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Abstract

We present a Tabu search algorithm for the vehicle routing problem under capacity
and distance restrictions. The neighborhood search is based on compound moves
generated by a node-ejection chain process. During the course of the algorithm,
two types of neighborhood structures are used and crossing infeasible solutions is
allowed. Then, a parallel version of the algorithm which exploits the moves’ char-
acteristics is described. Parallel processing is used to explore the solution space
more extensively and to accelerate the search process. Tests are carried out on a
SUNSparc workstation and the parallel algorithm uses a network of four of these
machines. Numerical tests indicate that the sequential version of the algorithm is
highly competitive with the best existing heuristics and that the parallel algorithm
outperforms all of these algorithms.
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1 Introduction

The Vehicle Routing Problem (VRP) is a generic name given to a whole class
of problems in which a set of routes for a fleet of vehicles based at one or
several depots must be determined for a number of geographically dispersed
cities or customers, subject to side constraints. The VRP arises naturally as a
central problem in the fields of transportation, distribution and logistics (see
Laporte and Osman [29] for a bibliography on vehicle routing problems).
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The classical VRP is defined as follows. Let G = (V,A) be a graph where
V = {v0, v1, · · · , vn} is a vertex set, and A = {(vi, vj) | vi, vj ∈ V ; i �= j} is an
arc set. Consider a depot to be located at v0 and let V ′ = V \{v0} be used as the
set of n cities. A matrix C of non-negative costs or distances cij is defined on A.
When cij = cji for all (vi, vj) ∈ A the problem is said to be symmetric and it is
then common to replace A with the edge set E = {(vi, vj) | vi, vj ∈ V ; i < j}.

We assume that m identical vehicles each with capacity Q are used and their
number is a decision variable. Vehicles make collections or deliveries but not
both. With each vertex vi in V ′ is associated a quantity qi of some goods
to be delivered by a vehicle. The VRP thus consists of determining a set of
m vehicle routes of minimal total cost, starting and ending at a depot, such
that every vertex in V ′ is visited exactly once by one vehicle and the total
quantity assigned to each route does not exceed the capacity of the vehicle
which services the route.

We will also consider an extension of this problem in which a service time δi

is required by a vehicle to unload the quantity qi at vi. It is required that the
total duration of any vehicle route (travel plus service times) may not surpass
a given bound D, so, in this context the cost cij is taken to be the travel times
between the cities.

The VRP defined above is NP-hard and the aim of this paper is to describe a
new tabu search algorithm for the general VRP defined above. Tabu search is
a metaheuristic proposed by Glover [13]. The method is generically presented
in Glover [14,15] and recent developments may be found in Glover [18,19]. For
a comprehensive description of the method and applications see Glover and
Laguna [22].

A number of algorithms based on this approach have already been applied to
the VRP, each one using different types of moves leading from one solution
to another (see, Osman [32], Taillard [39], Gendreau, Hertz and Laporte [11],
Rochat and Taillard [37], Rego [35], Xu and Kelly [40]).

An important contribution of our method is the use of embedded neighborhood
structures based on the idea of ejection chains. Embedded neighborhoods may
be conceived as the outcome of compressing a sequence of moves into a single
compound move, and ejection chain procedures give a useful way to build
these neighborhoods. For a detailed explanation of ejection chain methods we
refer to Glover [20,16,17] and Rego [33]. A number of methods based on this
prespective have recently been proposed for various combinatorial problems
(see Laguna et al. [28], Dorndorf and Pesch [8], Hubscher and Glover [27],
Rego [34,35], Glover, Pesch and Osman [23], Cao and Glover [2]).

The remainder of this paper is organized as follows. In section 2, we briefly
summarize the ideas underlying ejection chains and we describe their appli-

2



cation to the VRP. Section 3 describes the sequential version of the proposed
algorithm and a parallel approach is described in section 4. Then, the compu-
tational results and a comparative analysis of the algorithms are presented in
section 5. Finally, section 6 contains a summary and concluding remarks.

2 New neighborhood structures for vehicle routes

A fundamental aspect in the performance of all tabu search application is
to identify an effective neighborhood for defining moves from one solution
to another. Recent tabu search applications to the VRP attempt to increase
their performance using compound moves. The basic moves consist of a simple
insertion or exchange of vertices/arcs on the graph of the problem and com-
pound moves are usually obtained by combinations of these moves. Osman
[32] uses a combination of insertion moves and exchange moves, vertex shifts
from one route to another and exchanges vertices between routes based on
2-opt process. Another type of compound move has been used by Gendreau et
al. [11]. Here, a compound move consists of a simple insertion followed by only
one 3-opt exchange or 4-opt exchange. Rochat and Taillard [37] combine par-
tial route constructions with node insertions to obtain complete neighboring
solutions. Finally, Rego [35] considers a subpath ejection chain method based
on the identification of a reference structure to generate compound moves. In
this paper we will use another type of ejection chain process based on the
ejection of nodes.

2.1 Node ejection chains for the VRP

In this section, we describe how a solution can be modified to generate another
neighboring solution using a node-ejection chain method which can be equally
applied to symmetric and asymmetric problems.

