
Node Selection Query Languages for Trees

Diego Calvanese
KRDB Research Centre

Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Giuseppe De Giacomo, Maurizio Lenzerini
Dip. di Informatica e Sistemistica

SAPIENZA Università di Roma, Italy
lastname@dis.uniroma1.it

Moshe Y. Vardi
Dept. of Computer Science

Rice University, Houston, U.S.A.
vardi@cs.rice.edu

Abstract

The study of node-selection query languages for (finite) trees
has been a major topic in the recent research on query lan-
guages for Web documents. On one hand, there has been an
extensive study of XPath and its various extensions. On the
other hand, query languages based on classical logics, such as
first-order logic (FO) or monadic second-order logic (MSO),
have been considered. Results in this area typically relate
an Xpath-based language to a classical logic. What has yet
to emerge is an XPath-related language that is expressive as
MSO, and at the same time enjoys the computational proper-
ties of XPath, which are linear query evaluation and exponen-
tial query-containment test. In this paper we propose µXPath,
which is the alternation-free fragment of XPath extended with
fixpoint operators. Using two-way alternating automata, we
show that this language does combine desired expressiveness
and computational properties, placing it as an attractive can-
didate as the definite query language for trees.

Introduction

XML has become the standard language for Web documents
supporting semistructured data, and the last few years have
witnessed an extensive interest in XML queries. From the
conceptual point of view, an XML document can be seen
as a finite node-labeled tree, and several formalisms have
been proposed as query languages over XML documents.
We focus here on queries that select sets of nodes, which we
call node selection queries. Many of such formalisms come
from the tradition of modal and dynamic logics, similarly
to the most expressive languages of the Description Logics
family (Baader et al. 2003), and therefore include the use
of regular path expressions to navigate through XML docu-
ments. XPath (Clark and DeRose 1999) is a notable example
of these formalisms, and, in this sense, it can also be seen as
an expressive Description Logic over finite trees.

A main line of research has been on identifying nice com-
putational properties of XPath and studying extensions of
XPath that still enjoy these properties. An important fea-
ture of XPath is the tractability of query evaluation (in data
complexity); queries in the navigational core CoreXPath can
be evaluated in time that is linear in both the size of the
query and the size of the input tree (Gottlob, Koch, and
Pichler 2005; Bojanczyk and Parys 2008). This property is
enjoyed also by various extensions of XPath. Specifically,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it is shown in (Calvanese et al. 2009) that RXPath, which
is the extension of XPath with regular expressions, also
has this property. Another nice computational property of
XPath is that containment testing is in EXPTIME(Neven and
Schwentick 2003; Schwentick 2004). This property holds
also for RXPath (Marx 2004; ten Cate and Segoufin 2008;
Calvanese et al. 2009) and other extensions of XPath (ten
Cate and Lutz 2009).

Another line of research focused on expressive power.
Marx has shown that XPath is expressively equivalent to
FO2, the 2-variable fragment of first-order logic, while CX-
Path, which is the extension of XPath with conditional axis
relations, is expressively equivalent to full FO (Marx 2004;
2005). Regular extensions of XPath are expressively equiv-
alent to extensions of FO with transitive closure (ten Cate
2006; ten Cate and Segoufin 2008). Another classical logic
is monadic second-order logic MSO. This logic is more ex-
pressive than FO and its extensions by transitive closure
(Libkin 2006; ten Cate 2006; ten Cate and Segoufin 2008).
In fact, it has been argued that MSO has the right expressive-
ness required for Web information extraction and hence can
serve as a yardstick for evaluating and comparing wrappers
(Gottlob and Koch 2004). Various logics are known to have
the same expressive power as MSO, cf. (Libkin 2006), but so
far no natural extension of XPath that is expressively equiv-
alent to MSO and enjoys the nice computational properties
of XPath has been identified.

A third line of research focuses on the relationship be-
tween query languages for finite trees and tree automata
(Libkin and Sirangelo 2008; Neven 2002; Schwentick
2007). Various automata models have been proposed.
Among the cleanest models is that of node-selecting tree
automata, which are standard automata on finite trees, aug-
mented with node selecting states (Neven and Schwentick
2002; Frick, Grohe, and Koch 2003). What has been miss-
ing in this line of inquiry is an automaton model that can be
used both for testing query containment and for query eval-
uation (Schwentick 2007).

