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Abstract 
Ad hoc and peer-to-peer networks sometimes operate as voluntary resource sharing networks, relying on users’ 
willingness to spend their own resources for the common good. As the costs of such resource sharing (what we 
call “node participation”) outweigh the benefits perceived by the nodes, users are less likely to participate, 
compromising overall network goals. The contribution of this paper is to formalize some of the relevant tradeoffs 
as a first step toward the design of appropriate incentive structures. We formulate a game theoretic model for 
node participation and derive conditions that will lead to a socially desirable equilibrium. We also analyze the 
impact of threats posed by a rogue node in the network. 
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1 Introduction 
 
In this paper, we focus on networks where all nodes voluntarily perform services directly for one another, helping 
achieve a network-wide goal. Examples include grid computing, ad hoc, sensor, and peer-to-peer (P2P) networks1. 
We group such environments under the term voluntary resource sharing networks, where the resources being shared 
may include processing and forwarding capabilities, storage, files, and data aggregation. In many cases of interest, 
this cooperation happens in a distributed fashion, without a centralized controlling entity. 

Participation in such environments is often voluntary, with users perceiving some benefit in contributing. For 
instance, grid computing may rely on users’ perception of contributing towards a worthy goal by making available 
their idle CPU cycles for scientific research such as the SETI@Home project [12]. However, there are also costs to 
participating. For instance, in an ad hoc or sensor network, by forwarding packets for others a node may deplete its 
own limited energy resources. As the costs outweigh the perceived benefit, users are less likely to volunteer their 
resources, compromising the overall goal of the network.  
 
The contribution of this paper is to analytically model node behavior in voluntary resource sharing networks and 
quantify the cost/benefit tradeoffs that will lead nodes to volunteer their resources. We adopt a game theoretic 
approach, due to its applicability to modeling conflict and cooperation among rational decision-makers [1]. Game 
theory is a branch of mathematics that provides a suite of analytical tools to analyze the behavior and the 
motivations for such behavior among rational entities [5]. A broader discussion of the applicability of game theory 
to the study of ad hoc networks can be found in [14]. 
 
It is intuitive that, whenever incentives do not occur naturally (e.g., through altruistic motives), artificial incentives 
must be offered (e.g., in the form of payments or virtual currency) to ensure node participation. We define the 
socially optimal outcome as the situation where all nodes are willing to make their resources available to others. 

                                                 
1 We note that resource sharing in grid computing and ad hoc and sensor networks may be mandated, rather than 

voluntary, when all nodes are under the control of a single administrative entity. We do not include these 
environments under the classification of voluntary resource sharing networks. 



There may be other socially desirable outcomes: for instance, enough nodes are willing to forward packets for others 
to maintain connectivity in an ad hoc network. A situation where no node is willing to participate is clearly 
undesirable. 
 
The paper is structured as follows. We start by discussing some of the relevant literature on node participation and 
incentives. We then formulate a game theoretic model and derive conditions that will lead to a socially desirable 
equilibrium. We study such conditions under two different participation strategies adopted by the nodes. Next, we 
model the impact of threats imposed by a rogue node in the network. We conclude the paper by discussing practical 
considerations and directions for future work.  
 
2 Related Work 
 
Important parallels between peer-to-peer environments and ad hoc networks exist when considering the impact of 
selfish behavior (“free-riding”) on achieving socially-desirable equilibria. In peer-to-peer, the effectiveness of the 
system depends on the willingness of individuals to advertise and contribute files; in ad-hoc networks, the network 
may become partitioned unless nodes are willing to forward packets for others. In either case, in the absence of 
incentives the equilibrium is for nodes not to contribute to the network [15] [13]. 
 