Ejection chain procedures have been defined by Glover [20,17] for the TSP and
provide an interesting way to generate neighborhoods of compound moves.
Here we give an illustration of how these procedures can also be used for the
VRP.

We assume that a partial graph S = (V,X) associated with a solution is given.
To maintain Glover’s perspective, a node ejection chain may be viewed as a
series of levels, each consisting of three vertices which appear consecutively in
a route.

We will use the following notation. For any vertex v, in a given orientation
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of a route, let v be its predecessor and v̄ be its successor. Consequently, we
denote by (v, v, v̄) a triplet representing two consecutive arcs (v, v) and (v, v̄).

An ejection chain is defined on a subgraph L = (W,T ) of S where T = {(v0, v0,
v̄0), · · · , (vk, vk, v̄k), · · · , (vl, vl, v̄l)} is a set of triplets representing l + 1 levels
of an ejection chain, which we denote by

T =
l⋃

k=0

{
(vk, vk, vk)

}
.

An ejection chain can be completely determined by a succession of central
vertices, v0, · · · , vk, · · · , vl, which we designate by the set Γ l ; v0 is the top vertex

and vl is the bottom vertex. Consequently, we denote by Γ l and Γ
l
respectively

the set of predecessors and successors of vertices in Γ l . Also we denote by W l

the set of vertices in all triplets of the ejection chain (i.e. W l = Γ l ∪ Γ l ∪ Γ
l
).

An ejection results by moving a vertex to a new position occupied by another
vertex, disconnecting this vertex from its position.

Let k be a level of the chain, in an ejection chain each vertex vk ejects the
vertex vk+1 ending with the ejection of the vl.

As result, an ejection chain process of l + 1 levels is a replacement of T by

T ′ =
l⋃

k=1

{
(vk, vk−1, v̄k)

}
.

transforming S into a disconnected graph. In other words, triplets (vk, vk, v̄k)
(k = 0, 1, · · · , l) are successively replaced by triplets (vk, vk−1, v̄k), (k =
1, 2, · · · , l). Because vl vertex is not attached to any route, this transformation
does not represent a complete transition from the current route set to a new
route set.

The complete transition may be obtained by two connectivity processes:

(a) Type I (connectivity process) which consists of creating the set

T
′
I =

{
(v0, vl, v̄0)

}
;

(b) Type II (connectivity process) which consists of choosing a set
T̄

′
= {(vl

p, v
l
q)}

in L = (W = V \ Γ l , T = X \ T ), and replacing it by another set

T
′
II =

{
(v0, v̄0), (vl

p, v
l, vl

q)
}
.

That means, we get a new neighboring solution S ′
I = S ∪ T

′ ∪ T
′
I \ T in the

first case and S ′
II = S ∪ T

′ ∪ T
′
II \ (T ∪ T ′) in the second case. Illustrative

diagrams of these concepts are given in Figure 1 for three levels of an ejection
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chain. Dotted lines represent the set T in the left-hand diagram and the sets
T and T ′ in the right-hand diagram. Similarly, black lines designate the sets
T

′
and T

′
I in the left-hand diagram and the sets T

′
and T

′
II in the right-hand

diagram.

t−1 t t+1

b−1 b b+1

t−1 t t+1

b−1 b b+1

i−1 i i+1 i−1 i i+1

p q

Fig. 1. Two types of neighborhood structures

These characterizations of neighborhood structures make it possible to de-
fine compound moves to generate neighboring solutions. These moves can be
divided into two types of processes:

(i) multi-node exchange process which is represented by an ejection
chain ended with the Type I connectivity process. Figure 2 shows an ex-
ample of 5 levels of an ejection chain in which T = {(0, 1, 13), (0, 5, 6), (6,
4, 3), (3, 2, 0), (0, 14, 0)}, T

′
= {(0, 1, 6), (6, 5, 3), (3, 4, 0), (0, 2, 0)}, and

T
′
I = {(0, 14, 13)}. Note that this move maintains a constant number of

vertices in each route.
(ii) multi-node insert process which is represented by an ejection chain

ended with the Type II connectivity process. Figure 3 shows an example of
4 levels of an ejection chain in which T = {(0, 14, 0), (0, 1, 13), (0, 5, 6), (6,
4, 3)}, T

′
= {(0, 14, 13), (0, 1, 6), (6, 5, 3)}, T ′ = {(3, 2)} and T

′
II = {(0, 0),

(3, 4, 2)}. Note that in this move an interesting phenomenon occurs when
a vertex 14 is chosen to be the top vertex of the chain. This means that
the number of vehicle routes will be reduced. Also, the inverse may occur
(i.e., a new vehicle route can be created) if the bottom vertex is inserted
into a degenerated route. In this case vp and vq are the same vertex, the
depot.

2.2 Evaluating the cost of a move

In order to evaluate a compound move efficiently, we require that the original
costs (associated with the ejection values) are not modified during the ejection
chain construction. To do that, it is still necessary to define a condition to
prevent an arc from being inserted more than once.
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Fig. 2. Multi-node exchange process

This condition is imposed by a so-called legitimacy restriction stipulating that
each vertex in Γ l occurs only once in W l. Moreover, any predecessor of a vertex
in Γ l may reappear as a successor of a vertex in Γ l and vice versa, without
violating this restriction. However, an exception is made for arcs linked to the
depot which can reappear several times but only connected to vertices in Γ l ,
that is, vertex v0 cannot be ejected. We say that an ejection chain satisfying
this legitimacy condition has a legitimate structure.