Progress on the automata-theoretic front was recently re-
ported in (Calvanese et al. 2009), where a comprehensive
automata-theoretic framework for evaluating and reasoning
about RXPath was developed. The framework is based on
two-way weak alternating tree automata, denoted 2WATAs
(Kupferman, Vardi, and Wolper 2000), but specialized for
finite trees, and enables one to derive both a linear-time al-
gorithm for query evaluation and an exponential-time algo-

279

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

rithm for testing query containment.
In this paper we show that we can preserve these nice

computational properties, and extend the automata-theoretic
framework based on 2WATAs to µXPath, which is XPath en-
riched with alternation-free fixpoint operators. Alternation
freedom implies that the least and greatest fixpoint operators
interact, and is known to yield computationally amenable
logics (Kupferman, Vardi, and Wolper 2000). It is also
known that unfettered interaction between least and greatest
fixpoint operators results in formulas that are very difficult
for people to comprehend, cf. (Kozen 1983). The signifi-
cance of this extension is due to a further key result of this
paper, which shows that on finite trees alternation-free fix-
point operators are sufficient to capture all of MSO, which
is considered to be the benchmark query language on tree-
structured data.

Fixpoint operators have been studied in the µ-calculus, in-
terpreted over arbitrary structures (Kozen 1983), which by
the tree-model property of this logic, can be restricted to
be interpreted over infinite trees. It is known that, to ob-
tain the full expressive power of MSO on infinite trees, arbi-
trary alternations of fixpoints are required in the µ-calculus
(see, e.g., (Grädel, Thomas, and Wilke 2002)). Forms of
µ-calculus have also been considered in Description Logics
(De Giacomo and Lenzerini 1994; Kupferman, Sattler, and
Vardi 2002; Bonatti et al. 2008), again interpreted over infi-
nite trees. In this context, the present work can provide the
foundations for a description logic tailored towards acyclic
finite (a.k.a. well-founded) frame structures. In this sense,
the present work overcomes (Calvanese, De Giacomo, and
Lenzerini 1999), where an explicit well-foundedness con-
struct was used to capture XML in description logics.

In a finite-tree setting, extending XPath with arbitrary fix-
point operators, has been studied earlier (ten Cate 2006;
Libkin 2006; Genevès, Layaı̈da, and Schmitt 2007) (see also
(Afanasiev et al. 2008)), but while the resulting query lan-
guage is equivalent to MSO and has an exponential-time
containment test, it is not known to have a linear-time eval-
uation algorithm. In contrast, being µXPath alternation free,
it is closely related to a stratified version of monadic Dat-
alog proposed as a query language for finite trees in (Got-
tlob and Koch 2004), which enjoys linear-time evaluation.
Note, however, that the complexity of containment of strati-
fied monadic Datalog is unknown.

We prove here that there is a very direct correspondence
between µXPath and 2WATA. Specifically, there are lin-
ear translations from µXPath queries to 2WATA and from
2WATA to µXPath. This immediately yields the nice com-
putational properties for µXPath. We then prove the equiv-
alence of 2WATA to node-selecting tree automata (NSTA),
shown to be expressively equivalent to MSO (Frick, Grohe,
and Koch 2003). On the one hand, we have an exponential
translation from 2WATA to NSTA. On the other hand, we
have a linear translation from NSTA to 2WATA. This yields
the expressive equivalence of µXPath to MSO.

µXPath

The query language µXPath is an extension of RXPath that
is equipped with explicit fixpoint operators over systems of
equations. To define µXPath, we start from RXPath node
expressions, for which we adopt the Propositional Dynamic

Logic (PDL) syntax (Fischer and Ladner 1979; Calvanese et
al. 2009). An RXPath node expression ϕ is defined by the
following syntax:

ϕ −→ A | 〈P 〉ϕ | [P]ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−

where A denotes an atomic proposition belonging to an al-
phabet Σ, and child and right denote the two main XPath
axis relations, and P denotes a path expression, formed as a
regular expression over the axis relations. We consider the
other XPath axis relations parent and left as abbreviations

for child− and right−, respectively. Also, we use the usual

abbreviations, including true, false, and ϕ1 → ϕ2.1

Using RXPath node expressions, we define µXPath
queries as follows. We consider a set X of variables, dis-
joint from Σ. An equation has the form X

.
= ϕ where

X ∈ X , and ϕ is an RXPath node expression having as
atomic propositions symbols from Σ ∪ X , with the proviso
that each variable X ′ ∈ X may occur only positively in ϕ
(see (Kozen 1983)). We call the left-hand side of the equa-
tion its head, and the right-hand side its body. A set of
equations can be considered as mutual fixpoint equations,
which can have multiple solutions in general. We are in-
terested in the smallest one, i.e., the least fixpoint (lfp),
and the greatest one, i.e., the greatest fixpoint (gfp), both
of which are guaranteed to exist under the proviso above,
see e.g., (Vardi and Wolper 1984). Given a set of equations
{X1

.
= ϕ1, . . . , Xn

.
= ϕn}, where we have one equation

with Xi in the head, for i ∈ [1..n], a fixpoint block has the
form fp{X1

.
= ϕ1, . . . , Xn

.
= ϕn}, where fp is either lfp or

gfp, denoting respectively the least fixpoint and the greatest
fixpoint of the set of equations. We say that the variables
X1, . . . , Xn are defined in the fixpoint block.