There has been recent research in modeling file sharing networks (such as enabled by Kazaa and Gnutella) using 
game theory. If the nodes in the file sharing network are assumed to be rational and homogeneous, the analysis leads 
to a Nash equilibrium in which nodes do not to share their files, and their best strategy is to only download files and 
allow zero uploads [6]. The result is not surprising, as most of the file sharing problems are modeled based on some 
variant of the prisoner’s dilemma, which leads to socially non-optimal solutions [11] [8]. Note, however, that if this 
were the observed behavior of all the nodes participating in a peer-to-peer network, the network would cease to 
exist. [6] considers the presence of altruistic nodes (thereby some level of heterogeneity) in the network. In this 
heterogeneous network, not surprisingly, the Nash equilibrium is for the altruistic nodes to share their files, thereby 
leading to a better socially optimal state. 
 
To achieve a socially optimal equilibrium for a network with homogeneous nodes, different incentive mechanisms 
have been proposed in the literature. These incentives include establishing and maintaining a reputation index for 
every node in the network [11] [7], incorporating a tit-for-tat behavior based on past history of the other peers’ 
behavior [8], or providing virtual or real monetary incentives [3] [4]. 
 
It is interesting to note the significant overlap in the type of incentive mechanisms that have been suggested to 
achieve social optimality in peer-to-peer and wireless ad hoc networks. [9] and [2] suggest a reputation based 
scheme to invoke cooperation among nodes in an ad hoc network for relaying packets for one another in multi-hop 
communication. Also, tit-for-tat behavior based mechanisms [13] have been shown to be effective in solving the 
problem of misbehaving nodes in routing and forwarding. We also note that, since these incentive mechanisms 
require repeated interaction, it might be difficult to implement them effectively if the network exhibits high node 
mobility. Node mobility is a crucial consideration in repeated games, since it affects the chances of the nodes to play 
again with one another. It can improve the efficiency of the incentive mechanisms [15] or lead to better decision 
making by the nodes, as we will show in our analysis. 
  
The contribution of our work is to quantify the tradeoffs between the costs incurred and benefits accrued from 
participation, as perceived by nodes in the network. This is a necessary step in the design of appropriate incentive 
structures. 
 
3 Game-Theoretic Model 
 
We model node participation in an ad-hoc network as a strategic-form game G, where N is the finite, non-empty set 
of players, NjjS ∈)(  are the sets of actions available to each player, and NjiNij SU ∈∈ ℜ→× }:)({ s  are the 
utilities derived by each player when joint action s is taken by all players. (Note that we use bold notation for 
vectors.) In short, we can write: 

))(,)(,( NjjNjj USNG ∈∈=  .                                                     (1) 



We consider homogeneous actions to be available to all users: to share their resources ( 1=js ) or to refrain from 

sharing ( 0=js ). The joint action set is, therefore, n
jNj SS }1,0{=×= ∈ , where Nn = (the cardinality of set 

N). 
 
In such a game-theoretic formulation, the utility function is often the “weakest link,” due to the difficulty in 
assessing tradeoffs as perceived by individual users. In this work, we adopt general, intuitive assumptions about the 
utility function, without attempting to completely characterize such functions. In particular, we consider a user’s 
utility function to be the sum of two components:  

)()()( sss jjjU βα +=  .                                                                          (2) 
 
  )()(

,∑ ≠∈
=

jiNi ijj sαα s  is the benefit accrued by a user from others’ sharing of their resources. We assume 

0)0( =jα  and 0)( >sjα  if jk ≠∃  such that 0≠ks , as it is intuitive that a user will accrue non-
negative benefit from others’ willingness to perform services for it. 

 
 
  )()( jjj sββ =s  is the benefit (or cost) accrued by sharing one’s own resources with others. This may be 

negative, since there may be a cost to participating in the network (such as faster depletion of a node’s energy 
resources); it may also be positive, if there exist financial incentives for participation or if the user derives 
satisfaction in doing so. In either case, we assume this part of the utility functions to be dependent only on the 
node’s own chosen strategy. (Note that in peer-to-peer networks the cost of sharing ones’ resources may depend 
on how many other nodes also share, as this affects the number of file requests received by each node. 
Similarly, in ad hoc networks, the number of routing requests may increase if few nodes in the network are 
willing to forward packets. These effects are not captured in our current model.) Also, either way, 0)0( =jβ . 