To evaluate the change in solution cost created by a compound move at a
given level k of an ejection chain, two types of trial moves associated with
each type of connectivity process are used.

Type I (trial move) Inserting the current bottom vertex between the last
predecessor and successor of v0, creating arcs (v0, vk) and (vk, v̄0).

Type II (trial move) Creating the arc (v0, v̄0) and choosing two vertices
vp, vq = v̄p /∈ Γ k . Then, inserting vk between vp and vq, adding arcs (vk

p , v
k),

(vk, vk
q ) and deleting the arc (vp, vq).
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Fig. 3. Multi-node insert process

For convenience, we will denote the cijs values by c(vi, vj) and consequently,
let us define the cost of a triplet as the cost sum of its arcs, c(vi, vj, vk) =
c(vi, vj) + c(vj, vk).

Thus, an ejection chain process of l levels may be recursively evaluated as
follows:

ek =




min
vi,vj∈V ′{c(vk, vk−1, v̄k) − c(vk−1, vk−1, v̄k−1)

−c(vk, vk, v̄k) + λ c(vk−1, v̄k−1)} k = 1

ek−1 + min
vi,vj �∈W k−1

{c(vk, vk−1, v̄k) − c(vk, vk, v̄k)} 1 < k ≤ l

where λ = 1 if Type II trial move is used and λ = 0 otherwise.
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Denote by trial value, the cost change obtained by a trial move, which may
be determined as:

∆k =




ek + c(v0, vk, v̄0) if Type I trial move,

ek + min
vp∈V ′\Γk

{c(vp, v
k, v̄p) − c(vp, v̄p)} if Type II trial move,

where ∆k is the change in the Objective function value before and after to
make k levels of an ejection chain ending with Type I or Type II trial moves.
The solution associated with the move is called trial solution

3 The tabu search implementation

We present a description of the tabuchain algorithm. We first describe the
neighborhood search procedure used in the algorithm. Here, the main feature
is the use of embedded neighborhood structures built by an ejection chain
strategy.

3.1 The neighborhood search procedure

By definition, a compound move obtained by an ejection chain construction
results in successively simple neighborhoods exploited at each level of the
chain.

For any vertex v in V ′, we define its h-neighborhood Nh(v) as the set of the h
vertices closest to v, and consequently we define its legitimate neighborhood as
the subset of these vertices that do not violate the legitimacy restriction. Thus,
for a given level k of an ejection chain, we define the legitimate neighborhood
of a vertex vk as the set:

LNh(vk) = {vj | v ∈ Nh(vk), v �∈ W k−1}

Note that the set LNh(vk) becomes more restricted when k increases, because
the requirements of legitimacy reduce the number of choices at each level.

The chain is initialized by the choice of the v0 vertex and the associated initial
v1 vertex.
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The chain grows by a bottom extension move. This move selects a vertex
v ∈ LN(v1) to become the new bottom vertex, by disconnecting v from its
current position and relocating v1 to occupy this position.

The general neighborhood search procedure can now be described as follows.

Procedure NodeEjectionChain (current solution: S, number of levels: l)

• Initialize legitimate neighborhood for all vertices and set k = 0.
• Determine a set of two vertices {vk, vk+1} = arg{ek+1} which denote respec-

tively the top vertex and the initial bottom vertex of the ejection chain.
• Set Γk = {vk}.
• While LNh(vk+1) �= ∅ and k < l do
· Set k = k + 1 and set Γ k = Γ k−1 ∪ {vk}.
· Inspect the cost changes by calculating the corresponding trial value ∆k.
· Update the best level k∗ so far that yielded the minimum trial value. If

using the type II trial move then record the associated vk
p vertex.

· Determine a new vertex v ∈ LNh(vk) by computing ek, and set vk+1 = v.
· Update the legitimate neighborhoods for every vertex vi ∈ W k∗

.
• Set l = k∗ and update the current solution according to Type I or Type II

trial moves.

Complexity

The complexity of this procedure is determined as follows. To start an ejection
chain, O(n2) choices of v0 and v1 would be considered. For the remaining levels
of the chain the new bottom vertex is selected in O(n) time. It is clear that the
maximum length of an ejection chain is limited by the legitimacy restriction
and depends on the number of times that vertex v0 (depot) appears in the
chain. Let r be the number of routes in a given solution, then the maximum
number of levels of a legitimate ejection chain is bounded by O((n + r)/2).

Considering first the Type I trial move, the bottom vertex is relocated in
O(1) time. Then it is possible to perform one iteration of the algorithm in
O(n2 + (n + 1)n+r

2
).

For the evaluation of the Type II trial move we have to choose the best in-
sertion among n + r vertices. In this case, the move may be evaluated in
O(n2 + (2n + r)n+r

2
).

