
UCLA
Papers

Title
Node-level Energy Management for Sensor Networks in the Presence of Multiple
Applications

Permalink
https://escholarship.org/uc/item/0mt880qr

Authors
Athanassios Boulis
Mani Srivastava

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0mt880qr
https://escholarship.org
http://www.cdlib.org/

Node-level Energy Management for Sensor Networks in the Presence of
Multiple Applications

Athanassios Boulis and Mani B. Srivastava

Networked and Embedded System Laborarory (NESL), EE Department, University of California
at Los Angeles, email: { boulis, mbs }@ee.ucla.edu

Abstract

Energy related research in wireless ad hoc sensor

networks (WASNs) is focusing on energy saving techniques

in the application-, protocol-, service-, or hardware-level.

Little has been done to manage the finite amount of energy

for a given (possibly optimally-designed) set of

applications, protocols and hardware. Given multiple

candidate applications (i.e., distributed algorithms in a

WASN) of different energy costs and different user

rewards, how does one manage a finite energy amount?

Where does one provide energy, so as to maximize the

useful work done (i.e. maximize user rewards)? We

formulate the problem at the node-level, by having system-

level "hints" from the applications. In order to tackle the

central problem we first identify the energy consumption

patterns of applications in WASNs, we propose ways for

real-time measurements of the energy consumption by

individual applications, and we solve the problem of

estimating the extra energy consumption that a new

application brings to a set of executing applications.

Having these tools at our disposal, and by properly

abstracting the problem we present an optimal admission

control policy and a post-admission policing mechanism at

the node-level. The admission policy can achieve up to

48% increase in user rewards compared to the absence of

energy management, for a variety of application mixes.
*

1. Introduction

Wireless Ad-hoc Sensor Networks (WASNs) are the
main representative of pervasive computing in large-scale
physical environments. Networks of a large number of
cheap, small-form, wireless devices, embedded in the
physical world, may be used for applications such as
premise security and surveillance, environmental habitat
monitoring, condition-based maintenance, battlefields etc.
Most of the research work in WASNs revolves around
energy, focusing predominately in energy saving problems.
The energy source in each sensor node is limited to the
initial battery charge. Replenishing the battery charge is

* This work was supported in part by the Office of Naval
Research under the AINS research program.

infeasible or so costly that overcomes any benefits drawn
from the WASN. Sustainable energy sources, such as solar
power, ambient vibrations, acoustic signals, have yet to be
proven realizable and efficient in today's WASNs
[1][5][8]. Consequently, most research efforts use energy
consumption as one of their efficiency metrics.
Applications, protocols, services, and hardware are
designed to reduce the energy consumption while
maintaining their functionality. While these efforts are
absolutely necessary for the evolution of WASNs into
something more than academic research, they are not the
only viewpoint of energy related issues in WASNs.

WASNs are currently envisioned to have long life
spans, servicing many transient users with different needs.
This vision is currently supported by a series of
frameworks that try to make WASNs dynamically
programmable and generally open to transient users
[4][6][9]. "Multiple different requests for physical
information, arriving at different times", translates into
"multiple different applications running concurrently in the
network while multiple requests for execution of new
applications are constantly received". This setting poses
the question: Given a finite energy amount and an

unknown sequence of application requests (chosen from a

set of candidate applications with known occurrence

probabilities, energy costs and user rewards/penalties),

how does one accept/reject applications into the network,

in order to maximize overall user rewards? The terms:
"requests for information", "application requests",
"applications", and "distributed algorithms" are used
interchangeably in the text. These are the items handled
(i.e., undergo admission control and policing) in order to
maximize rewards for all users.

This is an operations research problem in its core (as so
many other problems in engineering). The difficulty lies
mainly on the formulation of the problem. Do we consider
the finite energy amount at the node or the system/network
level? What is an application's energy cost and how is it
measured? How are user rewards defined? Section 2 argues
that a pure system-level approach, although yielding
optimal results, is unrealistic, as it requires from each
application to have full knowledge of every other
application in the WASN (which is contradictory to the
notion of transient WASN users), or pay huge traffic

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

overheads. We delve into this issue on section 2 and
formulate the problem at the node level without requiring
by the applications to explicitly manage the system's
energy. Applications just provide our energy management
mechanism with attributes about their energy consumption
and rewards. Admission control and policing is carried out
automatically by our system maximizing user rewards in
the average sense at the node level. Applications still
change their behavior at the system-level, based on
acceptance/rejection replies received by nodes, not based
on arbitrary negotiations with other applications.

