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Abstract 

Energy related research in wireless ad hoc sensor 

networks (WASNs) is focusing on energy saving techniques 

in the application-, protocol-, service-, or hardware-level. 

Little has been done to manage the finite amount of energy 

for a given (possibly optimally-designed) set of 

applications, protocols and hardware. Given multiple 

candidate applications (i.e., distributed algorithms in a 

WASN) of different energy costs and different user 

rewards, how does one manage a finite energy amount? 

Where does one provide energy, so as to maximize the 

useful work done (i.e. maximize user rewards)? We 

formulate the problem at the node-level, by having system-

level "hints" from the applications. In order to tackle the 

central problem we first identify the energy consumption 

patterns of applications in WASNs, we propose ways for 

real-time measurements of the energy consumption by 

individual applications, and we solve the problem of 

estimating the extra energy consumption that a new 

application brings to a set of executing applications. 

Having these tools at our disposal, and by properly 

abstracting the problem we present an optimal admission 

control policy and a post-admission policing mechanism at 

the node-level. The admission policy can achieve up to 

48% increase in user rewards compared to the absence of 

energy management, for a variety of application mixes.
* 

 

1. Introduction 

Wireless Ad-hoc Sensor Networks (WASNs) are the 
main representative of pervasive computing in large-scale 
physical environments. Networks of a large number of 
cheap, small-form, wireless devices, embedded in the 
physical world, may be used for applications such as 
premise security and surveillance, environmental habitat 
monitoring, condition-based maintenance, battlefields etc. 
Most of the research work in WASNs revolves around 
energy, focusing predominately in energy saving problems. 
The energy source in each sensor node is limited to the 
initial battery charge. Replenishing the battery charge is 

                                                                 
* This work was supported in part by the Office of Naval 
Research under the AINS research program. 

infeasible or so costly that overcomes any benefits drawn 
from the WASN. Sustainable energy sources, such as solar 
power, ambient vibrations, acoustic signals, have yet to be 
proven realizable and efficient in today's WASNs 
[1][5][8]. Consequently, most research efforts use energy 
consumption as one of their efficiency metrics. 
Applications, protocols, services, and hardware are 
designed to reduce the energy consumption while 
maintaining their functionality. While these efforts are 
absolutely necessary for the evolution of WASNs into 
something more than academic research, they are not the 
only viewpoint of energy related issues in WASNs. 

WASNs are currently envisioned to have long life 
spans, servicing many transient users with different needs. 
This vision is currently supported by a series of 
frameworks that try to make WASNs dynamically 
programmable and generally open to transient users 
[4][6][9]. "Multiple different requests for physical 
information, arriving at different times", translates into 
"multiple different applications running concurrently in the 
network while multiple requests for execution of new 
applications are constantly received". This setting poses 
the question: Given a finite energy amount and an 

unknown sequence of application requests (chosen from a 

set of candidate applications with known occurrence 

probabilities, energy costs and user rewards/penalties), 

how does one accept/reject applications into the network, 

in order to maximize overall user rewards?  The terms: 
"requests for information", "application requests", 
"applications", and "distributed algorithms" are used 
interchangeably in the text. These are the items handled 
(i.e., undergo admission control and policing) in order to 
maximize rewards for all users. 

This is an operations research problem in its core (as so 
many other problems in engineering). The difficulty lies 
mainly on the formulation of the problem. Do we consider 
the finite energy amount at the node or the system/network 
level? What is an application's energy cost and how is it 
measured? How are user rewards defined? Section 2 argues 
that a pure system-level approach, although yielding 
optimal results, is unrealistic, as it requires from each 
application to have full knowledge of every other 
application in the WASN (which is contradictory to the 
notion of transient WASN users), or pay huge traffic 
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overheads. We delve into this issue on section 2 and 
formulate the problem at the node level without requiring 
by the applications to explicitly manage the system's 
energy. Applications just provide our energy management 
mechanism with attributes about their energy consumption 
and rewards. Admission control and policing is carried out 
automatically by our system maximizing user rewards in 
the average sense at the node level. Applications still 
change their behavior at the system-level, based on 
acceptance/rejection replies received by nodes, not based 
on arbitrary negotiations with other applications.  

After the formulation of the problem in section 2, we 
present solutions for two sub-problems of our energy 
managing mechanism in section 3. More specifically, the 
first sub-problem is to estimate the energy cost of an 
application, based on the provided attributes and behavior 
of the applications already running in the node. The second 
sub-problem is to actually measure the energy cost of an 
admitted application, based on its behavior and behaviors 
of other applications currently executing in the same node. 