From a practical standpoint, this effort can be notably reduced because it is
not usually necessary to perform all possible levels of the chain to obtain the
best move; therefore it may be limited by a parameter which we denote by
lmax.
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The value of r depends on the type of VRP, but naturally may be defined as:

r =

⌈∑
i∈V \{vo} qi

Q

⌉
+ ν

where ν is an integer value. If cities are uniformly distributed, ν is a very small
number and as generally, for a given type of a problem r is much smaller than
n and at most equal to n, then the overall complexity of both moves is O(n2).

3.2 The TABUCHAIN algorithm

The main algorithm can now be described. It starts with an initial solution
given by the parallel version of the Clarke and Wright [5] procedure. This
procedure starts with vehicle routes containing the depot and one other vertex.
Satisfying the demands of cities i and j, the cost of a solution is reduced.
The cost saving of visiting cities i and j using one vehicle can be obtained
by ξij = ci0 + c0j − cij (see Figure 4). At each step, two routes are merged
according to the largest saving ξij without violating the problem restrictions,
until no further merges are possible.

0 0

ji i j

Fig. 4. Cost savings of merging two routes

The idea of using a route construction heuristic has already been used by a
number of authors (see, Osman [32], Gendreau et al. [11]) and the aim is to
rapidly generate an initial feasible solution. We consider the classic parallel
version of the savings procedure with a time complexity of O(n2 log n).

tabuchain makes use of two procedures, One-Search and Two-Search, which
use respectively two types of compound moves defined in section 2.1 to improve
successively the pre-existing routes. Initially, the goal of tabuchain is to
converge quickly to a good solution as well as creating a knowledge base to
be used in further phases of the algorithm. In the framework of tabu search,
this is possible using attribute based memory structures. We will now describe
how the algorithm creates and uses these memory structures.
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Short term memory

Short term memory functions are specified by tabu restrictions and aspiration
criteria. To avoid cycling, some attributes of a move are stored in a tabu list
rather than the complete visited solutions. For the management of the tabu
list, it is necessary to define two criteria:

(i) a forbidden criterion that defines which attributes to put into the tabu list,
(ii) a cancellation criterion which defines when an attribute leaves the tabu list.

Osman [32], Taillard [39] and Gendreau et al. [11] have considered attributes
(i, r) which indicate that a given vertex vi was shifted out of the route r.
The tabu list is made up of these attributes which forbid a vertex from being
inserted in a route. This means that exchange moves are forbidden if at least
one attribute is in the tabu list.

In our application, we use attributes (i, j) specifying transition moves (ejec-
tions) from one level to another within an ejection chain. In theoretical terms,
the inverse ejection (j, i) (for all levels up to k∗) as well as the ejections of the
ejection chain itself should be forbidden. This is because some combinations
of ejections would lead to cycling. However, several tests have shown this type
of tabu restriction to be very restrictive. In practice, to avoid cycling it is
sufficient to forbid the ejection of the first level of the chain and the inverse
ejection of the last level.

Usually, the cancelation criterion consists of freeing attributes from the tabu
list at the end of a certain number θ of iterations, where θ is known by the tabu
list size or tabu tenure. The θ value depends on the problem characteristics
and practical experiments indicate that changing this value randomly (see,
e.g., Taillard [39]) or systematically (see Chakrapani et al. [3]) during the
search is often more favorable than having a fixed value. Osman [32] uses a
more sophisticated process based on regression analyses that exploits some
problem characteristics.

In our application, each transition move receives a tabu tenure value chosen
randomly between θmin and θmax.

Nevertheless, if at a given time an ejection move is declared to be tabu, this
status can be disregarded if the corresponding trial move improves the best
solution found so far, which defines the classical aspiration function used in
Tabu search:

C(S) + ∆k < C(S∗).
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Intermediate and long term memory

Intermediate and long term memory are applied as follows. If a better solution
is obtained as a result of two successive iterations and the solution on the next
iteration is not an improvement, then a number of complete ejection chains
are generated from the best current solution in order to intensify the search
locally. (The chains are started with the least cost ejection moves.) This has
the advantage of avoiding the loss of information throughout the search.

Since the algorithm chooses the highest evaluation move in each iteration, then
the frequency of a move may establish a measure of its attractiveness. More
significantly, this measure may be expressed in terms of its most intrinsic
attributes, such as the node links modified by the move. Clearly it varies
according to the current search state and therefore may be interpreted as a
dynamic measure of influence (see Glover and Laguna [21]).

For a given set of arcs A
′ ⊂ A, let us denote F (A

′
) as being the sum of the

frequencies of every arc of A
′
. Consequently, in our application the influence

of a move m of level k on the quality of the solution depends on the type of
move and is given as:

I(mk) =




F (T
′
) − F (T ) if multi-node exchange move,

F ((v0, v̄0)) + F (T
′
) − F (T ) if multi-node insert move.

Indeed, we use frequency based memory specified by these influence measures
in order to perturb the Objective function in different phases of the search.
Thus, these influence values introduce incentives for incorporating “good at-
tributes” in an intensification phase and penalties in a diversification phase.

Incentive and penalty functions are as follows:

C(S ′
k) = C(S) + ∆k ± ln (1 + I(mk)) (+ diversification, − intensification).