 
The Nash equilibrium is considered a consistent prediction of the outcome of a game. A joint strategy s is a Nash 
equilibrium (NE) if no user can benefit from unilaterally deviating. If jss jjj ∀<⇒> 0)(0 β , then the only 
Nash equilibrium is for no nodes to participate. In other words, in the absence of incentives there is no voluntary 
resource sharing. We illustrate with a concrete example. 
 
Consider 3=N , ∑ ≠∈

=
jiNi ij s

,
)(sα  and js5.1)( −=sβ . The choice of utility function here is arbitrary, as 

the same conclusions hold for any functions obeying the assumptions outlined above. Similarly, the number of 
participants in the game is chosen for ease of visualization and does not affect the results for any n > 1. For this 
game, the utilities accrued by each player for every strategy profile are tabulated in Figure 1. The reader can verify 
that the only NE is (0,0,0); clearly, this is an inefficient outcome, as (1,1,1) would be a Pareto optimal strategy.  
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Fig.1.  Concrete example. Boxes are labeled with utility values for users 1, 2 and 3, respectively, for each possible joint strategy 

in 3}1,0{ . 
4 Repeated Games 
 
The prisoner’s dilemma is probably the most well known example in game theory. Similarly to the example above, 
it achieves a non-optimum equilibrium when played once. However, other equilibria are achievable when the game 



is repeated, provided that players do not know a priori how many repetitions of the game there will be. This provides 
the inspiration for the development below. 
 
Consider a repeated game, played K times, where K is a geometrically distributed discrete random variable with 

parameter 10 << p . Therefore, ,...2,1,0,)1(][ =−== kppkKP k  and
p

pKE −
=

1][ . Note that, as 

1→p , the probability that the game will be repeated approaches 0. The geometric distribution is chosen for its 
memoryless property.  
 
4.1 Grim Trigger Strategy 
Consider a grim-trigger strategy [5] adopted by all nodes: share as long as all other nodes share; do not share if any 
of the others have deviated in the previous round. The trigger is activated when any one node decides to switch from 
the desired behavior (sharing resources) and is grim as the nodes do not switch their action back once the 
punishment (not sharing) is initiated. 
 
If no node deviates, at any time a user’s expected payoff from that point forward is: 

p
N

ppkN ii

k

k
ii
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 .                                                      (3) 

If, on the other hand, a node unilaterally deviates, its expected payoff from that point forward is simply )1( −Niα . 

So, it is a Nash equilibrium for all nodes to participate as long as, i∀ , 

p
N i

i −
−

>−
1

)1(
)1(

β
α  .                                                                           (4) 

 
We offer an interpretation of this result. If 0)1( >iβ , i.e., if the user derives some benefit or satisfaction from 
sharing her own resources with others, then, not surprisingly, it is always an equilibrium to participate. More 
interestingly, when 0)1( <iβ  (i.e., there is a cost in sharing one’s resources), then a socially optimal equilibrium is 
still sustainable. The precise cost/benefit tradeoff is given by the inequality above. 
 
We also note that, in an ad hoc network, the time horizon for the repetitions of a game (characterized by parameter 
p) can be interpreted as having a direct relationship with a user’s mobility. In this sense, the more mobile users are, 
the less incentive there is to share one’s resources (the closer p is to 1). 
 
The results above assume an all-or-nothing policy: if any node deviates (refuse to share) in one round, all others will 
deviate in the next round. In the next section, we explore the robustness of a “softer” policy that does not require all 
nodes to share their resources. 
 
