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We continue the development of methods for enumerating nodal curves on smooth complex surfaces, extending
the range of validity. We apply the new methods in three important cases. First, for up to eight nodes, we prove
Göttsche’s conjecture about plane curves of low degree. Second, we prove Vainsencher’s conjectural enumer-
ation of irreducible six-nodal plane curves on a general quintic threefold in four-space, which is important for
Clemens’ conjecture and mirror symmetry. Third, we supplement Bryan and Leung’s enumeration of nodal
curves in a given homology class on an Abelian surface of Picard number 1.
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1 Introduction

This paper is the second in a series devoted to the enumeration of nodal curves on smooth complex surfaces. The
first paper [19] focuses on curves in a “suitably” ample linear system on a fixed ambient surface. This second
paper treats more general systems and variable surfaces, and it extends the range of validity. (This paper was once
entitled, “Node polynomials for families: results and examples”; however, the words “results” and “examples”
mislead some readers, and so were changed.) Here we develop some general methods. However, the importance
of methods is in their applications, and we apply the new methods in three important cases: curves of low degree
in the plane, plane curves on a threefold in four-space, and homologous curves on an Abelian surface.

Nodal plane curves were enumerated, for up to three nodes, in the third quarter of the nineteenth century, and
the general problem has recently been revived; the history is reviewed in Remark 3.7. In particular, Göttsche
conjectured in [11, Conj. 4.1, p. 530], that, for each r, if Nr(m) denotes the number of curves of degree m with
r nodes through m(m + 3)/2− r general points, then Nr(m) is given by a certain “node” polynomial of degree
2r in m for m ≥ r/2 + 1, which is just the range of m where the locus of nonreduced curves is too small to
interfere. Our first main result, Theorem 3.1, establishes Göttsche’s conjecture for r ≤ 8.

Theorem 3.1 could be derived from Theorem (1.1) of [19] and the recursive enumerative formula of Caporaso
and Harris [4, p. 353]; see the end of Remark 3.7. However, we proceed differently for three reasons. First, our
lemmas are also needed to prove our second main result, Theorem 4.1. Second, our enumeration is independent
of those of other authors, including Caporaso and Harris. Third, our approach may eventually lead to a proof
of Göttsche’s conjecture for all r, whereas the alternative approach requires evaluating Caporaso and Harris’s
formula at least once for each r, an absurd project.

Theorem 4.1 enumerates, for m ≥ 4, the 6-nodal plane curves of degree m on a general threefold of degree
m in 4-space, or what is the same, its 6-tangent 2-planes. This enumeration provides a nice application of our
machinery in the case of a nontrivial family of ambient surfaces. The family consists of all the planes in 4-space,
parameterized by the Grassmann variety; so each surface is the same, but the family is nonconstant. The curves
are those cut out on the planes by the threefold. The number of curves is given by a certain “node” polynomial
of degree 18 in m.
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70 Kleiman and Piene: Node polynomials for families

This enumeration was originally done by Vainsencher [34]. Indeed, his paper inspired this one and its com-
panions [19] and [20]; our work just refines and extends his. Here, notably, we develop some new ways of
extending the range of validity of the enumerations. For example, for plane curves on threefolds, Vainsencher’s
Propositions 3.5 and 4.1 imply only that there exists some undetermined integer m0 such that the enumeration is
valid for m ≥ m0, whereas we prove validity for m ≥ 4.

The case m = 5 is particularly important because of Clemens’ conjecture and mirror symmetry. Clemens’
conjecture [7, p. 639] asserts notably that, on the general quintic threefold, there are only finitely many rational
curves of each degree, and all are smooth. Their number was predicted in 1991 in a dramatic application of mirror
symmetry, its first application to enumerative geometry. This enumeration is revisited several times in Cox and
Katz’s lovely text [9].

These irreducible 6-nodal plane quintics are rational, but singular! So this part of Clemens’ original conjecture
is false, and is not made part of the conjecture’s modern formulation [9, p. 202]. Furthermore, mirror symmetry
includes these 6-nodal curves in its count. However, Pandharipande [9, (7.54), p. 206] found something worse:
each 6-nodal curve has six previously unconsidered double covers. So, in degree 10, mirror symmetry simply
produced the wrong number. It cannot be the number of all rational curves, smooth and singular! It is too large
by six times the number of irreducible 6-nodal curves.

The irreducible 6-nodal curves too were originally enumerated by Vainsencher in [34, pp. 513–514], and we
recover his number in our third main result, Theorem 4.3, basically pursuing his approach, but following our own
improved way through the computations. Namely, we use Theorem 4.1 to obtain the number of all 6-nodal curves,
and from it, we subtract the number of reducible ones. Far more importantly, we again advance Vainsencher’s
work by establishing, for the first time, the validity of the numbers involved.

Our fourth and last main result, Theorem 5.2, enumerates the irreducible curves having r nodes and lying in
a given homology class γ on an Abelian surface A with Picard number 1. Say γ has self-intersection number d,
and is m times the positive primitive class. Set g := d/2− r + 1, and let Ng,r be the number of curves through g
general points. Theorem 5.2 asserts that, if r ≤ 8, then Ng,r is given by a certain polynomial of degree r + 1 in
g for g > g0, where g0 is a certain number depending on m and r, but not on A. The nine polynomials are listed
in Table 5.1.

The first theorem of this sort was proved by Bryan and Leung [3, Thm. 1.1, p. 312], using symplectic methods.
Their theorem is valid for any r and g, provided A is generic in the following sense: given the underlying
topological space, the complex structure of A is generic among those for which the given class γ is algebraic. It
follows (as stated in the proof of [3, Lem. 5]) that A has Picard number 1 and that γ is primitive, that is, m = 1.
By contrast, we fix A, not γ; moreover, our methods are algebraic-geometric and rather different. Thus, for r ≤ 8
and g > g0, our work recovers and extends theirs by different means.

Bryan and Leung expressed the Ng,r essentially as follows:

∑
r≥0

(Ng,r/g)qr =

(∑
k≥1

kσ1(k)qk−1

)g−1

where σ1(k) :=
∑
d|k

d .

Say the logarithms of the left and right sides are
∑

r≥1 arq
r/r! and (g − 1)

∑
r≥1 brq

r/r!. Then ar = (g − 1)br

for r ≥ 1. Moreover, b1, . . . , b8 are these integers:

6, −12, 168, −2448, 46944, −1071360, 29064960, −921110400 .

Furthermore, there is a weighted homogeneous polynomial Pr of degree r such that

Ng,r = gPr(a1, . . . , ar)/r! .

The Pr are defined by the formal identity (2.2), and are known as the Bell polynomials. They appear in all our
enumerations, although in the case at hand they enter our work somewhat differently.

Closely related is the enumeration of the r-nodal curves lying in a given linear-equivalence subclass and
passing through g − 2 general points. Various cases have been discussed by various authors, and their work is
surveyed in Remark 5.4. In particular, Göttsche conjectured a generating function similar to the one above for
Ng,r , and Bryan and Leung proved it when A is generic in the above sense. Supplementing their work, we can
modify the proof of our Theorem 5.1 to prove Göttsche’s conjecture when r ≤ 8 and m > (3r + 5)/2.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr. 271 (2004) / www.mn-journal.com 71

All our enumerations are carried out on the basis of Theorem 2.5. Its statement is implicit in Section 4 of
[19]; its proof is outlined there, and is completed in [20]. Here, notably we refine our treatment of the key cycles.
In [19], they are placed under unnecessarily stringent genericity hypotheses, which likely are not satisfied in the
present circumstances. So we must adopt a more liberal definition of these cycles, and develop suitable conditions
that imply the cycles have the right support and are reduced.

More precisely, Theorem 2.5 concerns a smooth, projective family of surfaces, π : F → Y , where Y is equidi-
mensional and Cohen–Macaulay. In Section 4 of [19], mistakenly, Y is not assumed to be Cohen–Macaulay; on
the other hand, unnecessarily, Y is assumed to be reduced, and the surfaces π−1(y), to be irreducible.

Let D ⊂ F be a Y -flat closed family of curves. Denote its rational equivalence class by v, and the Chern
class ci

(
Ω1

F/Y

)
by wi. Partition Y into locally closed subsets: one Y (∞) where the fibers Dy have a mul-

tiple component, and each other where the Dy have a given equisingularity type. Given r, assume that, if
nonempty, Y (∞) has codimension at least r+1 and that each remaining nonempty subset has codimension at least
min(r + 1, c) where c is its expected codimension.

Consider the set of y ∈ Y where the Dy are r-nodal. Theorem 2.5 asserts that this set is either empty or
exactly of codimension r; either way, its closure is the support of a natural nonnegative cycle U(r). Furthermore,
if r ≤ 8, then the class [U(r)] is equal to Pr(a1, . . . , ar)/r! where Pr is the Bell polynomial, where aq := π∗bq ,
and where bq is a certain polynomial in the classes v, w1, w2.

In order to apply Theorem 2.5, we must check that the relevant subsets of Y have appropriate codimensions.
To do so, we modify several arguments in [19], and thereby obtain better results. In the case of an ambient
Abelian surface, basically we replace the Gotzmann regularity theorem and Bertini’s theorem by the Beltrametti–
Sommese k-very ampleness theorem. In the case of curves in the plane, we take a different tack: we work
directly on Y using some of Greuel and Lossen’s results about equisingular families of curves. Finally, in the
case of 6-nodal plane curves on a threefold, we derive what we need from our work with curves in the plane.

In each case, therefore, Theorem 2.5 provides us with an enumerating cycle U(r) and an effective expression
for its class [U(r)]. To complete the enumeration, we must show that U(r) is reduced so that we know that
each r-nodal curve is counted with multiplicity 1. We do so by carrying a bit further our analysis of the relevant
subsets of Y . Finally, we need to work out the cycles bq, aq, and Pr. This work is done in Section 4 of [19] for
any linear system on any fixed surface, and so it applies in particular to the case of curves in the plane. In the
remaining two cases, the details are explained, but the more mechanical calculations are omitted.

In short, in Section 2, we state the general enumeration theorem, Theorem 2.5, and explain its ingredients: the
Bell polynomials, the polynomials giving the bq in terms of v, w1, w2, the key subsets of Y , and the enumerating
cycle U(r). In Sections 3, 4, and 5, we work out in detail the three cases: the plane, a threefold in four-space,
and an Abelian surface.