Here, the logarithmic function is used to soften the weight of frequencies en-
suring that it does not excessively perturb the evaluation of other candidate
moves.

The diversification strategy is implemented by periodically activating the
penalty function in order to force the search to explore new regions. This
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strategy has the advantage of making continuous use of the historical infor-
mation. Alternatively, another diversification strategy could be used which
would stop the search and restart it from an unexplored solution that con-
tains, for example, a number of arcs that have not yet been modified.

Strategic oscillation

In a general context, Glover [14,15] proposes the use of an interplay between in-
tensification and diversification called strategic oscillation. In our application,
In our application, we basically use two different forms of strategic oscillation.
In the first approach, we apply the version of this strategy that induces the
exploration of new regions by crossing certain boundaries between feasibility
and infeasibility. This idea is also used by Gendreau, Hertz and Laporte [11]
in the VRP context.

We define a move to be infeasible if it causes a violation of the capacity or max-
imal length constraint. Our strategic oscillation differs from that proposed by
Gendreau et al. because no transition to an infeasible trial solution is accepted.
However, feasible trial solutions can be obtained by combining feasible and in-
feasible ejection moves in the ejection chain construction: this avoids the use of
penalty factors to guide the search toward a feasible solution. This procedure
is based on the fact that infeasible ejection moves, when properly controlled,
can often lead to feasible compound moves at further levels in the chain.

More formally, consider two vehicle routes Rs and Rw such that vk ∈ Rs and
vk+1 ∈ Rw, and let Qs, Qw denote respectively the total demand associated
with the set of vertices in routes s and w. Suppose now a situation where at
level k of the ejection chain an ejection move replaces vertex vk+1 by vertex
vk, hence becoming vk ∈ Rw. As a result, it might happen that after inserting
vertex vk into Rw, the vehicle capacity of route Rw is exceeded, i.e. Qw + qk −
qk+1 > Q. However, it is possible that in a next level of the chain another
vertex of route Rw is replaced by a ”lower demand” vertex from other route,
so that the (negative) difference between the quantities associated with these
vertices restores the feasibility of this route (relative to the vehicle capacity).
We should note that for levels of the ejection where the associated ejection
move leads to an infeasible vehicle route, no trial move is evaluated since
infeasible trial solutions are not allowed, as already mentioned.

In order to avoid complete chains where all intermediate trial moves are in-
feasible, only feasible trial solutions are accepted in the first level of the chain
(i.e., both ejection and trial moves must be feasible). At the end of the ejection
chain the feasible highest evaluated trial solution is chosen to make a move.

Another strategic oscillation approach is related to the use of ”switching of
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moves” (Rego [33]) provided by type I and type II ejection chain neighbor-
hoods. Here, if a given type of move produces an improved solution, then the
other one starts with the best encountered solution. Otherwise, the last mod-
ified solution is given to the next move and the search goes on in a continuous
fashion. This strategy of changing to an alternative neighborhood structure
when a local optimum is found is a form of strategic oscillation approach
based on critical event memory. See Glover and Laguna [22] for other and
more advanced uses of critical event memory.

Post-optimization procedure

A post-optimization procedure consists of a local reoptimization of every route
by solving the corresponding TSP. We require this to be a very quick proce-
dure, and therefore we call One-Search procedure for each individual route.

The post-optimization procedure is called in the following cases:
(a) when a solution provides less than 2% above the best solution found so
far;
(b) when an improvement is not found in nmax/2 iterations.

It is clear that when the post-optimization procedure is called in successive
iterations, only different routes that contain vertices v in Γ k∗

must be reopti-
mized.

Figure 5 shows an example where two routes must be reoptimized. In this
example, two independent ejection chains are applied to each of the routes.
For route 1, T = {(0, 1, 5), (2, 3, 0), (5, 6, 4)}, T

′
= {(2, 1, 0), (5, 3, 4)}, T

′
I =

{(0, 6, 5)} and for route 2, T = {(9, 8, 11), (7, 10, 9)}, T
′

= {(7, 8, 9)} and
T

′
I = {(9, 10, 11)}.

The algorithm calibration

We now comment on some algorithmic aspects of tabuchain.

With respect to the search process, both One-Search and Two-Search proce-
dures are used in all the phases of the algorithm. However, Two-Search is the
most important procedure of tabuchain and carries out more than 70% of
the search.

Sensitivity analysis were performed on all the test problems in order to cal-
ibrate the algorithm parameters. We did not find the algorithm to be very
sensitive to these values with respect to the solution quality. Nevertheless they
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Fig. 5. Multi-node exchange in independent routes

have a significant influence on the computation times, because if the parame-
ters are not adequate for the type of move and the problem characteristics an
extended number of iterations would be required to reach equivalent solutions.
After extensive experimentation we have verified that the best results are al-
ways obtained with parameters which lead to the greatest improvement on
the initial solution in 2n iterations. When several possible solutions have less
than 1% difference between them, priority is given to the one whose configu-
ration differs most from that of the initial solution, which can be empirically
evaluated by the total number of ejection chain levels performed so far. This
fact may be due to the significant difference between the clusters given by the
Clarke and Wright algorithm and those in the optimal solution.