A µXPath (node selection) query has the form X : F ,
where X ∈ X and F is a set of fixpoint blocks such that:
• X is a variable defined in F ;
• the sets of variables defined in different fixpoint blocks in
F are mutually disjoint;

• there exists a partial order � on the fixpoint blocks in F
such that, for each Fi ∈ F , the bodies of equations in Fi

contain only variables defined in fixpoint blocks Fj ∈ F
with Fj � Fi.
We now give some examples. To denote nodes that on all

child-paths (possibly of length 0) reach a red node:
X : {lfp{X

.
= red ∨ [child]X}}.

To denote nodes all of whose descendants (including the
node itself) are not simultaneously red and blue:

X : {gfp{X
.
= (red → ¬blue) ∧ [child]X}}.

To denote red nodes all of whose red descendants have only
blue children and all of whose blue descendants have at
least a red child:

X0 : {lfp{X0

.
= red ∧X1},

gfp{X1

.
= (red → [child]blue) ∧

(blue → 〈child〉red) ∧ [child]X1}}

Notice that we could replace the least fixpoint with a greatest
fixpoint operator, since the equations in that block are not re-
cursive. To denote red nodes all of whose red descendants

1Notice that we do not consider identifiers in the language, i.e.,
atomic propositions that denote singletons, since in RXPath we can
explicitly impose that a proposition denotes a singleton.

280

reach blue nodes on all child-paths and all of whose blue

descendants reach red nodes on at least one child-path:

X0 : {lfp{X0

.
= red ∧X1},

gfp{X1

.
= (red → X2) ∧ (blue → X3) ∧ [child]X1},

lfp{X2

.
= blue ∨ [child]X2},

lfp{X3

.
= red ∨ 〈child〉X3}}

To denote those nodes that have a red right-sibling and such
that all siblings along the path to it have a blue descendant:

X0 : {lfp{X0

.
= red ∨ 〈right〉X0 ∧X1,

X1

.
= blue ∨ 〈child〉X1}}

Once we introduce fixpoints, node expression of the form
〈P 〉φ and [P]φ with complex P can simply be considered
as abbreviations (Kozen 1983). For example 〈right∗〉A can
be expressed as X : {lfp{X

.
= A ∨ 〈right〉X}}. Hence, for

simplicity, wlog, in the following we restrict path expres-
sions in µXPath queries to be atomic or inverse of atomic:

P −→ child | right | P−

Next we turn to the semantics of µXPath. Following
(Marx 2004; 2005), we formalize XML documents as finite
sibling trees. A (finite) tree is a complete prefix-closed non-
empty (finite) set of words over N (the set of positive natural
numbers). In other words, a (finite) tree is a (finite) set of
words ∆ ⊆ N

∗, such that if x·i ∈ ∆, where x ∈ N
∗ and

i ∈ N, then also x ∈ ∆. The elements of ∆ are called nodes,
the empty word ε is the root of ∆, and for every x ∈ ∆, the
nodes x·i, with i ∈ N, are the successors of x. By conven-
tion we take x·0 = x, and x·i·−1 = x. If the number of
successors of the nodes of a tree is a priori unbounded, we
say that the tree is unranked. On the contrary, ranked trees
have a bound on the number of successors of nodes; in par-
ticular, for binary trees the bound is 2. A (finite) labeled tree

over an alphabet L of labels is a pair T = (∆T , ℓT), where

∆T is a (finite) tree and the labeling ℓT : ∆T → L is a

mapping assigning to each node x ∈ ∆T a label ℓT (x) in L.

A sibling tree is a pair Ts = (∆Ts , ·Ts), where ∆Ts is an

unranked tree and ·Ts is an interpretation function that as-

signs to each atomic symbol A ∈ Σ a set ATs of nodes of

∆Ts , and that interprets the axis relations and path expres-
sions in the obvious way, namely:

childTs = {(z, z·i) | z, z·i ∈ ∆Ts}
rightTs = {(z·i, z·(i+1)) | z·i, z·(i+1) ∈ ∆Ts}
(P−)Ts = {(z′, z) | (z, z′) ∈ PTs}

Since we have to deal also with variables in equations,
in order to give the semantics of µXPath we need to intro-
duce variable assignments. A (variable) assignment ρ on a

tree Ts = (∆Ts , ·Ts) is a mapping that assigns to variables

of X sets of nodes in ∆Ts . Given an assignment ρ, we use
the notation ρ[X1/E1, . . . , Xn/En] to denote the assignment
identical to ρ except that it assigns to Xi the value Ei, for
i ∈ [1..n]. Given a sibling tree Ts and an assignment ρ, we
interpret the fixpoint blocks in a µXPath query X : F by
induction on the partial order � of fixpoint blocks in F for a
fixpoint block Fi ∈ F , as shown in Figure 1 (see also (Vardi
and Wolper 1984)). The sets {X1/E