2 The general theorem

In this section, we discuss the general enumeration theorem, Theorem 2.5, that we use in the following sections.
In Remark 2.7, we conjecture a possible generalization.

Let Y be an equidimensional Cohen–Macaulay scheme of finite type over the complex numbers. Let π : F →
Y be a smooth projective family of surfaces, and D a relative effective divisor on F/Y . Fix r ≥ 0, and consider
the points y ∈ Y parameterizing the curves Dy with precisely r nodes.

Theorem 2.5 says that these y are enumerated by a cycle U(r), and that if r ≤ 8, then the rational equivalence
class [U(r)] is given by a universal polynomial in the classes y(a, b, c) that are defined as follows:

y(a, b, c) := π∗vawb
1w

c
2 where v := [D] and wi := ci

(
Ω1

F/Y

)
. (2.1)

The only hypotheses are that certain key subsets of Y have appropriate dimensions.
The universal polynomial has a special shape, which makes it much easier to find and evaluate. Namely, define

auxiliary polynomials Pi(a1, . . . , ai) via this formal identity in t:

∑
i≥0

Pit
i/i! := exp

(∑
j≥1

ajt
j/j!

)
. (2.2)
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For example, P0 = 1, and P1 = a1, and P2 = a2
1 + a2, and P3 = a3

1 + 3a1a2 + a3. If we assign aj weight j,
then Pi(a1, . . . , ai) is weighted homogeneous of degree i. These polynomials are known as the (complete) Bell
polynomials, and have been studied by a number of authors; see Comtet’s book [8, pp. 144–148].

The universal polynomial can be obtained from Pr(a1, . . . , ar)/r! by replacing each aq by a certain linear
combination of the y(a, b, c) with a + b + 2c = q + 2. Equivalently, we can set aq := π∗bq where bq is a certain
weighted homogeneous polynomial of degree q+2 in v, w1, w2 if we assign v and w1 weight 1 and w2 weight 2.
The bq are given by a simple algorithm; it was stated informally in Section 4 of [19], and is stated in pseudo-code
in Algorithm 2.3 below.

Algorithm 2.3. Pseudocode for the bq(v, w1, w2)

INPUT: indeterminates v, w1, w2.
OUTPUT: polynomials bq(v, w1, w2) for q = 1, . . . , 8.

FUNCTION: Q(i, R).

INPUT: an integer i and a polynomial R(v, w1, w2).
LOCAL: an indeterminate e.

R′ := R
(
v − ie, w1 + e, w2 − e2

)
.

R′′ := the remainder in e of R′ on division by
(
e3 + w1e

2 + w2e
)
.

RETURN: Q(i, R) := −Coeff
(
R′′, e2

)
.

x2 := v3 + v2w1 + vw2.

FOR s FROM 0 TO 2 DO

bs+1 := Ps(Q(2, b1), . . . , Q(2, bs))x2.

x3 := v6 + 4v5w1 + 5v4
(
w2

1 + w2

)
+ v3

(
2w3

1 + 11w1w2

)
+ v2

(
6w2

1w2 + 4w2
2

)
+ 4vw1w

2
2 .

FOR s FROM 3 TO 6 DO

bs+1 := Ps(Q(2, b1), . . . , Q(2, bs))x2 − s(s − 1)(s − 2)Ps−3(Q(3, b1), . . . , Q(3, bs−3))x3.

x4 := v10 + 10v9w1 + v8
(
40w2

1 + 15w2

)
+ v7

(
82w3

1 + 111w1w2

)
+ v6

(
91w4

1 + 315w2
1w2 + 63w2

2

)
+ v5

(
52w5

1 + 29w3
1w2 + 324w1w

2
2

)
+ v4

(
12w6

1 + 282w4
1w2 + 593w2

1w
2
2 + 85w3

2

)
+ v3

(
72w5

1w2 + 464w3
1w

2
2 + 259w1w

3
2

)
+ v2

(
132w4

1w
2
2 + 246w2

1w
3
2 + 36w4

2

)
+ v
(
72w3

1w
3
2 + 36w1w

4
2

)
.

b8 := P7(Q(2, b1), . . . , Q(2, b7))x2 − 7 · 6 · 5 P4(Q(3, b1), . . . , Q(3, b4))x3 + 3281 · 7! x4.

Hypothesis (i) of Theorem 2.5 concerns the set Y (∞) of y ∈ Y such that the curve Dy has a multiple
component, or equivalently, is nonreduced. Now, let D be a “minimal Enriques diagram” as defined in Section 2
of [19]. Hypothesis (ii) concerns the (locally closed) set Y (D) of y ∈ (Y − Y (∞)) such that Dy has D as its
associated diagram.

Briefly put, these D are abstract combinatorial structures that represent the equisingularity types of reduced
curves on smooth surfaces. The D associated to a curve C is made from its directed resolution graph Γ. Weight
Γ with the multiplicities of the strict transforms of C, and equip Γ with the binary relation of “proximity”; by
definition, one infinitely near point of C is proximate to a second if the first lies on the strict transform of the
exceptional divisor of the blowup centered at the second. By the theorem of embedded resolution, almost all
infinitely near points have multiplicity 1, and are proximate solely to their immediate predecessors. Form all
the infinite unbroken successions of these points, and consider the corresponding vertices in the weighted and
equipped Γ; remove these vertices to get D.

From D, we can, in principle, determine all the numerical invariants of the equisingularity class of C. Six
such invariants were studied in Sections 2 and 3 of [19], and they will be used here; so we recall them now. Each
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is given by a formula in these basic numbers:

mV := the multiplicity, or weight, of the vertex V ∈ D ,

frs(D) := the number of free vertices in D ,

rts(D) := the number of roots in D ,

where a root is an initial vertex and a free vertex is one that is not proximate to a remote predecessor (so a root is
free). Each remaining vertex is proximate to two vertices, and is said to be a satellite of the more distant of the
two.

The six numerical invariants are the following:

dim(D) := rts(D) + frs(D) , δ(D) :=
∑
V ∈D

(
mV

2

)
,

deg(D) :=
∑
V ∈D

(
mV + 1

2

)
, r(D) :=

∑
V

(
mV −

∑
W�V

mW

)
,

cod(D) := deg(D) − dim(D) , µ(D) := 2δ(D) − r(D) + rts(D) ,

where W � V means that W is proximate to V . The numbers in the right column are, respectively, equal to the
δ-invariant, the number of branches, and the Milnor number of C. The numbers in the left column have geometric
meanings, which were discussed in Section 3 of [19], and will become clear when we use them.

For example, if C has precisely r nodes, then its diagram consists simply of r roots of multiplicity 2; this
diagram is denoted rA1. If C has a simple cusp, then its diagram consists of three vertices: a root of multiplicity
2, followed by a free vertex of multiplicity 1, followed by a final vertex of multiplicity 1 and proximate to the
root. This diagram is denoted A2. Many more examples are discussed in Section 2 of [19]; in fact, there is there
a classification of all the D with a single root R and with cod(D) ≤ 10 (whence mR ≤ 4) and also of all those
D with mR ≤ 3.

The following lemma will be used to prove the first assertion of Theorem 2.5.

Lemma 2.4 Only finitely many distinct minimal Enriques diagrams arise from the fibers of D/Y .

P r o o f. As C ranges over the fibers, the numbers dimH1(OC) are bounded, say by p. Fix a relatively ample
sheaf on F/Y ; then the numbers deg C are defined, and they too are bounded, say by m. Fix an arbitrary reduced
C, and let f : C′ → C be the normalization map. Then the number of connected components of C is equal to
dimH0(OC), and the number of irreducible components of C is equal to dimH0(OC′). Hence

dimH0(OC) ≥ 1 and dimH0(OC′) ≤ m .

Consider the standard short exact sequence,

0 −→ OC −→ f∗OC′ −→ f∗OC′/OC −→ 0 .

In view of the preceding paragraph, this sequence yields the bound,

dimf∗OC′/OC ≤ p + m − 1 .

Let D be the diagram of C. Then dimf∗OC′/OC = δ(D) by the Noether–Enriques theorem; see [19,
Prop. (3.1), p. 220]. Hence, by the definition of δ(D),∑

V ∈D, mV ≥2

mV /2 ≤ δ(D) ≤ p + m − 1 .

Thus the number of vertices V with mV ≥ 2 is bounded, and the weights mV themselves are bounded.
It remains to bound the number of vertices V with mV = 1. Each free V determines a distinct branch by [19,

Lem. (2.1), p. 214]. So the number of free V is bounded by r(D), which is equal to the total number branches of
C through all of its singular points [19, Prop. (3.1), p. 220]. Hence, by Part (i) of Lemma 3.5 in the next section,
the number of V with mV = 1 is bounded by

∑
mR where R ranges over the roots of D. However,

∑
mR is

bounded by virtue of the last display in the preceding paragraph. The proof is now complete.
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We can now state our general theorem, and prove its first assertion. The rest of the proof is found in [20]. (See
also Section 4 of [19].)

Theorem 2.5 In the above setup, assume
(i) if Y (∞) �= ∅, we have cod Y (∞) ≥ r + 1, and

(ii) for each D such that Y (D) �= ∅, we have cod Y (D) ≥ min(r + 1, cod D).
Then either Y (rA1) is empty, or it has pure codimension r; in either case, its closure Y (rA1) is the support of
a natural nonnegative cycle U(r). Furthermore, if r ≤ 8, then the rational equivalence class [U(r)] is given by
the formula

[U(r)] = Pr(a1, . . . , ar)/r! where aq := π∗bq

and bq is a certain polynomial in v, w1, w2, namely, that output by Algorithm 2.3.

P r o o f. In the relative Hilbert scheme Hilbr
F/Y , form the open subscheme H(r) parameterizing the sets G

of r distinct points in the fibers of F/Y . Re-embed H(r) in Hilb3r
F/Y by sending a G to the subscheme defined

by the square of its ideal; this embedding is well defined because F/Y is smooth. Next, form the intersection

Z(r) := H(r) ∩ Hilb3r
D/Y ,

its closure Z(r), and the fundamental cycle
[
Z(r)

]
. Push

[
Z(r)

]
down to Y ; the result is, by definition, U(r).