Finally in section 4, after properly abstracting the 
problem in the previous sections we present an optimal 
admission control policy and a post-admission policing 
mechanism. The solution is based on the solution of the 
Dynamic Stochastic Knapsack Problem (DSKP) [7][10]. 
Particular consideration was given to the computational 
complexity of the policy, since sensor nodes are 
computationally restricted. The admission and eviction 
decisions take minimal time as all computationally 
intensive quantities of the DSPK problem can be computed 
off-line in our case. Our mechanism achieves up to 48% 
increase in user rewards compared to the absence of energy 
management, for a variety of application mixes. Section 5 
concludes the paper.   

2. Problem Formulation  

The problem would be optimally considered at the 
system level. After all, a WASN is a distributed hardware 
platform with an arbitrary set of distributed applications 
executing on it. Therefore, only a viewpoint that 
considered the system as a whole would provide the 
optimal answer. We wish to show though that a purely 
system-level approach is unrealistic. Consider the 
following properties of WASN applications: 1) An 
application can be distributed in many different sets of 
nodes and still work. Of course, with a varying distribution 
set, the quality of the returned information (reward) and the 
energy spent vary. 2) When parts of two or more 
applications are executing in one node, the total energy 
consumption is not the sum of the individual energy 
consumptions due to sharable modules and services. 
Imagine now two applications already running in the 
WASN with 5 different distribution choices each. Imagine 
also a new application with only 3 different distribution 

possibilities. Even with these moderate numbers we have 
5⋅5⋅3=75 different configurations to check in order to find 
the globally optimum solution. Even if a protocol is created 
to handle the negotiations between the applications in a 
standardized way, the overhead traffic to find the solution 
would greatly surpass any benefits drawn from the energy 
management algorithm. For every configuration, every 
involved node would have to send reward and energy 
information to a central place. 

We need a more-modular/less-holistic solution that 
does not require from applications to explicitly negotiate in 

a huge solution space in order to manage the available 
energy. We advocate a node-level solution with system 
level "hints" from the applications. More specifically, 
when some portion of a distributed application (i.e. a piece 
of code that executes in one node, henceforth named task) 
wishes to be transferred and executed in a specific node, it 
needs to carry some attributes with it. The attributes along 
with the current node state NN  (e.g., remaining energy, 
parameters of tasks already running in the node) will 
determine the task's admission (or not) based on some 
policy P . The energy management system proposed here, 
fits in a greater framework for programmable WASNs 
described in [4]. The interested reader can find information 
on distributed application creation and deployment in [4]. 
In our energy management system there are three types of 
attributes: Energy attributes {eattr}, reward attributes {rattr}, 
and policing attributes {pattr}. These are used in order to 

derive the following quantities: energy_cost = f1({eattr}, N N  
), reward = f2({rattr}), admission_decision = P(energy_cost, 

reward, remaining_energy). {pattr} are used for policing 
after a task has been admitted. In the next three subsections 
we will define these attributes. 

2.1. Energy attributes 

The first step in defining the energy attributes is to 
identify the energy consumption patterns of applications in 
WASNs. How is energy spent by applications? At the 
lower level, energy is spent on hardware operations (e.g., 
instructions executed in the CPU, bits transmitted/received 
by the radio, samples acquired by the sensing device). 
However, one can view energy consumption at higher-
level operations. For instance, there is an average energy 
consumption associated with the transmission of a packet 
of size L, using a particular protocol.  To calculate this 
energy one needs to know the protocol, (i.e., header 
overhead, retransmission policies), the radio, and the traffic 
characteristics at the time of transmission. Since the last 
term is dynamic we can calculate the energy spent in the 
average sense. To move even higher in the levels that one 
can view energy consumption, consider the following 
example. Services common to sensor nodes, like 
neighborhood discovery and localization, have an average 
energy consumption. According to the network topology 
and other service parameters (e.g. accuracy in localization, 
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n in "discover n-hop neighbors"), a number of messages is 
exchanged. The communication and processing of the 
messages consume the energy.  