µ
1 , . . . , Xn/Eµ

n} and
{X1/Eν

1 , . . . , Xn/Eν
n} are variable assignments that provide

respectively the smallest and the greatest solution of the set
of equations {X1

.
= ϕ1, . . . , Xn

.
= ϕn}. Note that the ini-

tial assignment plays no role in the interpretation of fixpoint

blocks. The evaluation (X : F)Ts of a µXPath queryX : F

ATs

ρ = ATs ,

XTs

ρ =
ρ(X), if X is defined in Fi

E , if X is defined in some Fj � Fi and X/E ∈ (Fj)
Ts

ρ

(¬ϕ)Ts

ρ = ∆T \ ϕTs

ρ ,
(ϕ1 ∧ ϕ2)

Ts

ρ = (ϕ1)
Ts

ρ ∩ (ϕ2)
Ts

ρ ,
(ϕ1 ∨ ϕ2)

Ts

ρ = (ϕ1)
Ts

ρ ∪ (ϕ2)
Ts

ρ ,
(〈P 〉ϕ)Ts

ρ = {z | ∃z′.(z, z′) ∈ P Ts ∧ z′ ∈ ϕTs

ρ },
([P]ϕ)Ts

ρ = {z | ∀z′.(z, z′) ∈ P Ts → z′ ∈ ϕTs

ρ },
(lfp{X1

.
= ϕ1, . . . ,Xn

.
= ϕn})

Ts

ρ = {X1/E
µ
1 , . . . ,Xn/E

µ
n},

(gfp{X1
.
= ϕ1, . . . ,Xn

.
= ϕn})

Ts

ρ = {X1/E
ν
1 , . . . ,Xn/E

ν
n},

where {X1/E
µ
1 , . . . , Xn/E

µ
n} is the variable assignment for

X1, . . . ,Xn defined as (using component-wise intersection)

{X1/E1,...,Xn/En}{E1 = (ϕ1)
Ts

ρ[X1/E1,...,Xn/En], . . . , En =

(ϕn)Ts

ρ[X1/E1,...,Xn/En]}, and {X1/E
ν
1 , . . . ,Xn/E

ν
n} is

the variable assignment for X1, . . . ,Xn defined as (us-
ing component-wise union) {X1/E1,...,Xn/En}{E1 =

(ϕ1)
Ts

ρ[X1/E1,...,Xn/En], . . . , En = (ϕn)Ts

ρ[X1/E1,...,Xn/En]}.

Figure 1: Semantics of µXPath

over a sibling tree Ts is E ⊆ ∆Ts such that X/E ∈ FTs ,
where F ∈ F is the fixpoint block defining X .

We finally observe that sibling trees are unranked, but in
fact this is not really a crucial feature. Indeed, we can move
to binary trees by considering an additional axis fchild, con-
necting each node to its first child only, interpreted as

fchildTs = {(z, z·1) | z, z·1 ∈ ∆Ts}.
Using fchild, we can thus re-express the child axis as

fchild; right∗, see (Calvanese et al. 2009). In the follow-
ing, we will focus on µXPath queries that use only the fchild
and right axis relations, and are evaluated over binary (rep-
resentations of sibling) trees.

Relationship between µXPath and 2WATAs

We establish now the relationship between µXPath and two-
way tree automata. Specifically, we resort to two-way weak
alternating automata over finite trees (2WATAs) (Calvanese
et al. 2009), which have nice computational properties, and
for which we can devise efficient translations from and to
µXPath. We show how to construct (i) from each µXPath
query ϕ (over binary trees) a 2WATA Aϕ whose number of
states is linear in |ϕ| and that selects from a tree T precisely

the nodes in ϕT , and (ii) from each 2WATA A a µXPath
query ϕA of size linear in the number of states of A that,
when evaluated over a tree T , returns precisely the nodes
selected by A from T .

Two-way Weak Alternating Tree Automata

Two-way weak alternating automata over finite labeled trees
were introduced in (Calvanese et al. 2009). Differently from
ordinary two-way automata over finite trees (Slutzki 1985),
such automata have possibly infinite runs on finite trees, and
they are called “weak” due to the specific form of the accep-
tance condition, which is formulated in terms of the infinite
paths in a run. Note that typically, infinite runs of automata
are considered in the context of infinite input structures
(Grädel, Thomas, and Wilke 2002). Formally, let B+(I) be
the set of positive Boolean formulae over a set I , built in-
ductively by applying ∧ and ∨ starting from true, false, and

281

elements of I . For a set J ⊆ I and a formula f ∈ B+(I),
we say that J satisfies f if assigning true to the elements in
J and false to those in I \ J , makes f true. For integers i,
j, with i ≤ j, let [i..j] = {i, . . . , j}. A two-way weak alter-
nating tree automaton (2WATA) running over finite labeled
binary trees is a tuple A = (L, S, s0, δ, α), where L is the
alphabet of tree labels, S is a finite set of states, s0 ∈ S is the
initial state, δ : S × L → B+([−1..2] × S) is the transition
function, and α is the accepting condition discussed below.