On Y , the image of Z(r) contains, as a dense subset, the image of Z(r). The latter image consists of Y (∞)
plus the set of all y ∈ (Y − Y (∞)) such that Dy has r or more distinct singular points. The latter condition
implies that the minimal Enriques diagram D of Dy has r roots or more. So, cod(D) ≥ r, and cod(D) = r if
and only if D = rA1 (because no final vertex, or leaf, of D can be a free vertex of multiplicity 1). Hence, either
y ∈ Y (D) with cod(D) > r or else y ∈ Y (rA1). Also, the fiber of Z(r) over y is finite, and it has cardinality 1
if y ∈ Y (rA1); moreover, the image of Z(r) contains Y (rA1).

Each component of Z(r) is of dimension at least dim (Y ) − r, because H(r) is of dimension dim (Y ) + 2r

and because Hilb3r
D/Y is the zero scheme of a regular section of a bundle of rank 3r on Hilb3r

F/Y . Now, by the
preceding paragraph, the fibers of Z(r)/Y are finite off Y (∞), and have cardinality precisely 1 over Y (rA1).
Moreover, the image of Z(r) is contained in Y (rA1) plus the union of Y (∞) and certain Y (D) with cod(D) >
r; these D are finite in number by Lemma 2.4 above. Hence the hypotheses of the theorem imply that U(r) is a
cycle of pure codimension r, and its support is Y (rA1). The first assertion is now proved.

Since the characteristic is 0, a map between integral schemes has degree 1 if its fibers have cardinality one.
Hence the above considerations also yield the following lemma, which we use in conjunction with Theorem 2.5.

Lemma 2.6 The enumerating cycle U(r) is reduced if and only if the scheme Z(r) is reduced on an open set
that dominates Y (rA1).

Remark 2.7 It is natural to conjecture that the theorem generalizes to any r. More precisely, for any r, the
hypotheses of the theorem should imply that the class [U(r)] is given by a universal polynomial in the classes
y(a, b, c). Moreover, this polynomial should be of the form Pr(a1, . . . , ar)/r! where aq := π∗bq and bq is the
weighted homogeneous polynomial output by a suitable extension of Algorithm 2.3 and evaluated at v, w1, w2.

It is also natural to conjecture that the theorem generalizes so as to enumerate the y ∈ Y such that Dy

has a given equisingularity type, say that represented by a minimal Enriques diagram D. More precisely, set
r := cod(D), and let ρ be the number of roots of D. Then the hypotheses should imply that the closure of Y (D)
is the support of a natural positive cycle U(D), and its class [U(D)] is given by a universal polynomial of degree
ρ in the y(a, b, c) with a + b + 2c ≤ r + 2.

Evidence for this conjecture is provided by the case of a suitably general linear system on a fixed smooth
irreducible projective surface. First, Theorem (1.2) of [19, p. 210], enumerates the curves with a triple point
of a given type and additionally up to three nodes. Second, this conjecture implies Göttsche’s conjecture [11,
Rmk. 5.4, p. 532], which enumerates the curves with several ordinary multiple points.

It is easy to construct a natural candidate for the cycle U(D) by generalizing the construction of U(r). Namely,
set d := deg(D), and in Hilbd

F/Y form the set HF/Y (D) of points parameterizing the complete ideals with D
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as associated diagram. For example, H(rA1) = H(r).
(
The set HF/Y (D) is studied in Section 4 of [19] and is

studied further in [20].
)

Owing to the work of Nobile and Villamayor [25, Thm. 2.6 and Prop. 3.4], or to that of
Lossen [22, Prop. 2.19, p. 35], HF/Y (D) is locally closed; in fact, it is a smooth Y -scheme. Form the intersection

Z(D) := HF/Y (D) ∩ Hilbd
D/Y , its closure Z(D), and the fundamental cycle

[
Z(D)

]
. Push

[
Z(D)

]
down to

Y ; take the result to be U(D).
The support of U(D) contains, as a dense subset, the set of y ∈ Y such that the Enriques diagram of Dy

contains D. Hence the hypotheses of the theorem imply that the support of U(D) is equal to the closure of
Y (D).

3 Plane curves

Let Nr(m) be the (unweighted) number of reduced plane curves of degree m, that possess exactly r (ordinary)
nodes and that contain m(m+3)/2− r points in general position. In this section, for r ≤ 8, we prove Göttsche’s
conjecture [11, Conj. 4.1, p. 530], about Nr(m); more precisely, we prove Theorem 3.1, which is our first main
result. The proof relies on Theorem 2.5, which is solely responsible for the restriction r ≤ 8: if Theorem 2.5
is proved for more values of r, then Theorem 3.1 will follow for these same values. We end the section with a
survey of related work and with some instructive examples.

Theorem 3.1 Assume r ≤ 8 and m ≥ r/2 + 1. Then

Nr(m) = Pr(a1, . . . , ar)/r!

where Pr is the Bell polynomial, defined by Identity (2.2), and the aq are the quadratic polynomials in m listed
in Table 3.2.

Table 3.2. The polynomials aq(m) for plane curves

a1 = 3m2 − 6m + 3 = 3(m − 1)2

a2 = −42m2 + 117m− 75 = −3(m − 1)(14m − 25)

a3 = 1380m2 − 4728m + 3798

a4 = −72360m2 + 287010m− 271242

a5 = 5225472m2 − 23175504m + 24763752

a6 = −481239360m2 + 2334195360m− 2748951000

a7 = 53917151040m2 − 281685755520m+ 359332109280

a8 = −7118400139200m2 + 39618359640720m− 54066876993360

P r o o f. We apply Theorem 2.5. Let Y be the projective space parameterizing the plane curves of degree m,
so dim Y = m(m + 3)/2. Set S := P2 and F := S × Y , and let D ⊂ F be the total space of curves.

Consider the set Y (∞) of y ∈ Y such that the curve Dy has an s-fold component for some s ≥ 2. If m = 1,
then Y (∞) is empty. Suppose m ≥ 2. Then the Dy with s = 2 form a subset of maximal dimension, namely,
(m − 2)(m + 1)/2 + 2. Hence cod Y (∞) = 2m − 1. Since m ≥ r/2 + 1 by hypothesis, Hypothesis (i) of
Theorem 2.5 follows. Furthermore, its Hypothesis (ii) holds owing to Parts (i) and (ii) of Lemma 3.3 below.
Hence we may apply Theorem 2.5.

Theorem 2.5 implies that the closure of Y (rA1) is the support of a nonnegative cycle U(r), whose class
is equal to Pr(a1, . . . , ar)/r! · hr where the aq are certain integers and where h := c1(OY (1)). In fact, the
argument at the top of p. 232 of [19] shows that the aq are equal to certain linear combinations of the four basic
Chern numbers d, k, s and x. These combinations are listed on p. 210 of [19]. Moreover, since S := P2, the four
numbers are, respectively, m2, −3m, 9 and 3. Formal calculations now yield the values in Table 3.2.

Finally, U(r) is reduced by Lemma 3.4 below. Let M ⊂ Y be the linear space representing the plane curves
that contain m(m + 3)/2 − r points in general position. Then M ∩ U(r) is finite, reduced, and contained
in Y (rA1) by Lemma (4.7) on p. 232 of [19]. Hence Nr(m) is equal to Pr(a1, . . . , ar)/r!, and the proof is
complete.
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Lemma 3.3 Assume m ≥ r/2 + 1. Let Y be the projective space of plane curves of degree m, and let D be
a (nonempty) minimal Enriques diagram such that Y (D) �= ∅.

(i) If cod(D) ≤ r, then cod(Y (D), Y ) = cod(D) and Y (D) is smooth. Moreover, then Y (D) represents the
functor of D-equisingular families of plane curves of degree m (their parameter spaces need not be reduced).

(ii) If cod(D) ≥ r + 1, then cod(Y (D), Y ) ≥ r + 1.

P r o o f. Let C be a curve corresponding to an arbitrary (closed) point of Y (D). For a moment, suppose that
D consists of one vertex of multiplicity m. Then cod(D) =

(
m+1

2

)− 2. Furthermore, C has an ordinary m-fold
point. Hence Y (D) is smooth, it represents the functor, and cod(Y (D), Y ) = cod(D) owing to Greuel and
Lossen’s [12, Cor. 5.1 a), p. 339]. Thus Parts (i) and (ii) hold in this case.

For the rest of the proof, suppose therefore that D does not consists of one vertex of multiplicity m. Then C
is not a union of m concurrent lines. Now, deg C = m. So m ≥ 3.

Let τes be the colength of the global equisingular ideal of C in P2. If 4m > 4 + τes, then Y (D) is smooth, it
represents the functor, and cod(Y (D), Y ) = τes owing to Greuel and Lossen’s [12, Cor. 3.9 b) and d), p. 334],
which applies since C is not a union of m concurrent lines and since m ≥ 3.

Consider the multigerm of C along its singular locus, a corresponding miniversal deformation base space B,
and the subspace of equisingular deformations Bes. Then Bes is smooth and cod(Bes, B) = τes owing to Wahl’s
[35, Thm. 7.4, p. 162]. However, cod(Bes, B) = cod(D) by [19, Cor. (3.3), p. 222], (closely related formulas
were given by Wall [36, Thm. 8.1, p. 505], by Mattei [23, Thm. (4.2.1), p. 323] and by T. de Jong [15, Thm. 3.5];
the present authors are grateful to T. de Jong for pointing out the first two references). Thus τes = cod(D).

Suppose cod(D) ≤ r. Now, r ≤ 2m − 2 by hypothesis. Also, m ≥ 2; in fact, m ≥ 3. So 2m− 2 < 4m− 4.
Hence 4m − 4 > cod(D). So 4m > 4 + τes by the preceding paragraph. By the paragraph before it, Part (i)
therefore holds.

Suppose that cod(D) ≥ r + 1 instead. If 4m− 4 > cod(D), then as in the preceding case, cod(Y (D), Y ) =
cod(D), and so Part (ii) holds. So suppose that 4m − 4 ≤ cod(D). Now, cod(D) ≤ 2δ(D) by Part (v) of
Lemma 3.5. Hence 2m − 2 ≤ δ(D). Now, δ(D) is equal to the genus discrepancy by the Noether–Enriques
theorem; see [19, Prop. (3.1), p. 220]. Hence cod Y (D) ≥ δ(D), and if equality holds, then D = δ(D)A1,
owing to Zariski’s [37, Thm. 2, p. 220]. Now, for any s, we have cod(sA1) = s and δ(sA1) = s. Therefore,
if cod Y (D) = δ(D), then cod Y (D) = cod(D), and so Part (ii) holds in this case. However, if cod Y (D) >
δ(D), then codY (D) > 2m − 2 since 2m − 2 ≤ δ(D), and so Part (ii) holds in any case. The proof is now
complete.