Regarding the tabu list size, the most appropriate values depend on the search
strategy and have been obtained as follows. For a normal and intensification
phase the best θmin and θmax bounds are found within the interval [5, 20], but
when the oscillation and diversification phases are activated, these values are
contained in the interval [80, 120]. In contrast, for a post-optimization phase
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θmin = 3 and θmax = 7 are always used throughout the search.

Also, we have fixed lmax = 6, except in oscillation and diversification phases,
where this value is gradually increased up to the level limited by the legitimacy
restrictions. Finally nmax = 20n is often sufficient to reach our best solutions
but for some instances this value may go up to 50n, where n is the problem
size.

4 Parallel tabu search implementation

The algorithm considers a node-ejection chain process described in the pre-
vious section. In this section we show that such ejection chains in conjunc-
tion with parallel processing gives a powerful Tabu Search algorithm for the
VRP, which outperforms the sequential approach. In the algorithm, parallel
processing is used to explore the solution space more extensively, as well as to
accelerate the move evaluation in the ejection chain construction.

4.1 The Parallel TABUCHAIN algorithm

Our algorithm was implemented on a network of SUNSparc workstations using
the PVM (Parallel Virtual Machine) system, which permits this network to be
viewed as a single parallel computer. The unit of parallelism in PVM is a task,
and (as for a Unix process) multiple tasks may execute on a single processor.
A standard model of message passing is used to allow communication and
synchronization between tasks.

We use a classic master-slave model without communication among the slave
processes. Each slave executes a complete tabu search algorithm with a dif-
ferent set of parameters, but from the same starting solution which is given
by the Clarke and Wright [5] algorithm. Basically, the work of the master is
to collect the best local solution from each slave process and transmit the
best among them to slaves, to start up a new iteration of the method. Fur-
thermore, the communication and synchronization processes are controlled by
the master process. In accordance with the taxonomy of parallel Tabu search
algorithms proposed by Crainic, Toulouse and Gendreau [6] our algorithm can
be classified as a 1-control, knowledge synchronization, SPDS (Single Point
Different Strategies) method with one main process and four child processes.
In order to minimize the communication times, only solution values are trans-
mitted to the master and only slaves that did not find the best value receive
the corresponding solution.
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In our PVM implementation, the algorithm makes use of the following mes-
sages for handling the search and the communication process.

• make search to a slave process to perform a search.
• end search to a slave process to stop the search.
• elected to indicate that a slave process has found the best global solution.
• not elected to indicate that a slave process has not found the best global

solution.

The master and slave algorithms are described respectively in as follows.

master algorithm

• Start up slaves tasks.
• Read problem instance and broadcast it to slave tasks.
• Read starting solution.
• Initialize the set of not elected slaves as all slave tasks.
• While an improvement is found and the number of restarts are not met do
· Broadcast make search message to all slave tasks.
· Send the current best solution to not elected slaves.
· Wait for best local solution values from all slave tasks.
· Identify the new best global solution.
· If it is a global improvement then

Update the best global solution from one of the slaves that has found
it, and send an elected message to it asking for the corresponding
solution.
Identify the new set of not elected slaves and send a not elected
message to them.
Receive the new best global solution.

· Otherwise broadcast a not elected message to all slave tasks.
· Update the number of restarts

• Broadcast an end search message to all slave processes
• Record the best global solution found by the algorithm and terminate the

search.

slave algorithm.

• Receive message from master.
• While message is equal to make search do
· Identify parameters according to its own slave task identification and per-

form a tabu search algorithm using the NodeEjectionChain procedure.
· Send best solution value to master
· Receive message to know if its solution was selected
· If message is equal to not elected

Receive message from master for continuing or terminating the
search
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If message is equal to make search, receive best global solution
from master

· If message is equal to elected
Send best local solution to master
Receive message for continuing or terminating the search

The evaluation of a trial move in a given level of the ejection chain depends on
the vertices which were ejected up to the level in question. However, the choice
of the ejection move is independent of the trial move evaluation throughout
the ejection chain. This property allows these two operations to be performed
in parallel, which is important when the trial move evaluation requires a con-
siderable effort. This is the case for the Type II trial move in which at each
level of the chain the best insertion of the ejected vertex would be chosen after
O(n) comparisons, which is also the effort necessary to determine each ejection
move. Thus, when the Type II trial move is active in the NodeEjectionChain
procedure, the evaluation of each trial solution is kept for another process.

In addition, the algorithm includes a post-optimization procedure, which con-
sists of a local reoptimization of every route by solving the corresponding
traveling salesman problem. In the post-optimization procedure, each individ-
ual route is assigned to a different process and reoptimized separately by using
ejection chains with Type I trial moves.

5 Computational experience

5.1 Characteristics of test problems

The performance of our algorithms was tested on a set of fourteen benchmark
problems described in Christofides, Mingozzi and Toth [4].

Problem sizes range between 50 and 199 cities in addition to the depot. Loca-
tions of cities are defined by coordinates and the travel cost cij from city i to
city j is a Euclidean distance. Problems may include capacity and maximum
route time constraints. For almost all these problems the cities are regularly
distributed around the depot, but for problems C11 to C14, they appear in
clusters and the depot is not centered.