The transition function maps a state s ∈ S and an input
label a ∈ L to a positive Boolean formula over [−1..2]× S.
Intuitively, if δ(s, a) = f , then each pair (c′, s′) appearing
in f corresponds to a new copy of the automaton going to
the direction suggested by c′ and starting in state s′. For
example, δ(s1, a) = ((1, s2)∧(1, s3))∨((−1, s1)∧(0, s3)),
when the automaton is in the state s1 and is reading the node
x labeled by a, it proceeds either by sending off two copies,
in the states s2 and s3 respectively, to the first successor of
x (i.e., x·1), or by sending off one copy in the state s1 to the
predecessor of x (i.e., x·−1) and one copy in the state s3 to
x itself (i.e., x·0).

A run of a 2WATA is obtained by resolving all existential
choices. The universal choices are left, which gives us a
tree. Because we are considering two-way automata, runs
can start at arbitrary tree nodes, and need not start at the
root. Formally, a run of a 2WATA A over a labeled tree

T = (∆T , ℓT) from a node x0 ∈ ∆T is a (not necessarily

finite) ∆T × S-labeled tree R = (∆R, ℓR) satisfying:

• ε ∈ ∆R and ℓR(ε) = (x0, s0).
• Let ℓR(r) = (x, s) and δ(s, ℓT (x)) = f . Then there is a

(possibly empty) set {(c1, s1), . . . , (cn, sn)} ⊆ [−1..2]×
S satisfying f , and such that for each i ∈ [1..n], we have

that r·i ∈ ∆R, x·ci ∈ ∆T , and ℓR(r·i) = (x·ci, si).
Intuitively, a run R keeps track of all transitions that the
2WATA A performs on a labeled input tree T : a node r of
R labeled by (x, s) describes a copy of A that is in the state
s and is reading the node x of T . The successors of r in the
run represent the transitions made by the multiple copies of
A that are being sent off either upwards to the predecessor
of x, downwards to one of the successors of x, or to x itself.

A 2WATA is called “weak” due to the specific form of
the acceptance condition α. Specifically, α ⊆ S, and there
exists a partition of S into disjoint sets, Si, such that for
each set Si, either Si ⊆ α, in which case Si is an accepting
set, or Si ∩ α = ∅, in which case Si is a rejecting set. We
call the partition S = ∪iSi the weakness partition of A. In
addition, there exists a partial order ≺ on the collection of
the Si’s such that, for each s ∈ Si and s′ ∈ Sj for which s′

occurs in δ(s, a), for some a ∈ L, we have Sj ≺ Si. Thus,
transitions from a state in Si lead to states in either the same
Si or a lower one. It follows that every infinite path of a run
of a 2WATA ultimately gets “trapped” within some Si. The
path is accepting if and only if Si is an accepting set. A run
(Tr, r) is accepting if all its infinite paths are accepting. A
node x is selected by a 2WATA A from a labeled tree T if
there exists an accepting run of A over T from x.

The following theorems show the nice computational
properties of 2WATAs: linear time evaluation and exponen-
tial time non-emptiness (satisfiability).

Theorem 1 (Kupferman, Vardi, and Wolper 2000; Cal-
vanese et al. 2009) Given a 2WATA A and a labeled tree

T , we can compute in time that is linear in the product of
the sizes of A and T the set of nodes selected by A from T .

Theorem 2 (Calvanese et al. 2009) Given a 2WATA A with
n states and an input alphabet with m elements, deciding
nonemptiness of A can be done in time exponential in n and
linear in m.

From µXPath to 2WATAs

We assume that sibling trees are represented by binary trees
whose nodes are additionally labeled with the special propo-
sitions ifc, irs , hfc, hrs , according to whether a node is a
first child, is a right sibling, has a first child, or has a right
sibling (Calvanese et al. 2009). Such trees are called well-
formed binary trees, and µXPath queries are expressed over
such binary trees. We need to make use of a notion of syn-
tactic closure, similar to that of Fisher-Ladner closure of a
formula of PDL (Fischer and Ladner 1979). The syntactic
closure CL(X : F) of a µXPath query X : F is defined
as {ifc, irs , hfc, hrs} ∪ CL(F), where CL(F) is defined as
follows: for each equation X

.
= ϕ in some fixpoint block

in F , {X,nnf (ϕ)} ⊆ CL(F), where nnf (ψ) denotes the
negation normal form of ψ, and then we close the set under
sub-expressions (in negation normal form). It is easy to see
that, for a µXPath query q, the cardinality of CL(q) is linear
in the length of q.

Let q = X0 : F be a µXPath query. We show how to
construct a 2WATA Aq that, when run over a well-formed

binary tree T , accepts exactly from the nodes in qT . The
2WATA Aq = (L, Sq, sq, δq, αq) is defined as follows.