After the formulation of the problem in section 2, we
present solutions for two sub-problems of our energy
managing mechanism in section 3. More specifically, the
first sub-problem is to estimate the energy cost of an
application, based on the provided attributes and behavior
of the applications already running in the node. The second
sub-problem is to actually measure the energy cost of an
admitted application, based on its behavior and behaviors
of other applications currently executing in the same node.

Finally in section 4, after properly abstracting the
problem in the previous sections we present an optimal
admission control policy and a post-admission policing
mechanism. The solution is based on the solution of the
Dynamic Stochastic Knapsack Problem (DSKP) [7][10].
Particular consideration was given to the computational
complexity of the policy, since sensor nodes are
computationally restricted. The admission and eviction
decisions take minimal time as all computationally
intensive quantities of the DSPK problem can be computed
off-line in our case. Our mechanism achieves up to 48%
increase in user rewards compared to the absence of energy
management, for a variety of application mixes. Section 5
concludes the paper.

2. Problem Formulation

The problem would be optimally considered at the
system level. After all, a WASN is a distributed hardware
platform with an arbitrary set of distributed applications
executing on it. Therefore, only a viewpoint that
considered the system as a whole would provide the
optimal answer. We wish to show though that a purely
system-level approach is unrealistic. Consider the
following properties of WASN applications: 1) An
application can be distributed in many different sets of
nodes and still work. Of course, with a varying distribution
set, the quality of the returned information (reward) and the
energy spent vary. 2) When parts of two or more
applications are executing in one node, the total energy
consumption is not the sum of the individual energy
consumptions due to sharable modules and services.
Imagine now two applications already running in the
WASN with 5 different distribution choices each. Imagine
also a new application with only 3 different distribution

possibilities. Even with these moderate numbers we have
5⋅5⋅3=75 different configurations to check in order to find
the globally optimum solution. Even if a protocol is created
to handle the negotiations between the applications in a
standardized way, the overhead traffic to find the solution
would greatly surpass any benefits drawn from the energy
management algorithm. For every configuration, every
involved node would have to send reward and energy
information to a central place.

We need a more-modular/less-holistic solution that
does not require from applications to explicitly negotiate in

a huge solution space in order to manage the available
energy. We advocate a node-level solution with system
level "hints" from the applications. More specifically,
when some portion of a distributed application (i.e. a piece
of code that executes in one node, henceforth named task)
wishes to be transferred and executed in a specific node, it
needs to carry some attributes with it. The attributes along
with the current node state NN (e.g., remaining energy,
parameters of tasks already running in the node) will
determine the task's admission (or not) based on some
policy P . The energy management system proposed here,
fits in a greater framework for programmable WASNs
described in [4]. The interested reader can find information
on distributed application creation and deployment in [4].
In our energy management system there are three types of
attributes: Energy attributes {eattr}, reward attributes {rattr},
and policing attributes {pattr}. These are used in order to

derive the following quantities: energy_cost = f1({eattr}, N N
), reward = f2({rattr}), admission_decision = P(energy_cost,

reward, remaining_energy). {pattr} are used for policing
after a task has been admitted. In the next three subsections
we will define these attributes.

2.1. Energy attributes

The first step in defining the energy attributes is to
identify the energy consumption patterns of applications in
WASNs. How is energy spent by applications? At the
lower level, energy is spent on hardware operations (e.g.,
instructions executed in the CPU, bits transmitted/received
by the radio, samples acquired by the sensing device).
However, one can view energy consumption at higher-
level operations. For instance, there is an average energy
consumption associated with the transmission of a packet
of size L, using a particular protocol. To calculate this
energy one needs to know the protocol, (i.e., header
overhead, retransmission policies), the radio, and the traffic
characteristics at the time of transmission. Since the last
term is dynamic we can calculate the energy spent in the
average sense. To move even higher in the levels that one
can view energy consumption, consider the following
example. Services common to sensor nodes, like
neighborhood discovery and localization, have an average
energy consumption. According to the network topology
and other service parameters (e.g. accuracy in localization,

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

n in "discover n-hop neighbors"), a number of messages is
exchanged. The communication and processing of the
messages consume the energy.