Viewing the energy consumption at higher-levels is 
beneficial for our purposes. Usually, applications built for 
WASNs use services and protocols already provided by 
sensor nodes [4][6][9]. Describing the energy consumption 
in low level attributes, such as transmitted bits, reception 
time, and computation time, would be impossible since the 
application does not have any knowledge of sensor node 
resident services and protocols. On the other hand, it is 
convenient for a task to describe the usage of the node's 
modules and services, and let the individual 
modules/services derive the energy consumption. For 
example, a task may specify that it needs to know the 
node's location with 1cm accuracy. If the localization 
service already has this information then no energy will be 
spent. The local service can also know that if no 
information is available x Joules of energy will be spent, 
while if the location is already known with a 2cm accuracy 
y Joules will be spent (x>y). So, calculating the energy 
cost of a task cannot rely only upon the task, but it should 
be also affected by the node’s state, network conditions, 
and other tasks running on the node. 

Following the above rationale, the energy attributes in 
our system are a list of module/service names, each name 
followed by some parameters that declare the 
module/service usage. The total task time is also given. For 
instance {eattr} could be: {radio_receive 3sec, radio 
transmit broadcast 1000bytes routing 200bytes, sensor 
sample_rate 1Hz size_sample 2bytes, CPU 10000 
instructions, localization service accuracy 5cm, total task 
time 60sec}. The values of the energy attributes are set by 
the programmer during the creation of the application. The 
programmer has full knowledge of the tasks created by the 
application, their average behavior, as well as all the 
modules and services that a task can use. 

 It is important to note here that some modules/services 
(henceforth named devices) are sharable. This means that 
the devices can be used concurrently by multiple tasks 
while consuming the same energy as being used by one 
task. We already saw an example of a sharable device in 
the localization service. The location needs to be 
discovered with the highest required accuracy to satisfy all 
tasks. Other examples of sharable devices are: the radio in 
receive-mode, the sensing device, the real-timer service, 
and the neighborhood discovery service. Examples of non-
sharable devices are: the radio in transmit-mode, and the 
CPU. Having sharable devices creates the problem of 
determining the energy cost of a task given a set of other 
tasks already executing in the node.  For each sharable 
device i, we have to calculate the Added Energy Load 
(AELi) that this task is bringing to the tasks already 
running. The sum of all AELi will give us the total AEL, 

i.e., the energy cost of the task. AELi is a device specific 
function. Some devices (e.g., localization service) may 
have a pre-computed reference table to determine the AEL 
based on the usage parameters provided by the new under-
admission task and current usage by other tasks. Many 
devices though, can compute AEL on-the-fly. Examples of 
such devices are: the radio in receive-mode and the sensing 
device. We present a way to calculate AEL (or more 
accurately E[AEL]) for such sharable devices in section 3. 

In conclusion, {eattr} is device dependent and can be 
written as a set of sets of parameters (one set for each 
device): {{eattr_dev1} ... {eattr_devn}}. Given these attributes the 
energy cost of a task is energy_cost = f1({eattr}, N N  ) = 

∑∑  )+  )
devicesharablenonidevicesharablei

N

:

attr_devii

:

attr_devii }({eAEL },({eAEL

The AELi functions for non-sharable devices are simply 
calculating the energy consumption of the device due to a 
specific task. Since the devices are not sharable, the state 

of the node N  N  is not included in the AELi arguments. As 
stated, in section 3 we will define AEL for a simple class 
of sharable devices. 

2.2. Reward attributes 

Defining reward attributes is a particularly difficult task 
in our scheme. This is due to the fact that even though 
reward is a system-level quantity (i.e., the user receives the 
needed information [reward] because of the collective 
behavior of the involved nodes), we are called to derive 
user rewards at the node level. Generally speaking, there 
should be a reward associated with the admission and 
completion of an application. At the same time, if a user 
request is denied service, there is a penalty associated with 
such action. We define the penalty for denying a 
request/application to be executed to be equal to its reward. 

We begin by defining reward in the system-level. By 
default, each user request has a reward equal to 1 if carried 
out as specified. This assumes that all users are equal, thus 
all data returned due to individual requests have the same 
reward. Given an external user differentiation policy, we 
can accordingly differentiate rewards for different users. If 
the application cannot be admitted as is, the application 
might provide an alternate distribution and/or an alternate 
algorithm that achieves less accurate information. The 
reward of the application must be reduced proportionally to 
the achieved accuracy. Note that such a procedure (of 
reward reduction) is initiated by the application at the 
event of non-admission (i.e., at least one of the 
application's task was not spawned in the targeted node). 
The reward reduction procedure essentially reinitiates 
another application, which may range from a simple 
redistribution of the existing tasks to the execution of a 
new algorithm. The initial application's tasks that were 
previously admitted in their targeted nodes are either 
canceled (if they are no longer needed by the reduced-
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reward application), or their reward is reduced (in order to 
correspond to the reward of the reduced-reward 
application).  