• The alphabet is L = 2Σ∪{ifc,irs,hfc,hrs}. This corresponds
to labeling each node of the tree with a truth assignment
to the atomic propositions, including the special ones that
encode information about the predecessor node and about
whether the children are significant.

• The set of states is Sq = CL(q). Intuitively, when the
automaton is in a state ψ ∈ CL(q) and visits a node x of
the tree, it checks that the node expression ψ holds in x.

• The initial state is sq = X0.

• The transition function δq is defined as follows:

1. For each λ ∈ L, and each σ ∈ Σ∪ {ifc, irs , hfc, hrs},

δq(σ, λ) =
true, if σ ∈ λ

false, if σ /∈ λ

δq(¬σ, λ) =
true, if σ /∈ λ

false, if σ ∈ λ

Such transitions check the truth value of atomic propo-
sitions, and of their negations in the current node of the
tree, by simply checking whether the node label con-
tains the proposition or not.

2. For each λ ∈ L and each formula ψ ∈ CL(q), the
automaton inductively decomposes ψ and moves to ap-
propriate states to check the sub-expressions, as shown
in Figure 2.

3. Let X
.
= ϕ be an equation in one of the blocks of F .

Then, for each λ ∈ L, we have δq(X,λ) = (0, ϕ).

• To define the weakness partition of Aq , we partition the
expressions in CL(q) according to the partial order on the
fixpoint blocks in F . Namely, we have one element of

282

δq(ψ1 ∧ ψ2, λ) = (0, ψ1) ∧ (0, ψ2)
δq(〈fchild〉ψ, λ) = (0, hfc) ∧ (1, ψ)
δq(〈right〉ψ, λ) = (0, hrs) ∧ (2, ψ)

δq(〈fchild−〉ψ, λ) = (0, ifc) ∧ (−1, ψ)
δq(〈right−〉ψ, λ) = (0, irs) ∧ (−1, ψ)
δq(ψ1 ∨ ψ2, λ) = (0, ψ1) ∨ (0, ψ2)
δq([fchild]ψ, λ) = (0,¬hfc) ∨ (1, ψ)
δq([right]ψ, λ) = (0,¬hrs) ∨ (2, ψ)

δq([fchild−]ψ, λ) = (0,¬ifc) ∨ (−1, ψ)
δq([right−]ψ, λ) = (0,¬irs) ∨ (−1, ψ)

Figure 2: 2WATA transitions to decompose a formula

the partition for each fixpoint block F ∈ F . Such an el-
ement is formed by all expressions (including variables)
in CL(q) in which at least one variable defined in F oc-
curs and no variable defined in a fixpoint block F ′ with
F ≺ F ′ occurs. In addition, there is one element of the
partition consisting of all expressions in which no variable
occurs. Then the acceptance condition αq is the union of
all elements of the partition corresponding to a greatest
fixpoint block.

Observe that the partial order on the fixpoint blocks in F ,
due to the alternation freedom of q, guarantees that the tran-
sitions of Aq satisfy the weakness condition. In particular,
each element of the weakness partition is either contained
in αq or disjoint from αq . This guarantees that an accept-
ing run cannot get trapped in a state corresponding to a least
fixpoint block, while it is allowed to stay forever in a state
corresponding to a greatest fixpoint block. As for the size of
Aq , considering the size of CL(q), it is easy to verify that
the number of states of Aq is linear in the size of q.

Theorem 3 Let q be a µXPath query, Aq the corresponding
2WATA, and T a well-formed binary tree. Then a node x of

T is in qT iff Aq selects x from T .

Since sibling trees can be encoded in well-formed binary
trees in linear time, from Theorem 1 and Theorem 3, we get:

Theorem 4 Given a sibling tree Ts and a µXPath query q,

we can compute qTs in time that is linear in the number of
nodes of Ts (data complexity) and in the size of q (query
complexity).

Finally, we consider reasoning on µXPath queries. Sat-
isfiability of a µXPath query q can be checked by check-
ing the non-emptiness of the 2WATA Aq intersected with a
2WATA that accepts only binary trees that are well-formed
(Calvanese et al. 2009). To check query containment (X1 :
F1) ⊆ (X2 : F2), it suffices to check satisfiability of the
µXPath query X0 : F1 ∪ F2 ∪ {lfp{X0 = X1 ∧ ¬X2}},
where wlog we have assumed that the variables defined in
F1 and F2 are disjoint and different from X0. Hence, by
Theorem 2, we get:

Theorem 5 µXPath query satisfiability and containment
are in EXPTIME.

From 2WATAs to µXPath

We show now how to convert 2WATAs into µXPath queries
while preserving the set of nodes selected from (well
formed) binary trees.