Viewing the energy consumption at higher-levels is
beneficial for our purposes. Usually, applications built for
WASNs use services and protocols already provided by
sensor nodes [4][6][9]. Describing the energy consumption
in low level attributes, such as transmitted bits, reception
time, and computation time, would be impossible since the
application does not have any knowledge of sensor node
resident services and protocols. On the other hand, it is
convenient for a task to describe the usage of the node's
modules and services, and let the individual
modules/services derive the energy consumption. For
example, a task may specify that it needs to know the
node's location with 1cm accuracy. If the localization
service already has this information then no energy will be
spent. The local service can also know that if no
information is available x Joules of energy will be spent,
while if the location is already known with a 2cm accuracy
y Joules will be spent (x>y). So, calculating the energy
cost of a task cannot rely only upon the task, but it should
be also affected by the node’s state, network conditions,
and other tasks running on the node.

Following the above rationale, the energy attributes in
our system are a list of module/service names, each name
followed by some parameters that declare the
module/service usage. The total task time is also given. For
instance {eattr} could be: {radio_receive 3sec, radio
transmit broadcast 1000bytes routing 200bytes, sensor
sample_rate 1Hz size_sample 2bytes, CPU 10000
instructions, localization service accuracy 5cm, total task
time 60sec}. The values of the energy attributes are set by
the programmer during the creation of the application. The
programmer has full knowledge of the tasks created by the
application, their average behavior, as well as all the
modules and services that a task can use.

 It is important to note here that some modules/services
(henceforth named devices) are sharable. This means that
the devices can be used concurrently by multiple tasks
while consuming the same energy as being used by one
task. We already saw an example of a sharable device in
the localization service. The location needs to be
discovered with the highest required accuracy to satisfy all
tasks. Other examples of sharable devices are: the radio in
receive-mode, the sensing device, the real-timer service,
and the neighborhood discovery service. Examples of non-
sharable devices are: the radio in transmit-mode, and the
CPU. Having sharable devices creates the problem of
determining the energy cost of a task given a set of other
tasks already executing in the node. For each sharable
device i, we have to calculate the Added Energy Load
(AELi) that this task is bringing to the tasks already
running. The sum of all AELi will give us the total AEL,

i.e., the energy cost of the task. AELi is a device specific
function. Some devices (e.g., localization service) may
have a pre-computed reference table to determine the AEL
based on the usage parameters provided by the new under-
admission task and current usage by other tasks. Many
devices though, can compute AEL on-the-fly. Examples of
such devices are: the radio in receive-mode and the sensing
device. We present a way to calculate AEL (or more
accurately E[AEL]) for such sharable devices in section 3.

In conclusion, {eattr} is device dependent and can be
written as a set of sets of parameters (one set for each
device): {{eattr_dev1} ... {eattr_devn}}. Given these attributes the
energy cost of a task is energy_cost = f1({eattr}, N N) =

∑∑)+)
devicesharablenonidevicesharablei

N

:

attr_devii

:

attr_devii }({eAEL },({eAEL

The AELi functions for non-sharable devices are simply
calculating the energy consumption of the device due to a
specific task. Since the devices are not sharable, the state

of the node N N is not included in the AELi arguments. As
stated, in section 3 we will define AEL for a simple class
of sharable devices.

2.2. Reward attributes

Defining reward attributes is a particularly difficult task
in our scheme. This is due to the fact that even though
reward is a system-level quantity (i.e., the user receives the
needed information [reward] because of the collective
behavior of the involved nodes), we are called to derive
user rewards at the node level. Generally speaking, there
should be a reward associated with the admission and
completion of an application. At the same time, if a user
request is denied service, there is a penalty associated with
such action. We define the penalty for denying a
request/application to be executed to be equal to its reward.

