123)

where, from now until the end of the proof, the constants involved in the “O"-notation
do not depend on E . From (8.123) it is immediate that

1− r E (x)2 = 2π2 E ‖x‖2 −
3

8
(2π2 E)2‖x‖4 + E3 O(‖x‖6). (8.124)

Analogously, we find that the Taylor development for ‖∇r E (x)‖2 centered at 0 is

‖∇r E (x)‖2 = 2π2 E

(
2π2 E‖x‖2 + (2π2 E)2 ‖x‖4

2
+ E3 O(‖x‖6)

)
. (8.125)

From (8.124) and (8.125) we get

‖∇r E (x)‖2

1− r E (x)2 =
2π2 E

(
2π2 E‖x‖2 + (2π2 E)2 ‖x‖4

2 + E3 O(‖x‖6)
)

2π2 E ‖x‖2 − 3
8 (2π2 E)2‖x‖4 + E3 O(‖x‖6)

=
(2π2 E)2‖x‖2

(
1 + 2π2 E

‖x‖2

2 + E2 O(‖x‖4)
)

2π2 E ‖x‖2
(
1− 2π2 E 3

8‖x‖2 + E2 O(‖x‖4)
)

= 2π2 E

(
1 + 2π2 E

‖x‖2

2
+ E2 O(‖x‖4)

)

×
(

1− 2π2 E
3

8
‖x‖2 + E2 O(‖x‖4)

)

= 2π2 E

(
1− 2π2 E

1

8
‖x‖2 + E2 O(‖x‖4)

)
. (8.126)
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From (8.126) and using again (8.124) we can write

�E (x) =

∣∣∣2π2 E
(

2π2 E − ‖∇r E (x)‖2

1−r E (x)2

)∣∣∣
1− kE (x)2

=
(2π2 E)3 1

8‖x‖2 + E4 O(‖x‖4)

2π2 E ‖x‖2 + E2 O(‖x‖4)

=
1

8
(2π2 E)2

(
1 + E O(‖x‖2)

)

which conclude the proof. ⊓⊔
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