Consider a 2WATA A = (L, S, s0, δ, α), and let S =
∪k

i=1Si be the weakness partition of A. We define a transla-
tion π as follows.
• For f ∈ B+([−1..2]× S), we define π(f) inductively:

π(false) = false π(true) = true
π((1, s)) = 〈fchild〉s π((2, s)) = 〈right〉s

π(f1 ∧ f2) = π(f1) ∧ π(f2) π(f1 ∨ f2) = π(f1) ∨ π(f2)
π((0, s)) = s

π((−1, s)) = (ifc ∧ 〈fchild−〉s) ∨ (irs ∧ 〈right−〉s)

• For each state s ∈ S, we define π(s) as the equation

s
.
=

∨

a∈L(a ∧ π(δ(s, a)))

• For each element Si of the weakness partition, we define

π(Si) =

{

gfp{π(s) | s ∈ Si}, if Si ⊆ α

lfp{π(s) | s ∈ Si}, if Si ∩ α = ∅

• Finally, π(A) = s0 : {π(S1), . . . , π(Sk)}.
From the above construction we get that the length of

π(A) is linear in the size of A.

Theorem 6 Let A be a 2WATA, π(A) the corresponding
µXPath query, and T a well-formed binary tree. Then A

selects a node x from T iff x is in (π(A))T .

Relationship between 2WATAs and MSO

To establish the relationship between 2WATAs and MSO, we
make use of nondeterministic node-selecting tree automata,
which were introduced in (Frick, Grohe, and Koch 2003),
following earlier work on deterministic node-selecting tree
automata in (Neven and Schwentick 2002). For technical
convenience, we use here top-down, rather than bottom-up
automata. It is also convenient here to assume that the top-
down tree automata run on full binary trees, even though our
binary trees are not full. Thus, we can assume that there is
a special label ⊥ such that a node that should not be present
in the tree (e.g, left child of a node that does not contain hfc
in its label) is labeled by ⊥.

A nondeterministic node-selecting top-down tree au-
tomaton (NSTA) on binary trees is a tuple A =
(L, S, S0, δ, F, σ), where L is the alphabet of tree labels,
S is a finite set of states, S0 ⊆ S is the initial state set,

δ : S × L → 2S2

is the transition function, F ⊆ S is a set
of accepting states, and σ ⊆ S is a set of selecting states.

Given a tree T = (∆T , ℓT), an accepting run of A on T is

an S-labeled tree R = (∆T , ℓR), with the same node set as
T , where:
• ℓR(ε) ∈ S0.

• If x ∈ ∆T is an interior node, then 〈ℓR(x ·1), ℓR(x ·2)〉 ∈
δ(ℓR(x), ℓT (x)).

• If x ∈ ∆T is a leaf, then δ(ℓR(x), ℓT (x)) ∩ F 2 6= ∅.

A node x ∈ ∆T is selected by A from T if there is a run

R = (∆T , ℓR) of A on T such that ℓR(x) ∈ σ. The notion
of accepting run used here is standard. It is the addition of
selecting states that turns these trees from a model of tree
recognition to a model of tree querying.

Theorem 7 (Frick, Grohe, and Koch 2003) (i) For each
MSO query ϕ(x), there is an NSTA Aϕ such that a node

x in a tree T = (∆T , ℓT) satisfies ϕ(x) iff x is selected from

283

T by Aϕ. (ii) For each NSTA A, there is an MSO query ϕA

such that a node x in a tree T = (∆T , ℓT) satisfies ϕA(x)
iff x is selected from T by A.

The next two theorems establish back and forth transla-
tions between 2WATAs and NSTAs.

Theorem 8 For each 2WATA A, there is an NSTA A
′ such

that a node x in a binary tree T is selected by A if and only
if it is selected by A

′.

For space reasons we do not provide here the proof of the
above theorem. However, we remark that the construction
used to show the result exhibits an exponential blowup: if

the 2WATA has n states, then we get an NSTA with 2n2
+1

states. Together with the results in the previous section
we get an exponential translation from µXPath to NSTAs.
This explains why NSTAs are not useful for efficient query-
evaluation algorithms, as noted in (Schwentick 2007).

For the translation from NSTAs to 2WATAs, the idea is
to take an accepting run of an NSTA, which starts from the
root of the tree, and convert it to a run of a 2WATA, which
starts from a selected node. The technique is related to the
translation from tree automata to Datalog in (Gottlob and
Koch 2004). The construction here uses the propositions
ifc, irs , hfc, and hrs introduced earlier.

Theorem 9 For each NSTA A, there is a 2WATA A
′ such

that a node x0 in a tree T is selected by A if and only if it is
selected by A

′.

While the translation from 2WATAs to NSTAs was expo-
nential, the translation from NSTAs to 2WATAs is linear. It
follows from the proof of Theorem 9 that the automaton A

′

correspond to lfp-µXPath, which consists of µXPath queries
with a single, least fixpoint block. This clarifies the relation-
ship between µXPath and Datalog-based languages studied
in (Gottlob and Koch 2004; Frick, Grohe, and Koch 2003).
In essence, µXPath corresponds to stratified Datalog, where
rather than use explicit negation, we use alternation of least
and greatest fixpoints, while lfp-µXPath corresponds to Dat-
alog. The results of the last two sections provide an expo-
nential translation from µXPath to lfp-µXPath. (Note, how-
ever, that lfp-µXPath does not have a computational advan-
tage over µXPath.)