We begin by defining reward in the system-level. By
default, each user request has a reward equal to 1 if carried
out as specified. This assumes that all users are equal, thus
all data returned due to individual requests have the same
reward. Given an external user differentiation policy, we
can accordingly differentiate rewards for different users. If
the application cannot be admitted as is, the application
might provide an alternate distribution and/or an alternate
algorithm that achieves less accurate information. The
reward of the application must be reduced proportionally to
the achieved accuracy. Note that such a procedure (of
reward reduction) is initiated by the application at the
event of non-admission (i.e., at least one of the
application's task was not spawned in the targeted node).
The reward reduction procedure essentially reinitiates
another application, which may range from a simple
redistribution of the existing tasks to the execution of a
new algorithm. The initial application's tasks that were
previously admitted in their targeted nodes are either
canceled (if they are no longer needed by the reduced-

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

reward application), or their reward is reduced (in order to
correspond to the reward of the reduced-reward
application).

Moving to the node level we have to answer the
question: How does the system-level reward influence the
reward at the node level? One might suggest the system
level reward to be separated among the different tasks (i.e.,
the parts of the application running at different nodes).
This approach is wrong though. Consider the following
scenario: We have two applications A and B of equal
importance (reward =1). Application A is distributed in 2
nodes and application B in 100 nodes. If we were to
separate the unit reward equally, the tasks of application A
would get 0.5 each, while the tasks of application B would
get only 0.01 each. Consequently, the tasks of application
B would have a much smaller probability to be executed
(because they seem to offer so little) while at the system
level the two applications are equivalent. Therefore, to
avoid such problems we define the node level reward to be

the system level reward .

From the above discussion we conclude that there are
two reward attributes {rattr1, rattr2} and they are defined as:
{rattr1≡user priority∈(0,∞) (=1 by default for all users),

rattr2≡application reward∈(0,1] (=1 for initial request [full
accuracy information])}; rattr1 shows the importance of the
user; rattr2 shows how far away is this application from its
initial desired information (due to rejections of higher
accuracy requests). These two attributes are "hinting"
about the system level behavior of the application. The

reward of a task is reward = f2({rattr}) = rattr1⋅ rattr2.

2.3. Policing attributes

Finally, we need some attributes to specify some
quantities for policing issues. Once a task has been
admitted we need to make sure that its execution is
beneficial to the user. After all, the admission was based on
estimated values. In short we need to measure its true
energy costs and make sure that together with its rewards,
the task is beneficial to the user. To perform policing we
need to know what is the proper time interval to measure
energy costs (i.e., we want to take an interval large enough
to avoid transient effects), as well as the granularity of
reward return (i.e., is the reward returned as a whole at the
end of the task execution, or is it gradually given as the
task runs). Both these quantities are application specific, so
we require the task to provide them in the form of policing
attributes: pattr1≡energy-measurement time interval,

pattr2≡minimum return-reward time interval.

3. Calculating the AEL and Measuring

Energy Costs During Execution

In this section we will examine two sub-problems of the
general energy management mechanism. We referred to

the first problem in section 2.1; it is the AEL calculation
problem. The second problem is the real-condition
measurement of energy costs of the admitted tasks.

3.1. Calculation of the AEL

Consider a class of sharable devices with the following
simple sharing rule: Devices in this class are used for
amounts of time; if two or more tasks use the same device
concurrently the energy consumption is the same as only
one task uses the device. Examples of such devices are: the
radio in receive-mode and the sensing device. Given that a
task specifies the time that is using such a device as well as
the total task time in {eattr}, we can know the fraction of
total time the device is used by the task. Having this
fraction and the usage fraction by all the currently
executing tasks, how do we calculate E[AEL] (i.e., the
mean added energy load) that the new task is bringing to
the set of old tasks?

 The core of the problem can be identified as following.
Given that all the existing tasks in a node are using a
device a fraction of the unit time p, and the new under-
admission task is using it a fraction of the unit time q, how
much more (as a fraction of the unit time) will the device
be used on the average, if the new task is admitted? We
name this quantity U. knowing U, the total task time and
the device's power (i.e., energy spent per unit time) we can
calculate AEL. Since U is calculated in the average sense,
we are really calculating E[AEL]. The calculation of U is
not very simple. It depends on the number of
fragments/blocks comprising p and q. Let us first consider
the two extremes of the problem. Infinite-block and one-
block p and q.

If p and q are infinitely fragmented (with fragments
randomly placed), they will occupy the whole [0...1]
interval with uniform density. Any sub-interval will have

the same properties. Specifically (1-p)⋅interval of any
interval is free and we add q⋅free_interval if the new task is
admitted. Thus the analytical solution is given by equation

1. qpU ⋅−=∞)1(eq.(1) The same solution is derived if

we considered only one of p or q to be infinitely
fragmented. Analytical solutions exist for the one-block
and n-block cases too. Due to lack of space they cannot be
given here but the interested reader can refer to [2].