Lemma 3.4 Consider the cycle U(r) of Theorem 2.5. If m ≥ r/2 + 1, then U(r) is reduced.

P r o o f. By definition, U(r) is the image on Y of the fundamental cycle of the closure Z(r) of the intersection
Z(r) := H(r) ∩ Hilb3r

D/Y . By Lemma 2.6, U(r) is reduced if Z(r) is reduced on an open set Z0 that dominates
Y (rA1). We now construct such a Z0 by taking the inverse image of a suitable dense open subset Y (rA1)0 of
Y (rA1), and then we prove that the map Z0 → Y factors through the reduced scheme Y (rA1)0 and that the
induced map Z0 → Y (rA1)0 is an isomorphism.

Take any dense open subscheme Y 0 of Y such that Y 0 ∩ Y (rA1) ⊂ Y (rA1), and denote the preimage
of Y 0 in Z(r) by Z0. Taking Y 0 smaller if necessary, we may assume that the map Z0 → Y 0 is finite. Set
D0 := D ×Y Z0. Via the projection to H(r), view Z0 as the parameter space of a flat family of r distinct points
in the fibers of F/Y ; denote the total space by W 0. Then, over a point of Z0, the fiber of W 0 is just the set of
r nodes of the the fiber of D0. Let W 0

(2) be the infinitesimal thickening of W 0 defined by the square of its ideal.

Since Z0 ⊂ Z(r), we have W 0
(2) ⊂ D0.

Let β : F � → F ×Y Z0 be the blowup along W 0. Set E� := β−1W 0, so E� is the exceptional divisor.
Set D� := β−1D0 − 2E�. Then D� is effective since W 0

(2) ⊂ D0. Moreover, the fibers of D�/Z0 are the

proper transforms of the fibers of D0/Z0. Hence D�/Z0 is smooth, and (D� ∩ E�)/Z0 is a family of r pairs of
distinct points. Thus, after localizing via the étale covering W 0/Z0, we obtain an rA1-equisingular section of
D0 ×Z0 W 0/W 0; in other words, D0/Z0 is an equisingular family of r-nodal curves. Now, Y (rA1) represents
the functor of such families by Part (i) of Lemma 3.3. Hence, the map Z0 → Y factors through the reduced
subscheme Y (rA1), so through its dense open subscheme Y 0 ∩ Y (rA1). Set Y (rA1)0 := Y 0 ∩ Y (rA1).
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The map Z0 → Y (rA1)0 is finite and surjective; moreover, its fibers have cardinality 1 by the analysis in the
middle of Section 2. To prove that this map is an isomorphism, it suffices, since the characteristic is 0, to prove
that each closed fiber is reduced. Suppose one isn’t. Then it contains a copy of Spec(A) where A := C + Cε is
the ring of dual numbers. Let C be the r-nodal curve in question. Then W 0 ⊗ A/A is an étale family supported
on the set of nodes of C. Furthermore, its infinitesimal thickening W 0

(2) ⊗ A is contained in C ⊗ A.
This situation is untenable. Indeed, work locally analytically at one of the nodes of C. Choose coordinates X ,

Y so that C : XY = 0. Say W 0 ⊗ A is defined by X − aε = 0 and Y − bε = 0. Then the ideal of W 0
(2) ⊗ A is

generated by the three polynomials,

X2 − 2aεX , XY − ε(aY + bX) , Y 2 − 2bεY .

However, this ideal does not contain XY . Thus the lemma is proved.

Lemma 3.5 Let D be a minimal Enriques diagram with one root R. Let S be the set of satellites of D, and
set e(D) := µ(D) + mR − 1. Then

(i) mR = r(D) +
∑

V ∈S mV ;

(ii) δ(D) ≤ cod(D), with equality if and only if D = A1;

(iii) cod(D) ≤ µ(D), with equality if and only if D is Ak, Dk, E6, E7, or E8;

(iv) µ(D) ≤ 2δ(D), with equality if and only if r(D) = 1;

(v) cod(D) ≤ 2δ(D), with equality if and only if D is either A2i, E6, or E8;

(vi) 2δ(D) ≤ e(D), with equality if and only if mR = r(D);
(vii) e(D) ≤ cod(D) + δ(D), with equality if and only if D = A1 or D = A2;

(viii) e(D) ≤ 2cod(D), with equality if and only if D = A1.

P r o o f. Consider Part (i). Let V and W be vertices, and write W �imm V if W is an immediate successor
of V . If not, but W is proximate to V , then W is a satellite of V . By the “law of proximity,” W cannot also be a
satellite of a second vertex. Now, by definition, r(D) :=

∑
V

(
mV −∑W�V mW

)
. Hence

r(D) =
∑
V

(
mV −

∑
W�immV

mW

)
−
∑
V ∈S

mV .

In the first sum, all the terms cancel except mR. Thus Part (i) holds.
Consider Part (ii). Denote the set of free vertices other than R by F. Since R is the only root, the definitions

yield

cod(D) − δ(D) =
∑
V

((
mV + 1

2

)
−
(

mV

2

))
− 1 − frs(D)

=
∑
V

mV − 1 − frs(D)

= (mR − 2) +
∑
V ∈F

(mV − 1) +
∑
V ∈S

mV .

(3.1)

Since mR ≥ 2, the last term is nonnegative. Moreover, it vanishes if and only if mR = 2, and mV = 1 for all
V ∈ F, and there are no satellites. However, the latter three conditions hold if and only if D = A1; see [19,
Section 2]. Thus Part (ii) holds.

Consider Part (iii). The definitions yield

µ(D) − cod(D) = 2δ(D) − deg(D) + 2 + frs(D) − r(D) .

Now, frs(D) is simply the total number of vertices less the number of satellites; so

frs(D) =
∑
V

1 −
∑
V ∈S

1 .

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



78 Kleiman and Piene: Node polynomials for families

Hence Part (i) yields

µ(D) − cod(D) =
∑
V

(
2
(

mV

2

)
−
(

mV + 1
2

)
+ 1
)

+ (2 − mR) +
∑
V ∈S

(mV − 1)

=
(

mR − 2
2

)
+
∑
V ∈F

(
mV − 1

2

)
+
∑
V ∈S

(
mV

2

)
.

The last term is nonnegative. Moreover, it vanishes if and only if (1) mR is 2 or 3, and (2) mV is 1 or 2 for all
V ∈ F, and (3) mV is 1 for all satellites V . However, the latter three conditions hold if and only if D is either
Ak , Dk, E6, E7, or E8; see [19, Section 2]. Thus Part (iii) holds.

Part (iv) follows immediately from the definition of µ(D) since r(D) ≥ 1.
Part (v) follows immediately from Parts (iii) and (iv) and from Table 2-1 of [19, p. 219], which lists the values

of r(D) for all the D in question.
Consider Part (vi). The definitions of e(D) and µ(D) yield

e(D) − 2δ(D) = mR − r(D) . (3.2)

Now, mR ≥ r(D) by Part (i), and Part (vi) follows.
Consider Part (vii). Together (3.1) and (3.2) yield

cod(D) + δ(D) − e(D) = r(D) − 2 +
∑
V ∈F

(mV − 1) +
∑
V ∈S

mV .

Suppose r(D) ≥ 2. Then the right side is nonnegative. Since every free vertex of multiplicity 1 must be followed
by a satellite, the right side vanishes if and only if r(D) = 2 and there are no other vertices than the root, hence,
if and only if D = A1.

Suppose r(D) = 1. Then there is at least one satellite by Part (i). Hence, the right side is nonnegative. It
vanishes precisely when there is just one free vertex other than R and just one satellite, and both have weight 1.
The latter condition implies mR = 2 by Part (i) since r(D) = 1. So the condition holds if and only if D = A2.
Thus Part (vii) holds.

Finally, Part (viii) follows immediately from Parts (vii) and (ii). Thus the lemma is proved.

Remark 3.6 Lemma 3.5 is purely combinatorial. However, it can be interpreted geometrically, as asserting
properties of an arbitrary curve C belonging to Y (D). Indeed, r(D), δ(D), and the other numerical characters
of D are equal to corresponding characters of C. All but e(D) were treated in [19, Section 3]; however, e(D) is
equal to the multiplicity of the Jacobian ideal, owing directly to Teissier’s work [33, 1.6, p. 300].

Correspondingly, Lemma 3.5 can be proved via alternative geometric arguments. For example, the inequality
cod(D) ≤ µ(D) of Part (iii) just says that the modality mod(C) is nonnegative. Indeed, mod(C) = µ(C) −
τes by Greuel and Lossen’s [12, Lem. 1.3, p. 326], and τes = cod(D) by the proof of Lemma 3.3 above.
Alternatively, µ(C) ≥ τes because the equisingular ideal contains the Jacobian ideal by Wahl’s work [35]; see
the proof of Prop. 6.1, top of p. 159.

Similarly, the inequality e(D) ≤ 2cod(D) of Part (viii) holds because the equisingular, equiclassical, and
equigeneric ideals form an ascending chain. Indeed, the inequality was proved this way by Greuel, Lossen, and
Shustin in [13, Lem. 2.2, p. 601]. (However, there’s a typo in the proof: the colengths of the equiclassical and
equigeneric ideals are transposed.) These authors and others write “κ” instead of “e”.

Remark 3.7 The formula N1(m) = 3m2 − 6m + 3 was given by Steiner [31, p. 499] in 1848, but it was
probably known earlier. After all, N1(m) is simply the number of singular members of a general pencil of plane
curves of degree m. So N1(m) is just the degree of the discriminant of a general ternary form of degree m,
viewed as a polynomial in its coefficients, because the discriminant is the resultant (or “eliminant”) of the three
partials.