References
Afanasiev, L.; Grust, T.; Marx, M.; Rittinger, J.; and Teubner, J.
2008. An inflationary fixed point operator in XQuery. In Proc. of
ICDE 2008, 1504–1506.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2003. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University
Press.

Bojanczyk, M., and Parys, P. 2008. XPath evaluation in linear time.
In Proc. of PODS 2008, 241–250.

Bonatti, P.; Lutz, C.; Murano, A.; and Vardi, M. Y. 2008. The
complexity of enriched µ-calculi. Logical Methods in Computer
Science 4(3:11):1–27.

Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi, M. Y.
2009. An automata-theoretic approach to Regular XPath. In Proc.
of DBPL 2009, volume 5708 of LNCS, 18–35. Springer.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1999. Rep-
resenting and reasoning on XML documents: A description logic
approach. J. of Logic and Computation 9(3):295–318.

Clark, J., and DeRose, S. 1999. XML Path Language (XPath) ver-
sion 1.0. W3C Recommendation, World Wide Web Consortium.

De Giacomo, G., and Lenzerini, M. 1994. Concept language
with number restrictions and fixpoints, and its relationship with µ-
calculus. In Proc. of ECAI’94, 411–415.

Fischer, M. J., and Ladner, R. E. 1979. Propositional dynamic
logic of regular programs. J. of Computer and System Sciences
18:194–211.

Frick, M.; Grohe, M.; and Koch, C. 2003. Query evaluation on
compressed trees (extended abstract). In Proc. of LICS 2003, 188–
197.

Genevès, P.; Layaı̈da, N.; and Schmitt, A. 2007. Efficient static
analysis of XML paths and types. In Proc. of the ACM SIGPLAN
2007 Conf. on Programming Language Design and Implementa-
tion (PLDI 2007), 342–351.

Gottlob, G., and Koch, C. 2004. Monadic datalog and the expres-
sive power of languages for web information extraction. J. of the
ACM 51(1):74–113.

Gottlob, G.; Koch, C.; and Pichler, R. 2005. Efficient algorithms
for processing XPath queries. ACM Trans. on Database Systems
30(2):444–491.

Grädel, E.; Thomas, W.; and Wilke, T., eds. 2002. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume
2500 of LNCS. Springer.

Kozen, D. 1983. Results on the propositional µ-calculus. Theor.
Comp. Sci. 27:333–354.

Kupferman, O.; Sattler, U.; and Vardi, M. Y. 2002. The complexity
of the graded mu-calculus. In Proc. of CADE 2002.

Kupferman, O.; Vardi, M. Y.; and Wolper, P. 2000. An automata-
theoretic approach to branching-time model checking. J. of the
ACM 47(2):312–360.

Libkin, L., and Sirangelo, C. 2008. Reasoning about XML with
temporal logics and automata. In Proc. of LPAR 2008, 97–112.

Libkin, L. 2006. Logics for unranked trees: An overview. Logical
Methods in Computer Science 2(3).

Marx, M. 2004. XPath with conditional axis relations. In Proc. of
EDBT 2004, volume 2992 of LNCS, 477–494. Springer.

Marx, M. 2005. First order paths in ordered trees. In Proc. of
ICDT 2005, volume 3363 of LNCS, 114–128. Springer.

Neven, F., and Schwentick, T. 2002. Query automata over finite
trees. Theor. Comp. Sci. 275(1–2):633–674.

Neven, F., and Schwentick, T. 2003. XPath containment in
the presence of disjunction, DTDs, and variables. In Proc. of
ICDT 2003, 315–329.

Neven, F. 2002. Automata theory for XML researchers. SIGMOD
Record 31(3):39–46.

Schwentick, T. 2004. XPath query containment. SIGMOD Record
33(1):101–109.

Schwentick, T. 2007. Automata for XML – A survey. J. of Com-
puter and System Sciences 73(3):289–315.

Slutzki, G. 1985. Alternating tree automata. Theor. Comp. Sci.
41:305–318.

ten Cate, B., and Lutz, C. 2009. The complexity of query contain-
ment in expressive fragments of XPath 2.0. J. of the ACM 56(6).

ten Cate, B., and Segoufin, L. 2008. XPath, transitive closure
logic, and nested tree walking automata. In Proc. of PODS 2008,
251–260.

ten Cate, B. 2006. The expressivity of XPath with transitive clo-
sure. In Proc. of PODS 2006, 328–337.

Vardi, M. Y., and Wolper, P. 1984. Automata-theoretic techniques
for modal logics of programs. In Proc. of STOC’84, 446–455.

284