The practical question is how does the Ui differ from
the U∞. A full report is given in [2]; here we just
summarize the results: For increasing i the difference is
decreasing. For i=1 the maximum difference is 0.07 and
for i=5 the maximum difference is 0.01. Generally we

expect a large number of fragments for p and q, so the U∞
becomes an excellent estimate having the added advantage
of easy computation.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

3.2. Real-condintion measurement of energy costs

Being able to calculate the U and the AEL for specific
devices, and generally the total energy cost of a specific

task based on {eattr} and N N , is important during admission
but is not enough once a task is being admitted. This is
because: 1){eattr} are estimations of the devices’ usage (the
task behavior is influenced also by local state), and 2) even
if we had an accurate view of the devices’ usage, sharable
devices make the computation of AEL in the average sense
Once the task is being admitted we have more data on its
behavior and we would like to exploit them in order to
acquire more accurate energy cost measurements.

It would be useful to list what we need and why we
need it. First we need to know the accurate usage of each
device by all the admitted tasks cumulatively. This
information will be used in the admission control to derive
the energy cost of an examined task. Essentially, this
information is the NN we are requiring to help us compute
the energy cost of a new task. Second we need to know the
accurate AEL of any subset of the admitted tasks with
respect to the rest of the admitted tasks. In other words: if
we were to reject any subset of tasks, how much energy we
would have saved? The ability to calculate this quantity is
needed while policing the admitted tasks. To calculate all
the above quantities each device needs to keep a usage
profile for each admitted task (i.e., when, and for how long
was a time-sharing device used by task i). To keep such
profiles we need support by the devices. The framework in
[4] makes provisions for usage profiles to be kept.

4. Admission Control and Policing

Thus far we demonstrated how to derive the node-level
energy cost (henceforth denoted as s) and the node-level
reward (denoted as r) for a task that wishes to execute in a
particular node of remaining energy n. The node has an

overall value VP (t) according to its admission policy P and

the task requests received up to time t. If a task is admitted,
reward r is added to the overall value of the node. If a task
is rejected, while the remaining energy is enough to
accommodate it (i.e., n>=s) then r is subtracted from the
overall value as a penalty. If there is not enough energy to

accommodate a task, VP is left unchanged. An admission

control policy P specifies if a task is admitted given r, s,

and n. That is, P(r, s, n)∈{0, 1}, 0 denoting rejection and
1 denoting acceptance.

The problem of admission control is to specify the

optimal P so as the VP accumulated until the remaining

energy is zero, is maximized. This problem is reminiscent
of the well-known knapsack problem. In our case though,
the items that undergo admission (i.e., the tasks) are not all
known a priori but instead they are coming as requests, as

time passes. Furthermore, their rewards r, and costs s, are
not fixed but are distributed following a joint distribution
function Frs. This enhanced version of the knapsack
problem is called Dynamic and Stochastic Knapsack
Problem (DSKP), and it was previously studied in
operations research [7][10]. In [7] an optimal admission
policy for DSKP is discovered. Inspired by the solution in
[7] we solved our specific problem, obtaining the desired
optimal policy. The solution given here is self-contained
and does not require any knowledge from [7]. The
reference is only made to acknowledge our initial
inspiration for the solution.

Imagine a node with remaining energy n. We define the

quantity V(n) as the expected overall value VP the node

accumulates until its remaining energy is zero, under some

policy P . V(n) for any policy is given by the recursive
formula in equation 2.

V(n) = P(task i accepted) ⋅⋅ { E[ri | task i accepted] +

E[V(n-si) | task i accepted] } + P(task i rejected) ⋅⋅ V(n) -
P(task i rejected and n>= si) ⋅⋅ E[ri | task i rejected and
n>= si] eq.(2)

E[] denotes average value, P() denotes probability, and |
denotes "given that". The formula simply states that if a
task i is accepted the new value is ri + V(n-si) (i.e., reward
plus the expected value of the remaining energy), if a task
is rejected we still have the expected value of our current
energy, and if the rejection was not forced (i.e., si≤ n) then
ri is subtracted form the expected value.