Moving to the node level we have to answer the 
question: How does the system-level reward influence the 
reward at the node level? One might suggest the system 
level reward to be separated among the different tasks (i.e., 
the parts of the application running at different nodes). 
This approach is wrong though. Consider the following 
scenario: We have two applications A and B of equal 
importance (reward =1). Application A is distributed in 2 
nodes and application B in 100 nodes. If we were to 
separate the unit reward equally, the tasks of application A 
would get 0.5 each, while the tasks of application B would 
get only 0.01 each. Consequently, the tasks of application 
B would have a much smaller probability to be executed 
(because they seem to offer so little) while at the system 
level the two applications are equivalent. Therefore, to 
avoid such problems we define the node level reward to be 

the system level reward . 

From the above discussion we conclude that there are 
two reward attributes {rattr1, rattr2} and they are defined as: 
{rattr1≡user priority∈(0,∞ ) (=1 by default for all users), 

rattr2≡application reward∈(0,1] (=1 for initial request [full 
accuracy information])}; rattr1 shows the importance of the 
user; rattr2 shows how far away is this application from its 
initial desired information (due to rejections of higher 
accuracy requests). These two attributes are "hinting" 
about the system level behavior of the application. The 

reward of a task is  reward = f2({rattr}) = rattr1⋅ rattr2. 

2.3. Policing attributes  

Finally, we need some attributes to specify some 
quantities for policing issues. Once a task has been 
admitted we need to make sure that its execution is 
beneficial to the user. After all, the admission was based on 
estimated values. In short we need to measure its true 
energy costs and make sure that together with its rewards, 
the task is beneficial to the user. To perform policing we 
need to know what is the proper time interval to measure 
energy costs (i.e., we want to take an interval large enough 
to avoid transient effects), as well as the granularity of 
reward return (i.e., is the reward returned as a whole at the 
end of the task execution, or is it gradually given as the 
task runs). Both these quantities are application specific, so 
we require the task to provide them in the form of policing 
attributes: pattr1≡energy-measurement time interval, 

pattr2≡minimum return-reward time interval. 

3. Calculating the AEL and Measuring 

Energy Costs During Execution  

In this section we will examine two sub-problems of the 
general energy management mechanism. We referred to 

the first problem in section 2.1; it is the AEL calculation 
problem. The second problem is the real-condition 
measurement of energy costs of the admitted tasks. 

3.1. Calculation of the AEL 

Consider a class of sharable devices with the following 
simple sharing rule: Devices in this class are used for 
amounts of time; if two or more tasks use the same device 
concurrently the energy consumption is the same as only 
one task uses the device. Examples of such devices are: the 
radio in receive-mode and the sensing device. Given that a 
task specifies the time that is using such a device as well as 
the total task time in {eattr}, we can know the fraction of 
total time the device is used by the task. Having this 
fraction and the usage fraction by all the currently 
executing tasks, how do we calculate E[AEL] (i.e., the 
mean added energy load) that the new task is bringing to 
the set of old tasks? 

 The core of the problem can be identified as following. 
Given that all the existing tasks in a node are using a 
device a fraction of the unit time p, and the new under-
admission task is using it a fraction of the unit time q, how 
much more (as a fraction of the unit time) will the device 
be used on the average, if the new task is  admitted? We 
name this quantity U. knowing U, the total task time and 
the device's power (i.e., energy spent per unit time) we can 
calculate AEL. Since U is calculated in the average sense, 
we are really calculating E[AEL]. The calculation of U is 
not very simple. It depends on the number of 
fragments/blocks comprising p and q. Let us first consider 
the two extremes of the problem. Infinite-block and one-
block p and q.  

If p and q are infinitely fragmented (with fragments 
randomly placed), they will occupy the whole [0...1] 
interval with uniform density. Any sub-interval will have 

the same properties. Specifically (1-p)⋅interval of any 
interval is free and we add q⋅free_interval if the new task is 
admitted. Thus the analytical solution is given by equation 

1. qpU ⋅−=∞ )1(  eq.(1) The same solution is derived if 

we considered only one of p or q to be infinitely 
fragmented. Analytical solutions exist for the one-block 
and n-block cases too. Due to lack of space they cannot be 
given here but the interested reader can refer to [2]. 