The formula N2(m) = 3/2(m − 1)(m − 2)(3m2 − 3m − 11) was given by Cayley [5, Art. 33, p. 306] in
1863. He considered a varying pencil, and formed its “double discriminant.” One factor has N2(m) as its degree.
Cayley determined the degrees of the other two factors and the degree of the double discriminant, then he divided.
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The same formula was found a little differently by Salmon [29, Appendix IV, p. 506] (there is a typo: a “1”
instead of an “11”). Salmon acknowledged Cayley’s work, saying: “Mr. Cayley had arrived at these numbers by
a different process in a Memoir communicated to the Cambridge Philosophical Society, but not yet published.”
First, Salmon computed the number of curves with either two nodes or one cusp, 9/2(m−1)(m−2)

(
m2−m−1

)
;

then he subtracted the number of curves with one cusp, 12(m − 1)(m − 2). (See also the bottom of p. 361 in
Salmon’s [30].)

The formula for N2(m) was recovered implicitly via a third method by S. Roberts [27, p. 276] in 1867. At the
bottom of p. 275, he said his work agrees with Salmon’s.

The formula N3(m) = 9/2m6− 27m5 +9/2m4 +423/2m3− 229m2− 829/2m+525 was given implicitly
by Roberts [28, pp. 111–112] in 1875. His primary interest lay in his new method for obtaining the degree of the
polynomial condition that three ternary equations have three common solutions. As an application, he discussed
the theory of the reciprocal, or dual, surface of a surface of degree m in P3. In effect, he determined the numbers
β of curves with one tacnode and γ of curves with one node and one cusp; he explicitly gave the formulas,

β = 50m2 − 192m + 168 ;

γ = 12(m − 3)
(
3m3 − 6m2 − 11m + 18

)
.

He also explicitly gave the formula,

β + γ + N3(m) = 1/2
(
9m6 − 54m5 + 81m4 + 63m3 − 190m2 + 11m + 90

)
.

However, he did not solve for N3(m), which he denoted by t.
The formulas for N1(m), N2(m), and N3(m) were recovered implicitly, and analogous formulas for N4(m),

N5(m), and N6(m) were obtained explicitly, by Vainsencher [34, p. 515] in 1995. Vainsencher did not discuss
the validity of these particular formulas, but his general results, Propositions 3.5 and 4.1, do imply that there
exists some undetermined m0 such that, for m > m0, the formulas do hold.

The formulas for N1(m), N2(m), and N3(m) were recovered explicitly by Harris and Pandharipande [14]
later in 1995. They used an interesting new method, involving the geometry of the Hilbert scheme of points in
P2 and the Bott residue formula. In 1997, in the paragraph before Definition 3.4 and in Prop. 3.6 in [6], Choi
derived from Ran’s Theorem 5 in [26] that Nr(m) is, for every r and m > r, given by a polynomial in m of
degree 2r.

A recursive formula was obtained by Caporaso and Harris [4, p. 353] in 1998, which makes it possible to
compute Nr(m) for every r and m. From this formula, though, it is not at all clear that, when r is fixed, Nr(m)
is given by a polynomial of degree 2r in m for m > m0 for some m0. Nevertheless, as Göttsche observed in [11,
Rmk. 4.2, p. 530], and Choi observed in [6, Rmk. 3.5.2], if it is assumed that Nr(m) is given by such a “node”
polynomial for a known m0, then it is possible to work out the coefficients.

Given a specific value for m0, such as Choi’s value m0 = r mentioned above or the value m0 = 3r − 1 for
r ≤ 8 given in Thm. (1.1) of [19], it would be possible to use Caporaso and Harris’s formula to check the validity
of the values given by the polynomial for m0 ≥ m ≥ r/2 + 1. Thus, given an r and an m0, it would be possible
to prove Göttsche’s conjecture [11, Conj. 4.1], and so, for r ≤ 8, to obtain another proof of Theorem 3.1.

Example 3.8 It is useful to look at some basic examples. First, note that, for any given m, there are several
special ranges for r. For r ≤ min(2m − 2, 8), the formula Nr(m) = Pr(m)/r! holds by Theorem 3.1. For
r = 2m − 1, the sets Y (rA1) and Y (∞) have the same dimension when both are nonempty; see the first
part of the proof of that theorem. Both sets are empty when m = 1, but Y (∞) is nonempty for m ≥ 2.
For r > (m − 1)(m − 2)/2, if y ∈ Y (rA1), then Dy is reducible; otherwise, Dy would have strictly negative
geometric genus since (m−1)(m−2)/2 is equal to its arithmetic genus p. For r = m(m−1)/2, if y ∈ Y (rA1),
then Dy is the union of m lines. Finally, for r > m(m − 1)/2, the set Y (rA1) is empty; indeed, applying the
argument in the middle of Lemma 2.4 with C := Dy , we see that r ≤ p + m− 1, with equality if and only if Dy

has m irreducible components.
Suppose m = 1. Then Dy is a line for every y ∈ Y . So N0(1) = 1, and Nr(1) = 0 for r ≥ 1. On

the other hand, direct computation yields P0(1) = 1, and Pr(1) = 0 for r = 1, 2, but P3(1)/3! = 75. Thus
Nr(1) = Pr(1)/r! holds for r = 0, 1, 2 but not for r = 3. The hypothesis m ≥ r/2 + 1 of Theorem 3.1 fails
for r ≥ 1. However, the hypotheses of Theorem 2.5 are satisfied for every r. Hence, the proof of Theorem 3.1
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shows that the formula Nr(1) = Pr(1)/r! must hold for r = 0, 1, 2. For r ≥ 3, the value of Pr(1) is irrelevant
since U(r) vanishes by reason of dimension.

Suppose m = 2. Then Nr(2) = Pr(2)/r! holds for r = 0, 1, 2 by Theorem 3.1. If y ∈ Y (A1), then Dy is a
line-pair. So N1(2) is the number of line-pairs through four points in general position. This number is

(
4
2

)
/2, or 3,

since two of the four points will determine one of the lines, and the remaining two points will determine the other.
Now, Y (D) is empty for any D other than A1. So Nr(2) = 0 for r ≥ 2. On the other hand, direct computation
yields P1(2) = 3 and P2(2) = 0, but P3(2)/3! = −32. Thus Nr(2) = Pr(2)/r! checks for r = 1, 2.

The equation Nr(2) = Pr(2)/r! fails, however, for r = 3, although Theorem 2.5 nearly applies. Indeed, all
the relevant Y (D) are empty, and Y (∞) has its expected codimension, namely 3, but Hypothesis (i) requires
cod Y (∞) > 3. In fact, Y (∞) is the Veronese surface in Y = P5. So two general hyperplanes intersect each
other and Y (∞) in four distinct points. If each hyperplane represents the conics that contain a given point in P2,
then the four points of intersection coalesce in the point that represents the double-line through the two points
in P2. Since P3(2)/3! = −32, this double-line may be interpreted as four coincident double-lines, each the
equivalent of −8 three-nodal conics.

Finally, consider the case m = 5 and r = 8. Here, N8(5) is the number of 8-nodal quintics through 12 points
in general position. Since 8 > (5 − 1)(5 − 2)/2, these quintics are reducible. So each is either the union of two
smooth conics and a line, or the union of a nodal cubic and a line-pair. Hence

N8(5) =

(
12
5

)(
7
5

)
2

+ N1(3)

(
12
8

)(
4
2

)
2

= 8316 + 17820 = 26136 .

Therefore, Theorem 3.1 implies that P8(5) = 26136× 8!.
The value of P8(5) can be used to determine the multiplier 3281 · 7! of x4 in b8 in Algorithm 2.3. Indeed,

as indicated in [19, Section 4], residual intersection theory shows that x4 appears with some multiplier, whose
value does not vary with F/Y and D. Hence this value can be determined from any particular example that can
be worked out by other means.

4 Threefolds in four-space

In this section, we enumerate the 6-nodal plane curves on a general threefold in 4-space, recovering Vainsencher’s
formula. In fact, we correct a typo: the multiplier 5 appearing in Theorem 4.1 is lacking in [34, p. 522]. More
importantly, we establish the formula’s validity, which was left unaddressed in [34]. Then, in Theorem 4.3, we
rederive the number of irreducible 6-nodal plane quintic curves on a general quintic threefold; again we follow
Vainsencher’s approach [34, pp. 523–524] (recovering his number), but also establish the number’s validity. Its
significance is recalled in the introduction.

Theorem 4.1 In P4, consider a general threefold Q of degree m. If m ≥ 4, then Q contains precisely the
following number of 6-nodal plane curves of degree m:

5(m18 − 12m17 + 24m16 + 155m15 − 405m14 + 1082m13 − 18469m12 + 66446m11

− 192307m10 + 1242535m9 − 4049006m8 + 11129818m7 − 53664614m6 + 166756120m5

− 415820104m4 + 1293514896m3 − 2517392160m2 + 1781049600m)/6! .

P r o o f. Let’s apply Theorem 2.5 again. Fix r ≤ 6. Let Y be the Grassmann variety of 2-planes H in P4, and
Q the tautological rank-3 quotient of O5

Y . Let

F := P(Q) ⊂ Y × P4 (4.1)

be the total space of planes, π : F → Y and p : F → P4 the projections. Set

D := F ∩ (Y × Q) .

Since Q is smooth, Q contains no 2-plane H ; otherwise, there’d be a normal-bundle surjection, NH/P4 →→
NQ/P4 |H , in other words, OH(1)2 →→ OH(m); so 3 × 2 ≥ (m + 2)(m + 1)/2, contradicting m ≥ 3. Since Q
contains no H , each Dy is a curve of degree m. Hence D is a relative effective divisor on F/Y . Moreover,

OF (D) = p∗OP4(m) . (4.2)
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Consider the set Y (∞) of y ∈ Y such that the curve Dy has a multiple component. To check Hypothesis (i)
of Theorem 2.5, it suffices to prove cod Y (∞) = 2m − 1 if Y (∞) �= ∅, because 2m − 1 > r as m ≥ 4 and
r ≤ 6. Let’s count constants.

Let U be the scheme of all smooth quintic threefolds, and P the scheme of all quintic curves in the fibers of
F/Y

(
so P is P

(
Sym5(Q∗)

)
. Form the natural map,

λ : U × Y −→ P ;

it’s given by λ(Q, H) = Q∩H . Now, λ is the restriction to U ×Y of a family over Y of linear projections; each
has, as domain, the projective space of all quintic threefolds, and as center at H ∈ Y , the subspace of threefolds
containing the plane H . Hence, λ is smooth, and has irreducible fibers (conceivably λ is not surjective).