If we assume that r and s take discrete values and we
know their joint distribution function Frs, equation 2 is
transformed to equation 3. We can also assume continuous
values and just replace the sums with integrals and the joint
distribution function with a joint probability density
function in equation 3. We chose discrete values to
facilitate numerical computations.

eq.(3)),(),()(

),()(),()(

:,:,

:,:,

∑∑

∑∑

≥

⋅−⋅

+⋅−+⋅=

iiiii

iiii

snandrejecteditasksr

iirsi

rejecteditasksr

iirs

accepteditasksr

iirsi

accepteditasksr

iirsi

srFrsrFnV

srFsnVsrFrnV

Solving for V(n) we get equation 4.

∑

∑∑∑
−

⋅−⋅−+⋅

= ≥

rejecteditasksr

iirs

snandrejecteditasksr

iirsi

accepteditasksr

iirsi

accepteditasksr

iirsi

ii

iiiiiii

srF

srFrsrFsnVsrFr

nV

:,

:,:,:,

)),(1(

),(),()(),(

)(

 eq.(4)

If an admission policy does not depend on V(n), then
the summation indexes do not depend on V(n). In such a
case we can easily calculate equation 6 recursively, starting
with V(0) = 0. Two examples of policies that do not

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

depend on V(n) are: 1)accept all tasks (i.e., no policy), and
2)accept tasks if r/s >= threshold. If a policy does depend
on V(n) (e.g., the optimal policy, as shown later) then it is
harder to compute V(n). Fortunately, for the optimal policy
we are able to find an iterative algorithm that converges
fast and computes V(n).

Let us see now how is the optimal admission control
policy defined. Assume that we do follow the optimal
policy so that we have an expected value Vopt(n) for
remaining energy n. If a task arrives at this point and we
are indeed faced with a decision (i.e., n>=s) we can
calculate the value for both outcomes of the decision. If the
task is accepted the overall value will become r + Vopt(n-s).
If the task is rejected the overall value will become Vopt(n)

- r. The decision is evident now: If r + Vopt(n-s) >= Vopt(n)

- r we admit the task otherwise we reject it. This gives us
the optimal policy.

P opt(r, s, n)

>
−−

<

≤
−−

≥
=

nsOR
snVnV

rif

nsAND
snVnV

rif

optopt

optopt

2

)()(
0

2

)()(
1

 eq.(5)

Going back to equation 4, we observe that with the
optimal policy the summation indexes are affected by
V(n). So equation 4, apart from being a recursive formula,
it now becomes a highly non-linear equation of V(n). As
stated earlier though, we constructed an iterative algorithm
that converges fast towards V(n). The details of the

algorithm and the convergence properties are beyond the
scope of this paper. The interested reader can refer to [3].

Figures 1, 2, 3, and 4, are plotting V(n) versus n for a
variety of policies (including the optimal) and for four joint
distribution functions Frs. Rewards take values in the
interval [0.1...5] with granularity 0.1. Costs take values in
the interval [1...50] with granularity 1.For the first
distribution function, r and s are independent and uniform.
For the rest of the distribution functions, r and s are
correlated following different types of correlation. If we
know (or can estimate) all the possible tasks along with
their energy costs, their rewards, and their occurrence
probabilities, then we can compute Frs. If this information
is not available we can still perform quite well with “blind”
policies, as we will see by the analysis of figures 1-4.

From figures 1-4 we observe that with the optimal
admission policy we earn up to 48% more in V(n) (48%
achieved for the Frs in Figure 4) than with no policy (i.e.,
accept all tasks i, given that si≤ n). With uniform Frs the
optimal policy achieve a 27% increase in V(n). For the Frs
in Figure 2 (where it is more probable to have large r with
large s and vice versa) the optimal policy offers only a 5%
increase of V(n). The figures also show the V(n) achieved
by “ratio threshold” policies. We see that policies of some
thresholds follow the optimum V(n) very closely, while
others perform worse than the absence of policy, or even
have negative slopes (e.g., the 0.19 threshold policy in
Figure 4.