The practical question is how does the Ui differ from 
the U∞. A full report is given in [2]; here we just 
summarize the results: For increasing i the difference is 
decreasing. For i=1 the maximum difference is 0.07 and 
for i=5 the maximum difference is 0.01. Generally we 

expect a large number of fragments for p and q, so the U∞ 
becomes an excellent estimate having the added advantage 
of easy computation. 
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3.2. Real-condintion measurement of energy costs 

Being able to calculate the U and the AEL for specific 
devices, and generally the total energy cost of a specific 

task based on {eattr} and  N N , is important during admission 
but is not enough once a task is being admitted. This  is 
because: 1){eattr} are estimations of the devices’ usage (the 
task behavior is influenced also by local state), and 2) even 
if we had an accurate view of the devices’ usage, sharable 
devices make the computation of AEL in the average sense 
Once the task is being admitted we have more data on its 
behavior and we would like to exploit them in order to 
acquire more accurate energy cost measurements.  

It would be useful to list what we need and why we 
need it. First we need to know the accurate usage of each 
device by all the admitted tasks cumulatively. This 
information will be used in the admission control to derive 
the energy cost of an examined task. Essentially, this 
information is the NN  we are requiring to help us compute 
the energy cost of a new task. Second we need to know the 
accurate AEL of any subset of the admitted tasks with 
respect to the rest of the admitted tasks. In other words: if 
we were to reject any subset of tasks, how much energy we 
would have saved? The ability to calculate this quantity is 
needed while policing the admitted tasks. To calculate all 
the above quantities each device needs to keep a usage 
profile for each admitted task (i.e., when, and for how long 
was a time-sharing device used by task i). To keep such 
profiles we need support by the devices. The framework in 
[4] makes provisions for usage profiles to be kept. 

4. Admission Control and Policing 

Thus far we demonstrated how to derive the node-level 
energy cost (henceforth denoted as s) and the node-level 
reward (denoted as r) for a task that wishes to execute in a 
particular node of remaining energy n. The node has an 

overall value VP (t) according to its admission policy P and 

the task requests received up to time t. If a task is admitted, 
reward r is added to the overall value of the node. If a task 
is rejected, while the remaining energy is enough to 
accommodate it (i.e., n>=s) then r is subtracted from the 
overall value as a penalty. If there is not enough energy to 

accommodate a task, VP is left unchanged. An admission 

control policy P  specifies if a task is admitted given r, s, 

and n. That is, P( r, s, n )∈{0, 1}, 0 denoting rejection and 
1 denoting acceptance. 

The problem of admission control is to specify the 

optimal P  so as the VP accumulated until the remaining 

energy is zero, is maximized. This problem is reminiscent 
of the well-known knapsack problem. In our case though, 
the items that undergo admission (i.e., the tasks) are not all 
known a priori but instead they are coming as requests, as 

time passes. Furthermore, their rewards r, and costs s, are 
not fixed but are distributed following a joint distribution 
function Frs. This enhanced version of the knapsack 
problem is called Dynamic and Stochastic Knapsack 
Problem (DSKP), and it was previously studied in 
operations research [7][10]. In [7] an optimal admission 
policy for DSKP is discovered. Inspired by the solution in 
[7] we solved our specific problem, obtaining the desired 
optimal policy. The solution given here is self-contained 
and does not require any knowledge from [7]. The 
reference is only made to acknowledge our initial 
inspiration for the solution. 

Imagine a node with remaining energy n. We define the 

quantity V(n) as the expected overall value VP the node 

accumulates until its remaining energy is zero, under some 

policy P . V(n) for any policy is given by the recursive 
formula in equation 2. 

V(n) = P(task i accepted) ⋅⋅ { E[ri | task i accepted] + 

E[V(n-si) | task i accepted] } + P(task i rejected) ⋅⋅ V(n) - 
P(task i rejected and n>= si) ⋅⋅ E[ri | task i rejected and 
n>= si]     eq.(2) 

E[] denotes average value, P() denotes probability, and | 
denotes  "given that". The formula simply states that if a 
task i is accepted the new value is  ri + V(n-si) (i.e., reward 
plus the expected value of the remaining energy), if a task 
is rejected we still have the expected value of our current 
energy, and if the rejection was not forced (i.e., si≤ n) then 
ri is subtracted form the expected value. 