Let P∞ ⊂ P be the subset of quintic curves with a multiple component. The fibers of P∞/Y have codimen-
sion 2m−1 by the analysis at the beginning of the proof of Theorem 3.1. So, λ−1P∞ has codimension 2m−1 if
it’s nonempty. Now, Y (∞) is just the fiber of λ−1P∞ over Q ∈ U , and Q is general. Hence cod Y (∞) = 2m−1
if Y (∞) �= ∅, as desired. Thus Hypothesis (i) of Theorem 2.5 is satisfied.

Hypothesis (ii) is also satisfied, as the same argument shows. Indeed, in the plane, the corresponding condition
is satisfied by Lemma 3.3, which applies since m ≥ 6/2 + 1.

Therefore, we may apply Theorem 2.5. We conclude that the closure Y (rA1) is the support of a nonnegative
cycle U(r), whose class [U(r)] is given by the formula

[U(r)] = Pr(a1, . . . , ar)/r! where aq := π∗bq

and bq is the polynomial in v, w1, w2 output by Algorithm 2.3.
In the present case, U(r) is reduced, as the same argument shows when developed a little further. Indeed,

in the plane, the corresponding cycle is reduced by Lemma 3.4. Moreover, by Lemma 2.6, U(r) is reduced if
and only if Z(r) is reduced on an open set that dominates Y (rA1). So consider the open subset on which Z(r)
is reduced. This subset can be shown to dominate Y (rA1) by developing the same argument as the formation
of Z(r) and Y (rA1) is compatible with the constructions involved. Therefore, the desired number of curves is
equal to the degree

∫
[U(6)].

To compute the degree
∫

[U(6)], set

h := c1

(OP4(1)
)

and qi := ci(Q) .

Recall the Euler exact sequence:

0 −→ Ω1
F/Y (1) −→ π∗Q −→ OF (1) −→ 0 .

It and Formula (4.2) yield the following formulas:

v = mp∗h and w1 = π∗q1 − 3p∗h and w2 = π∗q2 − 2p∗hπ∗q1 + 3p∗h2 . (4.3)

By reason of dimension, hj = 0 for j > 4, and π∗p∗hj = 0 for j = 0, 1; moreover, it is well-known and easy to
see that

π∗p∗h2 = [Y ] and π∗p∗h3 = q1 and π∗p∗h4 = q2
1 − q2 . (4.4)

It is now a mechanical matter to compute the aq , and then [U(6)], as polynomials in m, q1, and q2. Finally,
standard Schubert calculus on Y yields the following degrees:∫

q6
1 = 5 ,

∫
q4
1q2 = 3 ,

∫
q2
1q

2
2 = 2 ,

∫
q3
2 = 1 . (4.5)

It is now a mechanical matter to complete the proof.
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Remark 4.2 Other enumerations fall out of the proof of Theorem 4.1. Indeed, the proof shows that the cycle
U(r) is reduced for every r, and that its class can be computed mechanically as a polynomial in m, q1, and q2. It
follows, for example, that in P4 a general threefold of degree m ≥ 4 contains precisely

5m9/6 − 5m8 + 11m7/2 + 23m6/6 + 17m5 + 359m4/6 − 1165m3/3 + 1024m2/3 + 40m

3-nodal plane curves whose plane meets three lines in general position.
Indeed, these curves are enumerated by the intersection of U(3) and the three special Schubert cycles defined

by the three lines. The intersection is reduced by the theorem of transversality of the general translate [18, Cor. 4,
p. 291] (which applies because the characteristic is 0). The class of each Schubert cycle is q1. Hence the number
of curves is just

∫
[U(3)]q3

1 , and its value can be computed mechanically.

Theorem 4.3 In P4, a general quintic threefold contains precisely 17, 601, 000 irreducible 6-nodal plane
curves of degree 5.

P r o o f. (Compare with Vainsencher [34, pp. 523–524].) For m = 5, the formula in Theorem 4.1 yields the
number 21617125. From it, we must subtract the number of reducible curves. Each is, plainly, one of two types:
(1) the transversal union of a smooth conic and a smooth cubic, or (2) the transversal union of a line and a binodal
quartic. Each reducible curve is counted with multiplicity 1; indeed, all 21617125 curves are by the theorem. So
we may count set-theoretically.

A general quintic Q contains precisely 609250 smooth conics, thanks to the work of S. Katz (see [17, (2),
p. 175]). Each conic determines a plane, and it meets Q partially in the conic and residually in a cubic. The
cubic is smooth and meets the conic transversally because Q is generic. Indeed, form the space of all triples
(H, A, B) where H is a plane, A is a conic in H , and B is a cubic in H . Form the subset U of (H, A, B)
such that A and B are smooth and meet transversally in H . Clearly U is open and dense. So its complement R
has smaller dimension. Hence, counting constants as in the proof of Theorem 4.1, we conclude that there is no
(H, A, B) ∈ R such that A ∪ B ⊂ Q. Thus the first subtrahend is 609250.

A general quintic Q contains precisely 2875 lines (see [17, (1), p. 175]). Fix one, L say. We must enumerate
those planes H that meet Q partially in L and residually in a binodal quartic that meets L transversally. We do
so by building on the proof of Theorem 4.1; in particular, we use its notation.

In the Grassmannian Y of all planes H , form the Schubert variety YL of all H that contain L. Correspondingly,
in the total space F , form the preimage FL := π−1YL. Also, in the space U of all smooth quintic threefolds,
form the subspace UL of those that contain L. Then Q ∈ UL. In fact, we may assume that (Q, L) is a general
pair in the space of all such pairs, for this space is irreducible by Katz’s Lemma 1.4 of [16, p. 153]. In particular,
Q is a general point of UL. Finally, set

DL := FL ∩ (YL × Q) and D′ := DL − (YL × L) ; (4.6)

so the fibers of DL/YL are the quintic curves cut out by Q, and the fibers of D′/YL are the residual quartic
curves.

In the space P of all quintic curves in the fibers of F/Y , form the subspace PL of those with L as a component,
and form the natural map,

λL : UL × YL −→ PL ,

the restriction of λ. So λL is the restriction to UL × YL of a family over YL of linear projections; each has, as
domain, the projective space of all quintic threefolds containing L. In the latter projective space, UL is open and
nonempty. Hence, λL is smooth, and has irreducible fibers.

Let’s apply Theorem 2.5 with r := 2 to D′/YL. Hypotheses (i) and (ii) can be checked by counting constants
just as in the proof of Theorem 4.1, after replacing Y , U and P with YL, UL and PL, because PL may be
viewed as the space of all quartics in the fibers of FL/YL. By the same token, the cycle of binodal quartics D′

y is
reduced. Similarly, each D′

y meets L transversally, because, given a plane H containing L, in the space of binodal
quartics in H , those tangent to L form a closed subset of codimension 1, as yet another count of constants shows.
Therefore, we may apply Theorem 2.5, and use it as follows to get the multiplier of 2875.
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We must find the classes v′ := [D′] and w′
i := ci

(
Ω1

FL/YL

)
. First, w′

i = wi|FL since FL := π−1YL. Now,

F := P(Q) by (4.1), so FL = P
(Q|YL

)
. Hence, the inclusion of YL × L in FL corresponds to a surjection

Q|YL →→ O2
YL

. Denote its kernel by K. Then there is a natural exact sequence,

K ⊗ Sym(Q|YL)[−1] −→ Sym(Q|YL) −→ Sym
(O2

YL

) −→ 0 .

Passing to associated sheaves, we see that the image of
(
π∗

LK
)
(−1) in OFL is just the ideal of L, where

πL : FL → YL is the structure map. Hence [L] = −c1

((
π∗

LK
)
(−1)

)
. Now, we have c1(K) = c1(Q|YL) =

q1|YL. Hence [L] = (p∗h − π∗q1)|FL. Therefore, (4.6) and (4.3) yield v′ = (4p∗h + π∗q1)|FL.
Finally, by Theorem 2.5 and the projection formula, the desired multiplier is equal to (1/2) degP2(a1, a2)

where, by the projection formula,

aq = [YL] · π∗bq(4p∗h + π∗q1, w1, w2) .

Now, by standard Schubert calculus, [YL] = (q2
1 − q2)2. Owing to (4.3), to (4.4) and to (4.5), it is now a

mechanical matter to compute the multiplier; its value is 1185. Therefore, the number of 6-nodal degree 5 plane
curves on Q is

21617125− 609250− 2875× 1185 = 17601000 ,

and the proof is complete.

5 Abelian surfaces

Fix an Abelian surface A. In this section, assuming certain genericity conditions, we enumerate the reduced
and irreducible curves C ⊂ A satisfying these three conditions: they lie in a given algebraic homology class
with positive self-intersection, d say; they have given geometric genus g; and they pass through the appropriate
number of general points. The appropriate number is g, as we see while proving Theorem 5.2, our main result of
this section.

Each such curve C must have a certain number of singular points, r say; we prove that, under our genericity
conditions, all r points are ordinary nodes. Since g + r is the arithmetic genus of C, and since the canonical class
of A is trivial, the numbers d, g, and r are, owing to the adjunction formula, related by the equation

d = 2g + 2r − 2 .

The number of these C turns out to depend only on r and g, and not on A; here we must also assume r ≤ 8.
So, let’s denote the number of C, as Bryan and Leung [3] do, by Ng,r .

(
They impose no bound on r, but do

require A to be generic among the Abelian surfaces for which the given homology class is algebraic; whence this
class must generate Pic(A)/Pic0(A).

)
For r fixed, Ng,r is given by a “node” polynomial in g of degree r + 1.

The polynomials are presented in Table 5.1.

Table 5.1. Node polynomials for Ng,r

Ng,0 = g

Ng,1 = 6g(g − 1)

Ng,2 = 6g(g − 1)(3g − 4)

Ng,3 = 4g(g − 1)
(
9g2 − 27g + 25

)
Ng,4 = 6g(g − 1)

(
9g3 − 45g2 + 94g − 75

)
Ng,5 = 12g(g − 1)

(
27g4 − 198g3 + 687g2 − 1213g + 860

)
/5

Ng,6 = 4g(g − 1)
(
81g5 − 810g4 + 4095g3 − 11835g2 + 18409g − 11800

)
/5

Ng,7 = 24g(g − 1)
(
81g6 − 1053g5 + 7200g4 − 29970g3 + 75814g2 − 106347g + 62685

)
/35

Ng,6 = 3g(g − 1)
(
486g7 − 7938g6 + 69930g5 − 389970g4 + 1413384g3 − 3216332g2

+ 4143290g − 2279375
)
/35

Our genericity conditions are specified in the following theorem.
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Theorem 5.2 In the above setup, assume A has Picard number 1, and say the given homology class is m
times the positive primitive class. Assume either

(i) that m = 1 and g > 5r + 7 or
(ii) that m ≥ 2 and g >

(
3m2r + 3m2 − 2mr + 2m + 2r − 2

)
/(2m− 2).