Figure 1: V(n) for various policies and uniform Frs

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 2: V(n) for various policies and Frs (type1)

Figure 3: V(n) for various policies and Frs (type2)

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 4: V(n) for various policies and Frs (type3)

The interesting part though is the properties of the
optimal policy. From the figures we see a strong indication
that Vopt(n) is linear with respect to n, ∀ n>n linear. In
particular, nlinear seems to be equal to max(s)=50 from
observing the figures. Trying to find nlinear by finding the
point that the second derivative of Vopt(n) becomes zero,
reveals the value nlinear =2max(s)=100. We should not
forget though that these are numerically computed data
with finite accuracy, thus it might also be the case that
Vopt(n) is converging to be linear with respect to n, (or
stated otherwise the second derivative of Vopt(n) is
converging to zero).

If we show that Vopt(n) is linear or converges to linear
we can prove some interesting properties. Assume that
V(n) = a⋅n + b, ∀ n>nlinear. Then V(n)-V(n-s) = a⋅s, ∀ s

and ∀ n>nlinear+max(s) . Thus if Vopt(n) is linear with
respect to n then the difference Vopt(n)-Vopt(n-s) is linear
with respect to s. Going back to equation 5 and substitute
Vopt(n)-Vopt(n-s) with a⋅s we get:

P opt(r, s, n)

><

≤≥
=

nsOR
a

s

r
if

nsAND
a

s

r
if

2
0

2
1

 eq.(6)

Equation 6 states that if Vopt(n) = a⋅n + b, ∀ n>nlinear
then the optimal policy is a “ratio threshold” policy

with threshold a/2 ∀∀ n>nlinear+max(s). This observation
explains the very good performance of some ratio
threshold policies in the figures. If we choose the right
threshold (i.e. close to a/2) then the resulting V(n) will

closely follow Vopt(n) trailing only by a constant offset.
The offset is created at the non linear region of V(n) (i.e.,
0<n<max(s)) where the optimal policy does not keep a
constant ratio threshold. Another very important point to
notice is that the optimal ratio a/2 does not change
considerably for radically different Frs. The ratio of 0.065
performs extremely well for all Frs tested. Thus even if Frs
is unknown and we just know the max(r) and max(s), we
can still achieve good performance by computing a/2 for
one random Frs (e.g. the uniform). If Frs is known, the
computation and storage needed to enforce the optimal
admission policy is minimal. Concerning storage, we need
to keep the values of V(n) for the non-linear region (i.e.,
0<n<max(s)) and the optimal ratio a/2. Concerning
computation, we need to perform a division (r/s) and a
comparison with a constant [a/2] for the linear region, or a
comparison with the result of a subtraction [V(n)-V(n-s)]
for the non linear region.

Finally, we wish to address the topic of policing. With
the mechanisms described in section 3.2, our energy
management system measures the energy cost of each
admitted task with respect to the rest of the admitted tasks
every pattr1 units of time. This measurement acts as an
estimation for the future remaining energy cost of each
admitted task (named s′ i). This estimation is more accurate
than the initial mean energy cost used by the admission
policy. Thus, at any time t, we have an estimation of the
remaining energy cost s′ i, and the remaining reward r′ i task
i can offer (based on the initial ri, pattr2, and the total task
execution time). Obviously this poses a policing problem.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

Do we evict any tasks? When? Which ones? The “when”
question is answered easily. The check is performed every
time there is a change to the estimated energy cost or to the
remaining reward of any task. The optimal policing
strategy would be to get all possible subsets of the admitted
tasks and consider them for eviction. For each (possibly)
evicted subset compute the quantity: Vpol(tasks evicted)
= ∑∑ −

evicteditaski

i

keptitaski

i rr

::

'' + Vopt(n - S(tasks kept)) , where n

is the remaining node energy and S(set_of_tasks) is the
estimation of the cumulative energy spend by the
set_of_tasks till their completion. Naturally, S() is not
simply the sum of individual costs since we have sharable
devices.