5.2 Computational results and comparative analysis

Our computations were performed on a 33MHz Sun IPC workstation, and
the parallel algorithm runs on a network of four of these machines. Both
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codes were written in C and the parallelism was supported by using PVM
library routines. Our solution values were calculated with real distances and
computational results for the sequential (S-TC) and parallel (P-TC) versions
of the tabuchain algorithm are reported in Table 1.

Table 1
Characteristics of test problems, solution values and relative percentage deviation
(RPD) for both sequential (S-TC) and parallel (P-TC) versions of the algorithm.

Best Solution values RPD

Prob. n Q D δ published S-TC P-TC S-TC P-TC

C1 50 160 ∞ 0 *524.61 [24] 524.61 524.61 0.00 0.00

C2 75 140 ∞ 0 835.26 [39] 837.50 835.32 0.27 0.01

C3 100 200 ∞ 0 826.14 [39] 827.53 827.53 0.17 0.17

C4 150 200 ∞ 0 1028.42 [39] 1054.29 1044.35 2.52 1.55

C5 199 200 ∞ 0 1291.45 [37] 1338.49 1334.55 3.64 3.34

C6 50 160 200 10 555.43 [39] 555.43 555.43 0.00 0.00

C7 75 140 160 10 909.68 [39] 909.68 909.68 0.00 0.00

C8 100 200 230 10 865.94 [39] 868.29 866.75 0.27 0.09

C9 150 200 200 10 1162.55 [39] 1178.84 1164.12 1.40 0.14

C10 199 200 200 10 1395.85 [37] 1420.84 1420.84 1.79 1.79

C11 120 200 ∞ 0 1042.11 [39] 1043.54 1042.11 0.14 0.00

C12 100 200 ∞ 0 *819.56 [9] 819.56 819.56 0.00 0.00

C13 120 200 720 50 1541.14 [39] 1550.17 1550.17 0.59 0.59

C14 100 200 1040 90 866.37 [39] 866.53 866.37 0.02 0.00

Average 0.77 0.55

Bold characters correspond to the best known solutions and asterisks indicate
values which had already been proved to be optimal. The numbers inside
brackets represent the references in which the solutions were obtained.

Analyzing the Sequential TABUCHAIN algorithm

We can see that identical values of solutions were found for 4 problems and that
generally the S-TC algorithm produces high quality solutions in a relatively
short computation time.

Note that a great deal of computation time has been spent by powerful algo-
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rithms in order to find very high quality solutions for these problems.

Analysing the Parallel TABUCHAIN algorithm

We can see that the parallel version never finds solutions worse than the
sequential one, and improves seven of these solutions. As a result the P-TC
algorithm gives solutions which are on average 0.22% better than the S-TC
algorithm, which is very significant when we consider that the best known
solutions are already optimal or very close to this value.

Comparisons with alternative algorithms

Comparisons were also made between our algorithms and other heuristic algo-
rithms from the literature. It is shown in Gendreau et al. [11] that “classical”
methods to the VRP, constructive algorithms (Clarke and Wright [5], Mole and
Jamesson [30], Altinkemer and Gavish [1], Desrochers and Verhoog [7]), two-
phase algorithms, (Gillett and Miller [12], Christofides, Mingozzi and Toth [4],
Fisher and Jaikumar [10]), incomplete optimization algorithms (Christofides,
Mingozzi and Toth [4]), and descent improvement algorithms, (Stewart and
Golden [38], Harche and Raghavan [26]), are not on a par with simulated an-
nealing and tabu search algorithms. In addition to the above methods, we may
include the recently improved version of the Gillett and Miller [12] algorithm
by Renaud, Boctor and Laporte [36]. None of these algorithms has produced
solutions less than 2% on average above the best known solutions and are
generally not robust. However, some of these algorithms are able to produce
different solutions very quickly based on different parameters. Thus, they are
useful either for interactive routing systems or to provide initial solutions for
improvement methods.

Here, our objective is to compare algorithms of very high performance in terms
of solution quality and computation time.

Thus, we have only made comparisons between our algorithms and the best
tabu search algorithms for the VRP, whose computation times for finding their
best solutions have been published. Computational results for these algorithms
are reported in Table 2.

We should note that in the literature, some other important tabu search al-
gorithm exists for the VRP. These are for example Taillard’s algorithm [39]
and its probabilistic variant proposed in Rochat and Taillard [37], which have
found all the best known solutions. However, these solution values are obtained
on an unspecified number of runs, and the corresponding computation times
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Table 2
Computation times (in seconds) and relative percentage deviation (RPD).