Then the formulas in Table 5.1 are valid.

P r o o f. Yet again, we apply Theorem 2.5. Let Y be the connected component of C in the Hilbert scheme of A.
Then Y parameterizes the curves algebraically equivalent to C; hence, Y parameterizes the curves homologically
equivalent to C, since an Abelian variety has no torsion ([2, Prop. 7.1, p. 59]). Set F := A × Y , and let D ⊂ F
be the universal divisor. To handle Y and D, we need a well-known description of them, which we now recall.

Fix an invertible sheaf L on A representing the given homology class. Denote by Â the dual abelian surface,
and by P the Poincaré bundle on A × Â, which is trivial along 0 × Â and A × 0. On Â, form the direct image

Q := p2∗
(P ⊗ p∗1L

)
. (5.1)

If N is a fiber of P ⊗ p∗1L, then Hq(N ) = 0 for q ≥ 1 by the Kodaira vanishing theorem, because N is
algebraically equivalent to L, so ample, and because the canonical bundle of A is trivial. Hence Q is locally free,
and its formation commutes with base change.

Because of this commutativity, the rank of Q may be determined on the fibers, where we may use the
Riemann–Roch theorem and the vanishing of the higher cohomology groups; thus,

rk(Q) =
∫

c1(L)2/2 = d/2 . (5.2)

Then Y := P(Q∗) where Q∗ is the dual. Hence Y is smooth and irreducible, and

dimY = rk Q − 1 + 2 = d/2 + 1 = g + r .

Thus g is the appropriate number, as asserted in the first paragraph of the section.
To construct D ⊂ F := A × Y , form the natural Cartesian diagram:

F
1×p−−−−→ A × Â�π

�p2

Y
p−−−−→ Â

On Y , the tautological map p∗Q∗ → OY (1) and the base-change isomorphism induce the composition

OY (−1) −→ p∗p2∗
(P ⊗ p∗1L

) ∼−→ π∗(1 × p)∗
(P ⊗ p∗1L

)
.

Form its adjoint on F ,

α : π∗OY (−1) −→ (1 × p)∗
(P ⊗ p∗1L

)
.

The zero locus of α is the universal divisor D/Y . Therefore,

OF (D) = (1 × p)∗P ⊗ p∗1L ⊗ π∗OY (1) (5.3)

where now p1 : F → A is the projection.
In order to apply Theorem 2.5, we must check its hypotheses, (i) and (ii). Each of them implies, owing to

Lemma 5.3 below, that, if N is any fiber of P ⊗ p∗1L, then N is k-very ample for k := 3(r + 1) − 1. In other
words, given any ideal I ⊂ OA of colength 3(r + 1) or less, the natural map

H0(N ) −→ H0(N/IN ) (5.4)

is surjective.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr. 271 (2004) / www.mn-journal.com 85

Let D be a minimal Enriques diagram, and set e := degD and s := cod(D). We must bound cod Y (D)
in terms of s. Form the subset H(D) of Hilbe

A of complete ideals with D as diagram. Then H(D) is locally
closed, smooth, and equidimensional of dimension e− s by Proposition (3.6) of [19]. Furthermore, Y ×H(D) is
equal to the subset HF/Y (D) of Hilbe

F/Y , which was discussed in Remark 2.7. As in that remark, set Z(D) :=
HF/Y (D) ∩ Hilbe

D/Y .
Suppose e ≤ 3(r + 1). Let I be an arbitrary complete ideal with diagram D. Then I has colength e by [19,

(3.4)]. So, if N is any fiber of P ⊗ p∗1L, then (5.4) is surjective. Hence

dimH0(IN ) = dimH0(N ) − e .

Furthermore, H1(N ) = 0, as noted above. Hence H1(IN ) = 0.
Let I† be the universal ideal on A × H(D), and form these two sheaves:

F := p∗13I† · p∗12(P ⊗ p∗1L) and R := p23∗F

where the pij are the projections from A × Â × H(D). Every fiber of F is of the form IN , and as just noted,
H1(IN ) = 0. Hence R is locally free on Â × H(D), and the formation of R commutes with base change.
Furthermore, rkR = dimH0(IN ).

We have P(R∗) = Z(D) in Y × H(D). Indeed, the inclusion F → p∗12
(P ⊗ p∗1L

)
and the base-change

isomorphism induce a composition on Â × H(D),

R −→ p23∗p
∗
12

(P ⊗ p∗1L
) ∼−→ p∗1Q ,

where the p1’s are different first projections. Dualizing gives a map, p∗1Q∗ → R∗. It is surjective because its
formation commutes with base change and because its fibers are surjective, since each is the dual of an inclusion
of vector spaces of the form H0(IN ) → H0(N ). Thus P(R∗) naturally embeds in P(p∗1Q∗), or Y × H(D).

A nonzero map σ : OA → N factors through IN if and only if the corresponding map σ ⊗N ∗ : N ∗ → OA

factors through I, so if and only if the divisor defined by σ contains the finite subscheme defined by I. Thus
P(R∗) and Z(D) have the same sets of closed points. An analogous argument shows that they have the same
sets of T -points for any T ; whence, as schemes, P(R∗) = Z(D).

Therefore, Z(D) is a smooth and equidimensional scheme since H(D) is so, and

dimZ(D) = rkR− 1 + dim
(
H(D) × Â

)
= rkQ− e − 1 + e − s + dimÂ = dim(Y ) − s .

So, if the image of Z(D) in Y contains a nonempty set S, then codS ≥ s.
To check the hypotheses of Theorem 2.5, we apply the preceding conclusion about S in three cases. First, take

D := (r + 1)A1. Then e = 3(r + 1) and s = r + 1. Furthermore, the image of Z(D) in Y contains Y (∞).
Hence, cod Y (∞) > r if Y (∞) �= ∅. Thus Hypothesis (i) of Theorem 2.5 holds.

Second, let D′ be a diagram with Y (D′) �= ∅ and cod(D′) > r. Suppose D′ contains a subdiagram D such
that e ≤ 3(r + 1) and s ≥ r + 1. Then the image of Z(D) contains Y (D′). Hence cod Y (D′) ≥ s > r.

Such a subdiagram D exists by [19, (4.4)] if r ≤ 7, and we can easily extend the proof if r = 8. (A different
proof, valid for any r, is given in [20].) We need only check the case where D′ has only one root, say R with
weight m′. If m′ ≥ 5, then take D to consist of R with weight 5 so that e = 15 and s = 13. If m′ = 4, then D′

cannot have only one vertex since cod(D′) > 8; hence, we may take D to be X1,1 if R is followed by a vertex
of weight 1, and to be X1,2 if R is followed by a vertex of weight 2 or more. If m′ = 3, then D′ is either Jl,j or
E6l+j where l ≥ 2; hence, we may take D to be J2,0 for which e = 12 and s = 10. Finally, if m′ = 2, then D′

is Ak with k > 8, and we may take D to be A9 so that e = 15 and s = 9.
Third, let D′ be a diagram with Y (D′) �= ∅ and cod(D′) ≤ r. Then deg(D′) ≤ 3r by [19, (4.3)] since r ≤ 8

(a different proof, valid for any r, is given in [20]). Hence we may take D′ as D. Then the image of Z(D)
contains Y (D′). Hence cod Y (D′) ≥ cod (D′). Thus Hypothesis (ii) of Theorem 2.5 holds as well.

Therefore, by Theorem 2.5, the closure Y (rA1) is the support of a nonnegative cycle U(r), whose class [U(r)]
is given by a certain expression. We work it out in a moment. (It is here alone that we need the restriction r ≤ 8.)
First, however, observe that U(r) is reduced; indeed, Z(rA1) is reduced (in fact, smooth) as we proved above,
so U(r) is reduced by Lemma 2.6.
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Let M be the subscheme of Y parameterizing the curves that pass through g given general points; M is an
intersection of divisors, one for each point, see the paragraph after (5.6) below. Hence M ∩ U(r) is reduced by
the proof of [19, (4.7)], which works virtually without change in the present setting. So we have

Ng,r =
∫

[M ] · [U(r)]

once we’ve shown each point of M ∩ U(r) represents a curve C that’s irreducible.
Suppose some C is reducible, say C = C1 + C2. Then each Ci has only ordinary nodes, say ri of them.

Moreover, the Ci meet transversally, say in r12 points. Then

r = r1 + r2 + r12 .

Let di be the self-intersection number of Ci. Then

d = d1 + d2 + 2r12 .

Let Yi be the component of Ci in the Hilbert scheme of A. Then every irreducible component of Yi(riA1) is
of dimension at least di/2−ri+1 (with equality if the appropriate ki-ampleness holds). Let Y ′

i be the component
of Ci in Yi(riA1). Summing divisors induces a map Y ′

1 × Y ′
2 → Y (rA1). Its fibers are finite. Hence

dimY (rA1) ≥ (d1/2 − r1 + 1) + (d2/2 − r2 + 1) .

The right side is equal to d/2− r + 2. The left side is equal to d/2− r + 1. Thus we have a contradiction. So C
is irreducible.

Let’s now work out the expression for [U(r)]. First, note that wi = 0 because Ω1
A = 0 since A is Abelian. So

each bq reduces to a certain polynomial in v. So, to find aq := π∗bq, we must find π∗va for a ≥ 0.
By definition, v := [D]. So (5.3) yields

v = (1 × p)∗l + π∗h where l := c1(P ⊗ p∗1L) and h := c1(OY (1)) .

Now, π∗(1 × p)∗l = p∗p2∗l. Hence the projection formula yields

π∗va =
∑(

a

i

)(
p∗p2∗l

i
)
ha−i .