The subset that maximizes Vpol is the one that should be
evicted (note that the empty set is a valid choice in this
procedure). Given the non-linearity of function S we have
to resort to brute force and simply check all possible
subsets. For a total of k tasks currently admitted, there are

∑ ⋅−
kl

llk

k

..0: !)!(

! possible subsets. Indicatively, for k= 5 the

possible subsets are 32, and for k=10 they rise to 924. This
might be a large number to check every time there is a

change in one s′ i or r′ i. Thus we propose a heuristic for
policing. Each time there is a change in one s′ i or r′ i we
only check Vpol for the two extreme subsets (i.e., the
“empty set”, and “all the currently admitted tasks”). If the
Vpol for keeping all the tasks is larger than the Vpol for
evicting all the tasks, do nothing. Otherwise, run the brute
force algorithm and find the best subset of tasks to evict.
The rationale behind this heuristic is that most of the time
the tasks are well behaved and stay within their pre-
admission cost and reward ratio, so no task needs to be
evicted. Our immediate plans include the evaluation of this
heuristic and generally the exploration of the trade-off
between Vpol achieved vs. computation made.

5. Conclusions

In this paper we are concerned with the problem of
managing the finite energy in a WASN. Given a finite
energy amount and a sequence of application requests
(chosen among a set of probable applications) with
different energy costs and different rewards for the user,
the question is to apply an admission control policy so as
to maximize user rewards. Although the problem would be
optimally solved at the system level, a mechanism that
adopts such a viewpoint will require from the distributed
applications to have full knowledge of each other or to
exchange a large number of messages due to the large
solution space. In either case a system-level solution
becomes impractical for a WASN that hosts multiple, often
transient users. Instead, we propose a mechanism that
solves the energy management problem at the node level
without requiring for the applications to directly

communicate with each other. The application's system-
level behavior (i.e., distribution in nodes, choice of
algorithm incorporated) is still application-specific but now
it is decided by using the acceptance/rejection replies
received from individual nodes, and not by direct
negotiations with the other applications. Solving the
problem at the node level first requires a proper
formulation. The formulation reveals some sub-problems,
such as calculating the Added Energy Load that a task is
bringing to set of tasks already running in the node, and
measuring the devices' usage profiles in real time. After
these sub-problems are solved, the optimal admission
policy is presented and analyzed. From the study of the
numerical data we can see the gains one can receive by
applying the optimal policy compared to the absence of an
admission policy. Finally, we show that the optimal policy
can easily be applied using the limited computation powers
of a node, if we know the distributions of rewards and
energy costs. Most importantly though, the optimal policy
can be closely approximated by a minimally computational
intensive "ratio threshold" policy, even in the absence of
distribution information.

6. References

[1] R. Amirtharajah and A.P. Chandrakasan, "Self-powered signal
processing using vibration-based power generation," IEEE Journal
of Solid State Circuits, vol.33, no.5 May, 1998.

[2] A. Boulis, "Calculation of AEL for sharable devices", TM-UCLA-
NESL-2003-01-001, http://nesl.ee.ucla.edu/TMs.

[3] A. Boulis, "Method for numerically solving the optimum policy
equation for admission control in WASNs", TM-UCLA-NESL-
2003-01-002, http://nesl.ee.ucla.edu/TMs.

[4] A. Boulis, C. C. Han, and M. B. Srivastava, " Design and
Implementation of a Framework for Efficient and Programmable
Sensor Networks", To appear in proccedings of MobiSys 2003,
San Fransisco, CA, May 5-8, 2003.

[5] A. Chandrakasan, R. Amirtharajah, S.H. Cho, J. Goodman, G.
Konduri, J. Kulik, W. Rabiner, and A. Wang "Design
Considerations for Distributed Microsensor Systems,'' Proc. IEEE
1999 Custom Integrated Circuits Conference (CICC '99), May
1999, pp. 279-286

[6] C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and
Tasking of Sensor Networks”, SPIE's 14th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and
Control (Digitization of the Battlespace V), Orlando, Florida, April
26-27, 2000.

[7] A.J. Kleywegt and J.D. Papastavrou, "The Dynamic and Stochastic
Knapsack Problem", Operations Research, 46, pp. 17-35, 1998.

[8] John Kymisis, Clyde Kendall, Joseph Paradiso, and Neil
Gershenfeld, "Parasitic Power Harvesting in Shoes," Second IEEE
International Conference on Wearable Computing (ISWC),
Pittsburgh, PA, October 1998.

[9] P. Levis, D. Culler, “Maté: A Tiny Virtual Machine for Sensor
Networks.” Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS X), October 5-9 2002.

[10] A. Marchetti-Spaccamela and C. Vercellis. "Stochastic on-line
knapsack problems", Mathematical Programming, 68(1):73--104,
Jan 1995.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