Algorithm OTS GHL S-TC P-TC

Computer VAX 8600 Silicon 4D/35 SUNSparc 4 4 SUNSparc 4

Problem CPU RPD CPU RPD CPU RPD CPU RPD

C1 61 0.00 84 0.00 51 0.00 63 0.00

C2 50 1.05 2352 0.06 1008 0.27 2603 0.01

C3 895 1.07 408 0.40 2034 0.17 1579 0.17

C4 1761 1.55 3270 0.75 1632 2.52 2908 1.55

C5 1704 3.34 5028 2.42 975 3.64 4624 3.34

C6 63 0.00 468 0.00 190 0.00 143 0.00

C7 745 0.15 1908 0.39 1386 0.00 1234 0.00

C8 1965 0.09 354 0.00 516 0.27 1136 0.09

C9 2475 1.85 1278 1.31 933 1.40 1791 0.14

C10 4025 1.58 2646 1.62 3121 1.79 2563 1.79

C11 780 0.00 714 3.01 378 0.14 674 0.00

C12 340 0.00 102 0.00 73 0.00 94 0.00

C13 1576 0.38 2088 2.12 120 0.59 117 0.59

C14 582 0.00 1782 0.00 565 0.02 1479 0.00

Average 1216 0.79 1606 0.86 927 0.77 1501 0.55
OTS: Osman’s [32] tabu search algorithm.
GHL: the Gendreau, Hertz and Laporte [11] tabu search algorithm.

are not reported by the authors. Also, the GHL column reports results for the
version of the algorithm for which computation times have been published.

For visualization purposes, diagram A of Figure 6 illustrates the solution qual-
ity of the P-TC algorithm compared with those reached by the S-TC algo-
rithm. Similarly, diagram B in the same figure gives an impression of the time
consumed by these algorithms to find ”identical” solution values as well as the
time required for the P-TC algorithm to improve these solutions when they
occur.

We can see that for some instances the P-TC algorithm takes more time than
the S-TC one, but this is compensated for by the quality of solutions.

Also, although different machines were used it is clear that the S-TC algorithm
can fairly compete with the others (which do not use parallel computing ei-
ther), and that the P-TC algorithm may be advantageously compared to all
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Fig. 6. Solution quality and CPU times for S-TC and P-TC algorithms

these algorithms.

5.3 Analyzing the node-ejection neighborhood search

In order to evaluate the performance of the node ejection chain approach, and
better understand the results obtained, we have carefully implemented a 2-
interchange mechanism like the one used by the OTS algorithm in Osman [32].
In Figure 7, diagram A shows an example of the relative superiority of the
node-ejection chain procedure over the 2-interchange procedure on the algo-
rithm convergence from a randomly generated initial solution for the biggest
problem C5 (for which our algorithm obtained worse results). Similarly, dia-
gram B illustrates how the number of submoves (levels) varies throughout the
search for the same problem.
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6 Conclusion

We have described a new tabu search algorithm for the VRP. It differs from
other implementations in the literature in several respects. In particular, we
have used compound moves based on an ejection chain process, rather than the
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standard k-opt based processes. Furthermore, the algorithm includes a heuris-
tic post-optimization procedure based on the same ejection chain concepts,
which improves each route of the VRP separately by solving the correspond-
ing TSP.

Tabu search can be implemented at a variety of levels, to establish different
tradeoffs between simplicity of programming and sophistication of the search.
We have shown how advanced concepts of the method can be used in ejec-
tion chain methods. Indeed, different approaches to oscillation strategies which
exploit the moves’ characteristics have been considered allowing infeasibility
regions to be crossed. Thus, an admissible compound move can be obtained
by a sequence of inadmissible moves. This is often efficient when no improve-
ment has been found during the intensification and diversification phases, thus
proving that it is a powerful strategy to overcome local minima.

In addition, we have described and tested a parallel tabu search algorithm for
the VRP. In the neighborhood search the algorithm uses a new concept of
creating compound moves based on a node ejection chain process, which has
already proved to be efficient for the sequential version of the algorithm.

The parallel implementation was based on a synchronous model and different
levels of parallelization were used. Experiments showed that search strategies
based on different parameter settings make it possible to explore the solution
space more extensively and to find better solutions. We have noticed that the
process which finds the best global solution usually changes at each point of
synchronization, hence it reflects a dynamic adjustment of parameters which
are the most suitable to improve the best global solution at each step.

Indeed, two parallelization techniques were used in order to accelerate the
search process. We first discuss the expected gain related to the design of the
parallel algorithm. Then we make some comments one the gain obtained with
the present implementation.

The time per iteration may be reduced by half, using evaluations of an ejection
move and the associated trial move separated into two independent operations.
Furthermore, another method is used assigning each route to a distinct process
thus accelerating the post-optimization phase to the maximum time required
for the reoptimization of a route.

However, with the present parallel system this expected gain was not fully
achieved because a virtual parallelism has to necessarily occur due to limita-
tions on the number of processors available.

Finally, the empirical performance of the proposed algorithms was tested for
14 problems taken from the literature which have proved to be very difficult
in terms of finding good feasible solutions. Computational results confirm the
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very high efficiency of the sequential version algorithm which is increased using
the parallel approach.

We think that the effectiveness of the parallel algorithm may be increased if a
greater number of processors is used. Nevertheless, as the number of processors
grows an asynchronous model may be desirable.

Also, the type of processors is an important feature for the efficiency of
the algorithm and therefore an appropriate parallel system should be chosen
supporting the different granularities of the parallel tasks. Hence, the post-
optimization process holds a “coarse-grain” parallelism when compared with
the “fine-grain” required by the move evaluation process.
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