4.2 An Alternative Strategy 
Let us denote by )(k

is  the strategy adopted by node i  in the thk  round of the game. Suppose a node adopts the 
following strategy:  in every round k of the repeated game, a node decides to share its resources as long as the 
following condition is satisfied: 

( )
p

s j
jiNi
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−
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)1( β
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We study the stability of this desirable equilibrium in relation to the probability of the game being repeated. We 
perform a simulation to determine whether a deviation in a single node’s strategy (due to variation in nodes’ 
perceptions of whether the game is likely to be repeated) will result in a cascading effect on the other nodes and lead 
to a shift to an equilibrium where all nodes decide not to share their resources.  
 



It is clear that if nodes do not believe the game will be repeated (p = 1) the game reduces to a single stage game and 
all nodes shift their strategy. However, we wish to determine, as a function of the number of nodes in the network, 
the value of p at which the cascading behavior is observed and the equilibrium shifts for every node. In the 
simulation, for a fixed value of cost incurred by a node in sharing (i.e., ββ =)1(i ), we vary the number of nodes 
in the system and establish what values of p will still support a socially desirable equilibrium. In our simulation, 
each node accrues a different benefit that it derives from other node’s willingness to share resources. The function 

∑ ≠∈
=

jiNi ijj sA
,

)(sα , with jA  being taken from a uniform distribution between [0,1]. However, the cost 

incurred by each node in sharing is same. The simulation is repeated for different values of β. Each point plotted is 
the average of 200 repetitions of the simulation. 
 
The plot in Figure 2 can be interpreted as follows. For each value of β, we plot the maximum value of p  that will 
still lead to a desirable equilibrium. When more nodes are present, the desirable equilibrium is more robust to 
players’ exogenous beliefs about the repeatability of the game (and, in a practical interpretation for ad hoc networks, 
that equilibrium is more robust to node mobility). Also, as the cost of participation (β ) increases, the desirable 
equilibrium requires players to believe that the game has a high probability of being repeated (corresponding to a 
low value of p ). As discussed before, 1=p  corresponds to a single stage game; the node knows that the game 
will not be repeated (at least, not with the same neighbors), always leading to non-cooperation. It is interesting to 
note, however, that if the number of players is high enough (i.e., if the network is dense enough), a socially desirable 
equilibrium is achievable even for values of p  arbitrarily close to 1. 

 
 

Fig. 2. Depending on node density, desirable equilibria are achieved even if nodes think there is a low likelihood of the game 
being repeated (corresponding to 1→p ) 

 
5 Rogue Nodes 
 
We now build upon this game to consider the risk posed by rogue nodes in the network. Some examples of the 
penalty that regular nodes in a resource sharing network may suffer from the presence of rogue nodes are 
enumerated in Table 1. Since we consider the presence of different kinds of nodes in the network, this can be 
modeled as a game of incomplete information, where the identity of rogue nodes in the network is not known a 
priori by other nodes. We introduce parameter jT  to characterize the identity of different types of nodes in the 

network. N is the set of players, NjjS ∈)(  the action set, NjjT ∈)( describes the possible types of player j, 



and Nj
n

ijNijj Ttp ∈
−

−∈ →×⋅ }]1,0[:)|({ 1 are conditional probabilities ascribed by player j to the types of other 

players, given that player j is of type jt . The utility functions are now a function of both the collective actions of 

players and their types, as denoted by Njj tU ∈)},({ s . The Bayesian game Γ  [10] can be expressed as: 

))(,)(,)(,)(,( NjjNjjNjjNjj UpTSN ∈∈∈∈=Γ  .                                         (6) 

We consider that nodes in a network can be of two types ( NjTj ∈∀= }1,0{ ): regular nodes ( 0=jt ) accrue 

benefits from participation as described in the previous game we considered; rogue nodes ( 1=jt ) accrue benefits 
from others’ active participation in sharing their own resources. The presence of rogue nodes in the network 
decreases the utility of regular nodes. Examples include any node that is responsible for the threats summarized in 
Table 1. For concreteness, we assume regular nodes accrue a fixed reward R > 0 from sharing their resources when 
no rogue nodes are present, and a fixed penalty P < 0 when rogue nodes are present. We summarize the components 
of the utility function of regular nodes below: 
 
For }0:{ =jtj : 
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The interesting question becomes: what values of reward and penalty and what sets of beliefs by player j will lead 
her to decide to share her resources with the network? 
 