If we assume that r and s take discrete values and we 
know their joint distribution function Frs, equation 2 is 
transformed to equation 3. We can also assume continuous 
values and just replace the sums with integrals and the joint 
distribution function with a joint probability density 
function in equation 3. We chose discrete values to 
facilitate numerical computations. 

eq.(3)),(),()(

),()(),()(
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Solving for V(n) we get equation 4. 

∑

∑∑∑
−

⋅−⋅−+⋅

= ≥

rejecteditasksr

iirs

snandrejecteditasksr

iirsi

accepteditasksr

iirsi

accepteditasksr

iirsi

ii

iiiiiii

srF

srFrsrFsnVsrFr

nV

:,

:,:,:,

)),(1(

),(),()(),(

)(

         eq.(4) 

If an admission policy does not depend on V(n), then 
the summation indexes do not depend on V(n). In such a 
case we can easily calculate equation 6 recursively, starting 
with V(0) = 0. Two examples of policies that do not 
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depend on V(n) are: 1)accept all tasks (i.e., no policy), and 
2)accept tasks if r/s >= threshold. If a policy does depend 
on V(n) (e.g., the optimal policy, as shown later) then it is 
harder to compute V(n). Fortunately, for the optimal policy 
we are able to find an iterative algorithm that converges 
fast and computes V(n). 

Let us see now how is the optimal admission control 
policy defined. Assume that we do follow the optimal 
policy so that we have an expected value Vopt(n) for 
remaining energy n. If a task arrives at this point and we 
are indeed faced with a decision (i.e., n>=s) we can 
calculate the value for both outcomes of the decision. If the 
task is accepted the overall value will become r + Vopt(n-s). 
If the task is rejected the overall value will become Vopt(n) 

- r. The decision is evident now: If r + Vopt(n-s) >= Vopt(n) 

- r we admit the task otherwise we reject it. This gives us 
the optimal policy. 

P  opt(r, s, n)










>
−−

<

≤
−−

≥
=

nsOR
snVnV

rif

nsAND
snVnV

rif

optopt

optopt

2

)()(
0

2

)()(
1

 eq.(5) 

Going back to equation 4, we observe that with the 
optimal policy the summation indexes are affected by 
V(n). So equation 4, apart from being a recursive formula, 
it now becomes a highly non-linear equation of V(n). As 
stated earlier though, we constructed an iterative algorithm 
that converges fast towards V(n). The details of the 

algorithm and the convergence properties are beyond the 
scope of this paper. The interested reader can refer to [3]. 

Figures 1, 2, 3, and 4, are plotting V(n) versus n for a 
variety of policies (including the optimal) and for four joint 
distribution functions Frs. Rewards take values in the 
interval [0.1...5] with granularity 0.1. Costs take values in 
the interval [1...50] with granularity 1.For the first 
distribution function, r and s are independent and uniform. 
For the rest of the distribution functions, r and s are 
correlated following different types of correlation. If we 
know (or can estimate) all the possible tasks along with 
their energy costs, their rewards, and their occurrence 
probabilities, then we can compute Frs. If this information 
is not available we can still perform quite well with “blind” 
policies, as we will see by the analysis of figures 1-4. 

From figures 1-4 we observe that with the optimal 
admission policy we earn up to 48% more in V(n) (48%  
achieved for the Frs in Figure 4) than with no policy (i.e., 
accept all tasks i, given that si≤ n). With uniform Frs the 
optimal policy achieve a 27% increase in V(n). For the Frs 
in Figure 2 (where it is more probable to have large r with 
large s and vice versa) the optimal policy offers only a 5% 
increase of V(n). The figures also show the V(n) achieved 
by “ratio threshold” policies. We see that policies of some 
thresholds follow the optimum V(n) very closely, while 
others perform worse than the absence of policy, or even 
have negative slopes (e.g., the 0.19 threshold policy in 
Figure 4. 