So we must compute p2∗li for i ≥ 0.
Let µ : A × A → A denote the group law. Given x ∈ A, define Tx : A → A by Txy := xy. Finally, define

φ : A → Â by φ(x) := T ∗
xL⊗ L−1. Then

(1 × φ)∗P = µ∗L ⊗ p∗1L−1 ⊗ p∗2L−1 ,

according to [24, p. 151]. Therefore,

(1 × φ)∗l = µ∗c − p∗2c where c := c1(L) .

Consider the Cartesian diagram

A × A
1×φ−−−−→ A × Â�p2

�p2

A
φ−−−−→ Â .

Note that φ∗p2∗l
i = p2∗(1 × φ)∗li.

The preceding two equations and the projection formula yield

φ∗p2∗l
2 = p2∗µ

∗c2 − 2cp2∗µ
∗c + c2p2∗[A × A] .
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Now, p2∗µ∗c = 0 and p2∗[A × A] = 0 by reason of dimension. Also,
∫

c2 = d by definition of c, L, and d.
Furthermore, p2∗µ

∗[x] = [A] for any x ∈ A, because

µ−1x =
{(

y, xy−1
) | y ∈ A

}
.

Hence φ∗p2∗l
2 = d[A]. Since [A] = φ∗[Â ], therefore p2∗l

2 = d
[
Â
]
.

Similarly, we obtain

φ∗p2∗l
3 = −3dc and φ∗p2∗l

4 = 6dc2 . (5.5)

Now, φ∗φ∗z = (deg φ)z for any z by the projection formula, and deg φ = d2/4 by [24, p. 150]. Taking
z := l3 and z := l4, we therefore get

p2∗l
3 = −(12/d)φ∗c and p2∗l

4 = (24/d)φ∗c2 . (5.6)

Of course, p2∗li = 0 for i �= 2, 3, 4 by reason of dimension.
We can now mechanically work out an expression for [U(r)] as a linear combination of (p∗φ∗ci)hr−i for

i = 0, 1, 2. However, Ng,r =
∫

[M ] · [U(r)]. So we must find [M ]. Well, given a point x ∈ A, define ιx : Y → F
by ιx(y) := (x, y). Then the divisor ι−1

x D parameterizes the curves that pass through x. Owing to (5.3), the class[
ι−1
x D

]
is numerically the same as h. Hence [M ] is the same as hg. Therefore, owing to the projection formula,

we have to find p∗hg+r−i for i = 0, 1, 2.
Recall that Y := P(Q∗). So p∗hg+r−i = (−1)is2−i(Q) for i = 0, 1, 2 where the sj(Q) are the Segre classes.

Hence,

p∗hg+r−2 =
[
Â
]

and p∗hg+r−1 = −c1(Q) and p∗hg+r−1 = c1(Q)2 − c2(Q) .

It therefore remains to find c1(Q) and c1(Q)2 and c2(Q).
Since A is abelian, the Todd class of p2 is trivial. So the Riemann–Roch theorem yields the following relation

among the Chern characters:

ch
(
p2∗
(P ⊗ p∗1L

))
= p2∗

(
ch
(P ⊗ p∗1L

))
.

Now, Q := p2∗
(P ⊗ p∗1L

)
by (5.1). So, owing to (5.2), the left side is equal to

d/2 + c1(Q) +
(
c1(Q)2 − 2c2(Q)

)
/2 .

On the other hand, the right side is equal to p2∗
(∑

li/i!
)
. Hence

p2∗l
3 = 6c1(Q) and p2∗l

4 = 12
(
c1(Q)2 − 2c2(Q)

)
. (5.7)

So (5.6) yields

c1(Q) = −(2/d)φ∗c and c2(Q) = (1/2)c1(Q)2 − (1/d)φ∗
(
c2
)
. (5.8)

To find c1(Q)2, use the formulas leading to (5.6). Taking z := c1(Q)2 gives

c1(Q)2 =
(
4/d2

)
φ∗
(
φ∗c1(Q)

)2
since φ∗z2 = (φ∗z)2. Now, φ∗c1(Q) = (−d/2)c by (5.7) and (5.5). Hence

c1(Q)2 = φ∗
(
c2
)
. (5.9)

By definition,
∫

c2 = d. So (5.9) and (5.8) yield∫
c1(Q)2 = d and

∫
c2(Q) = (d/2) − 1 .

It is now a purely mechanical matter to derive the formulas in Table 5.1, and the proof is complete.
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Lemma 5.3 Let S be a smooth projective surface with numerically trivial canonical bundle and with Picard
number 1. Let N be a line bundle whose homology class is m times the positive primitive class. Set d :=∫

c1(N )2, and let k ≥ 0. Assume either
(i) that m = 1 and d > 4(k + 1) or

(ii) that m ≥ 2 and (m − 1)d > m2(k + 1).
Then N is k-very ample.

P r o o f. If (ii) holds, then 4(m − 1)d > 4m2(k + 1), and so, since m2 ≥ 4(m − 1), then d > 4(k + 1).
Hence, if either (i) or (ii) holds, then d > 4(k + 1).

Let K be the canonical bundle. Form K−1 ⊗ N , and to it, apply Theorem 2.1 of Beltrametti–Sommese’s [1,
p. 38]. Their theorem implies that, since d ≥ 4k + 5, either N is k-very ample or there exists an effective divisor
D such that ∫

c1(N )[D] − (k + 1) ≤
∫

[D]2 ≤
∫

c1(N )[D]/2 . (5.10)

Suppose such a D exists, and let’s derive a contradiction.
Say the class [D] is t times the positive primitive class. Then the second inequality in (5.10) becomes t ≤ m/2.

So m ≥ 2 since t ≥ 1. Hence Hypothesis (ii) applies, and so (m−1)d > m2(k+1). However, the first inequality
in (5.10) amounts to t(m− t)d ≤ m2(k + 1); whence, (m− 1)d ≤ m2(k + 1) because m− 1 ≤ t(m− t) when
1 ≤ t ≤ m/2. Thus we have a contradiction, and the proof is complete.

Remark 5.4 Similarly, we can enumerate those of the C that lie in a given linear equivalence class and pass
through only g − 2 general points. In fact, modified slightly, the proof of Theorem (5.2) yields the desired
enumeration, and shows it is valid when r ≤ 8 and

m > (3r + 5)/2 . (5.11)

Conceivably, some C are reducible, although the corresponding dimension count shows that reducibility is not to
be expected; compare [11, Rmk. 3.1, p. 528].

Indeed, the C in the class are parameterized by a fiber of Y/A; hence, the enumeration can be accomplished
by computing the coefficient of

[
Â
]

in p∗
(
hg−2 · [U(r)]

)
. Furthermore, (5.11) implies m ≥ 2. Also, (5.11) is

equivalent to 2(m−1) > 3(r+1). Now, d/m2 is the self-intersection number of the primitive class; so d/m2 ≥ 2.
Hence Lemma 5.3 implies that, if N is any fiber of P ⊗ p∗1L, then N is k-very ample for k := 3(r + 1)− 1. The
rest of the proof of validity is virtually the same.

Although Theorem (1.1) of [19] yields the same formula on setting k, s, and x equal to 0, that theorem only
asserts validity when m ≥ 3r and OA(C) = M⊗m ⊗ N where M is very ample and N is spanned. On the
other hand, that theorem does not require the Picard number to be 1 nor the surface to be Abelian. In any event,
the formula agrees with Göttsche’s Conjecture 2.4 in [11, p. 526].

Some condition like (5.11) is necessary. Indeed, in [10, Rmk. 2.3, p. 581], Debarre considered the case in
which m is prime, d = 2m2, and g = 2, whence r = m2 − 1. In this case, Göttsche’s formula fails as Göttsche
[11, Rmk. 3.1, p. 528] expected when Y (∞) is nonempty.

On the other hand, the case m = 1 is rather interesting and has attracted some attention. In this case, the
method of Theorem 5.2 shows that Göttsche’s formula is valid when r ≤ 8 and d > 12(r +1), whereas Theorem
(1.1) of [19] asserts nothing. Using symplectic methods, Bryan and Leung [3] showed that the formula is valid
for all r and d when A is generic among the Abelian surfaces for which the given homology class is algebraic.
Using complex analytic methods, in [11, Thm. 3.2, p. 528], Göttsche showed that the formula is valid for all r
when g = 2 and the homology class is a polarization of type (1, n). Independently and somewhat differently,
Debarre [10] proved the same result. Earlier, see [34, Ex. 5.6, p. 521], Schoen treated the case of a polarization
of type (1, 5) on a general Horrocks–Mumford Abelian surface.

Remark 5.5 In Lemma 5.3, if S is a K3 surface, then in Condition (i) we may replace d > 4(k + 1) with
d ≥ 4k. Indeed, the proof is the same, except that, instead of applying Theorem 2.1 of Beltrametti–Sommese [1,
p. 38], we apply Theorem 1.1 of Knutsen [21], which says that, since S is a K3 surface and d ≥ 4k, either N is
k-very ample or there exists an effective divisor D such that (5.10) holds.
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Similarly, if S is an Enriques surface, then we may replace both (i) and (ii) with the single condition that
d ≥ 4(k + 1). Indeed, Theorem 1.2 of Knutsen’s [21] asserts that, since S is an Enriques surface and d ≥
4(k+1), eitherN is k-very ample or there exists an nonzero effective divisor D with nonpositive self-intersection;
however, the latter is impossible since S has Picard number 1 by hypothesis.

For these S, the method of proof of Theorem 5.2 shows that the formula provided by Theorem (1.1) of [19] is
valid for more m. Of course, some restriction on m is necessary. Indeed, in [32, Ex. (3.13), p. 252], Tannenbaum
gave a simple example of a complete linear system on a K3 surface S such that cod Y (4A1) < 4.

In Tannenbaum’s example, S is an arbitrary smooth quartic in P3. The system is the one cut by the quadrics; so
it is parameterized by a projective space Y of dimension 9. A general plane section of S is smooth. So a general
plane-pair section has two smooth components that meet transversally in four points. Hence dimY (4A1) ≥ 6,
and so codY (4A1) < 4.

Furthermore, if S is generic, then its Picard group is generated by OS(1) by the Noether–Lefschetz theorem.
In particular, the Picard number is 1. Also, if a quadric section is not reduced, then it must be twice a plane
section. Since planes and quadrics are determined by their sections, the quadric must be a double plane. Hence
dimY (∞) = 3, and so codY (∞) = 6. Thus, unexpectedly, there are infinitely many 4-nodal quadric sections
through 5 general points, and all are reduced.
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