We assume that rogue nodes know about the presence of regular nodes in the network, but not vice-versa, and let 

jθ  denote the probability ascribed by player j that there is a rogue node in the network. It is reasonable to assume 
that it is a dominant strategy for rogue nodes to always share their own resources, for instance so that they can 
“blend in” better with regular nodes2. Let us then consider the expected utilities of a regular node j: 
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A benefit for sharing one’s own resources exists if and only if: 

j

j
jj P
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θ

θ
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−
>⇒>−+

1
0)1(  .                                             (10) 

Therefore, the higher the probability ascribed by a player to the presence of a rogue node in the network, the larger 
the reward needs to be with respect to the penalty, for the player to share her resources. 
 
Social welfare in voluntary resource sharing networks is maximized when all nodes volunteer their resources. The 
inequality above implies that welfare is maximized when 

                                                 
2 This assumption is not required for the results we derive to hold; however, they simplify the derivation that 
follows. 
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We are currently exploring mechanisms for detecting the presence of rogue nodes, such as distributed trust 
management schemes. Robust mechanisms to this end will in effect reduce jθ  in our model and decrease the 
incentives (reward R) required to lead nodes to participate.  
 
6 Conclusions and Future Work 
 
A non-trivial conclusion from the results presented here is that nodes may agree to share their resources even if they 
perceive a cost in doing so. This happens as the nodes recognize that refusing to participate will result in similar 
behavior by others, which ultimately would compromise the viability of the network as a whole.  
 
Clearly, a game theoretic model does not completely capture all aspects of node participation in a real ad hoc 
network. However, it provides useful insight into incentive mechanisms that are needed to induce node participation. 
It also opens up some important questions, which are the subject of our current research: 
  If one’s decision to participate is dependent on other nodes’ behavior, how does a given node reliably assess 

other node’s decision to make their resources available? 
  Mobility may influence the incentives necessary for participation. In our model, this is captured by the 

parameter p , which expresses a node’s belief that the game will be repeated with the same neighbor. A better 
understanding of the effects of mobility is needed. 

  In formulating the impact of the threat of rogue nodes on other nodes’ behavior, we assumed exogenous beliefs. 
In other words, regular nodes have pre-established beliefs about whether rogue nodes are present. We are 
exploring distributed trust management mechanisms that would result in nodes’ ability to isolate uncooperative 
or malicious participants in the network. 

 
We are also in the process of extending the model presented here to consider individual strategy sets ]1,0[=jS , 
i.e., a continuum that allows for partial participation by a node. As mentioned earlier in the paper, we also 
investigate utility functions where the cost of participation )(sjβ depends on the joint actions by all players, rather 
than only on node j’s action. 
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Table 1 - Benefits and threats from voluntary resource sharing. 
 

Environment Benefit perceived by 
participating nodes 

Cost to participating 
nodes 

Threats from the 
presence of rogue nodes 

Grid computing Societal benefits (e.g., 
research advances); 
financial incentives (e.g., 
[3]) 

Usage of CPU cycles 
affecting the performance 
of the node’s own 
applications 

Compromising of the 
integrity and secrecy of 
local data; protection of 
local data and processing 
resources from 
unauthorized access 

Ad hoc networks Enabling of multi-hop 
communications 

Increased energy 
consumption leading to a 
reduction in node lifetime 

Increased likelihood of 
detection in hostile 
environments 

Sensor networks Increased confidence in 
sensed information; 
aggregation of data 

Increased energy and 
bandwidth consumption 

Interception of critical or 
confidential information  

Peer to peer Distribution of information; 
trade of music/video files 

Sharing of bandwidth and 
disk space 

Collection of personal 
information for 
marketing purposes 

 