Figure 1: V(n) for various policies and uniform Frs 
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Figure 2: V(n) for various policies and Frs (type1) 

 
 

Figure 3: V(n) for various policies and Frs (type2) 
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Figure 4: V(n) for various policies and Frs (type3)

The interesting part though is the properties of the 
optimal policy. From the figures we see a strong indication 
that Vopt(n) is linear with respect to n, ∀ n>n linear. In 
particular, nlinear seems to be equal to max(s)=50 from 
observing the figures. Trying to find nlinear by finding the 
point that the second derivative of Vopt(n) becomes zero, 
reveals the value nlinear =2max(s)=100. We should not 
forget though that these are numerically computed data 
with finite accuracy, thus it might also be the case that 
Vopt(n) is converging to be linear with respect to n, (or 
stated otherwise the second derivative of Vopt(n) is 
converging to zero). 

If we show that Vopt(n) is linear or converges to linear 
we can prove some interesting properties. Assume that 
V(n) = a⋅n + b, ∀ n>nlinear. Then V(n)-V(n-s) = a⋅s, ∀ s 

and ∀ n>nlinear+max(s) . Thus if Vopt(n) is linear with 
respect to n then the difference Vopt(n)-Vopt(n-s) is linear 
with respect to s. Going back to equation 5 and substitute 
Vopt(n)-Vopt(n-s) with a⋅s we get: 

P  opt(r, s, n)
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        eq.(6) 

Equation 6 states that if Vopt(n) = a⋅n + b, ∀ n>nlinear 
then the optimal policy is a “ratio threshold” policy 

with threshold a/2 ∀∀ n>nlinear+max(s). This observation 
explains the very good performance of some ratio 
threshold policies in the figures. If we choose the right 
threshold (i.e. close to a/2) then the resulting V(n) will 

closely follow Vopt(n) trailing only by a constant offset. 
The offset is created at the non linear region of V(n) (i.e., 
0<n<max(s)) where the optimal policy does not keep a 
constant ratio threshold. Another very important point to 
notice is that the optimal ratio a/2 does not change 
considerably for radically different Frs. The ratio of 0.065 
performs extremely well for all Frs tested. Thus even if Frs 
is unknown and we just know the max(r) and max(s), we 
can still achieve good performance by computing a/2 for 
one random Frs (e.g. the uniform). If Frs is known, the 
computation and storage needed to enforce the optimal 
admission policy is minimal. Concerning storage, we need 
to keep the values of V(n) for the non-linear region (i.e., 
0<n<max(s)) and the optimal ratio a/2. Concerning 
computation, we need to perform a division (r/s) and a 
comparison with a constant [a/2] for the linear region, or a 
comparison with the result of a subtraction  [V(n)-V(n-s)] 
for the non linear region. 

Finally, we wish to address the topic of policing. With 
the mechanisms described in section 3.2, our energy 
management system measures the energy cost of each 
admitted task with respect to the rest of the admitted tasks 
every pattr1 units of time. This  measurement acts as an 
estimation for the future remaining energy cost of each 
admitted task (named s′ i). This estimation is more accurate 
than the initial mean energy cost used by the admission 
policy. Thus, at any time t, we have an estimation of the 
remaining energy cost s′ i, and the remaining reward r′ i task 
i can offer (based on the initial ri, pattr2, and the total task 
execution time). Obviously this poses a policing problem. 
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Do we evict any tasks? When? Which ones? The “when” 
question is answered easily. The check is performed every 
time there is a change to the estimated energy cost or to the 
remaining reward of any task. The optimal policing 
strategy would be to get all possible subsets of the admitted 
tasks and consider them for eviction. For each (possibly) 
evicted subset compute the quantity: Vpol(tasks evicted) 
= ∑∑ −

evicteditaski

i

keptitaski

i rr

::

'' + Vopt( n - S(tasks kept) ) , where n 

is the remaining node energy and S(set_of_tasks)  is the 
estimation of the cumulative energy spend by the 
set_of_tasks till their completion. Naturally, S() is not 
simply the sum of individual costs since we have sharable 
devices. 

The subset that maximizes Vpol is the one that should be 
evicted (note that the empty set is a valid choice in this 
procedure). Given the non-linearity of function S we have 
to resort to brute force and simply check all possible 
subsets. For a total of k tasks currently admitted, there are 

∑ ⋅−
kl

llk

k

..0: !)!(

! possible subsets. Indicatively, for k= 5 the 

possible subsets are 32, and for k=10 they rise to 924. This 
might be a large number to check every time there is a 

change in one s′ i or r′ i. Thus we propose a heuristic for 
policing. Each time there is a change in one s′ i or r′ i we 
only check Vpol for the two extreme subsets (i.e., the 
“empty set”, and “all the currently admitted tasks”). If the 
Vpol for keeping all the tasks is larger than the Vpol for 
evicting all the tasks, do nothing. Otherwise, run the brute 
force algorithm and find the best subset of tasks to evict. 
The rationale behind this heuristic is that most of the time 
the tasks are well behaved and stay within their pre-
admission cost and reward ratio, so no task needs to be 
evicted. Our immediate plans include the evaluation of this 
heuristic and generally the exploration of the trade-off 
between Vpol achieved vs. computation made.  

5. Conclusions 

In this paper we are concerned with the problem of 
managing the finite energy in a WASN. Given a finite 
energy amount and a sequence of application requests 
(chosen among a set of probable applications) with 
different energy costs and different rewards for the user, 
the question is to apply an admission control policy so as 
to maximize user rewards. Although the problem would be 
optimally solved at the system level, a mechanism that 
adopts such a viewpoint will require from the distributed 
applications to have full knowledge of each other or to 
exchange a large number of messages due to the large 
solution space. In either case a system-level solution 
becomes impractical for a WASN that hosts multiple, often 
transient users. Instead, we propose a mechanism that 
solves the energy management problem at the node level 
without requiring for the applications to directly 

communicate with each other. The application's system-
level behavior (i.e., distribution in nodes, choice of 
algorithm incorporated) is still application-specific but now 
it is decided by using the acceptance/rejection replies 
received from individual nodes, and not by direct 
negotiations with the other applications. Solving the 
problem at the node level first requires a proper 
formulation. The formulation reveals some sub-problems, 
such as calculating the Added Energy Load that a task is 
bringing to set of tasks already running in the node, and 
measuring the devices' usage profiles in real time. After 
these sub-problems are solved, the optimal admission 
policy is presented and analyzed. From the study of the 
numerical data we can see the gains one can receive by 
applying the optimal policy compared to the absence of an 
admission policy. Finally, we show that the optimal policy 
can easily be applied using the limited computation powers 
of a node, if we know the distributions of rewards and 
energy costs. Most importantly though, the optimal policy 
can be closely approximated by a minimally computational 
intensive "ratio threshold" policy, even in the absence of 
distribution information.  

6. References 

[1] R. Amirtharajah and A.P. Chandrakasan, "Self-powered signal 
processing using vibration-based power generation," IEEE Journal 
of Solid State Circuits, vol.33, no.5 May, 1998. 

[2] A. Boulis, "Calculation of AEL for sharable devices", TM-UCLA-
NESL-2003-01-001, http://nesl.ee.ucla.edu/TMs.  

[3] A. Boulis, "Method for numerically solving the optimum policy 
equation for admission control in WASNs", TM-UCLA-NESL-
2003-01-002, http://nesl.ee.ucla.edu/TMs.  

[4] A. Boulis, C. C. Han, and M. B. Srivastava, " Design and 
Implementation of a Framework for Efficient and Programmable 
Sensor Networks", To appear in proccedings of MobiSys 2003, 
San Fransisco, CA, May 5-8, 2003.  

[5] A. Chandrakasan, R. Amirtharajah, S.H. Cho, J. Goodman, G. 
Konduri, J. Kulik, W. Rabiner, and A. Wang "Design 
Considerations for Distributed Microsensor Systems,'' Proc. IEEE 
1999 Custom Integrated Circuits Conference (CICC '99), May 
1999, pp. 279-286 

[6] C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and 
Tasking of Sensor Networks”, SPIE's 14th Annual International 
Symposium on Aerospace/Defense Sensing, Simulation, and 
Control (Digitization of the Battlespace V), Orlando, Florida, April 
26-27, 2000. 

[7] A.J. Kleywegt and J.D. Papastavrou, "The Dynamic and Stochastic 
Knapsack Problem", Operations Research, 46, pp. 17-35, 1998. 

[8] John Kymisis, Clyde Kendall, Joseph Paradiso, and Neil 
Gershenfeld, "Parasitic Power Harvesting in Shoes," Second IEEE 
International Conference on Wearable Computing (ISWC), 
Pittsburgh, PA, October 1998. 

[9] P. Levis, D. Culler, “Maté: A Tiny Virtual Machine for Sensor 
Networks.” Proceedings of the 10th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS X), October 5-9 2002. 

[10] A. Marchetti-Spaccamela and C. Vercellis. "Stochastic on-line 
knapsack problems", Mathematical Programming, 68(1):73--104, 
Jan 1995. 

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03) 

0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE 


