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SUMMARY In this paper, we give an algorithm for the node-
to-set disjoint paths problem in pancake graphs with its evalu-
ation results. The algorithm is of polynomial order of n for an
n-pancake graph. It is based on recursion and divided into two
cases according to the distribution of destination nodes in classes
into which all the nodes in a pancake graph are categorized. The
sum of lengths of paths obtained and the time complexity of the
algorithm are estimated and the average performance is evalu-
ated based on computer simulation.
key words: interconnection networks, graph algorithms, pan-
cake graph, node-to-set disjoint paths, parallel computing

1. Introduction

Recently, research in parallel and distributed compu-
tation has become more significant because we cannot
expect drastic improvement of performance in sequen-
tial computation in the future. Moreover, extensive
research on so-called massively parallel machines has
been conducted in recent years. Hence, many complex
topologies of interconnection networks [1], [6] have been
proposed to replace simple networks such as a hyper-
cube and a mesh. A pancake graph [1] is a new topology
that shows promise in that it has a low degree and a
small diameter relative to the number of nodes. Ta-
ble 1 shows a comparison of an n-pancake graph Πn

with an n-rotator graph Rn, an n-star graph Sn, an n-
cube Qn, an (n, k)-de Bruijn graph Bn,k, and an (n, k)-
Kautz graph Kn,k. From this table, we can see that
the n-pancake graph affords better performance than
do the topologies Sn and Qn as it can connect more
nodes for a given diameter or a given degree. Though
the n-pancake graph is inferior to the n-rotator graph,
the (n, k)-de Bruijn graph and the (n, k)-Kautz graph
in this respect, the n-rotator graph is a directed graph

Table 1 Comparison of a pancake graph with other topologies.

# nodes degree diameter
Πn n! n − 1 <= 5(n + 1)/3
Rn n! n − 1 n − 1

Sn n! n − 1
⌊

3
2
(n − 1)

⌋

Qn 2n n n
Bn,k nk 2n k
Kn,k nk + nk−1 n k
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that is unsuitable for applications which require exten-
sive local communications, and the latter two topologies
have neither symmetry nor recursive structure, so they
are impractical for parallel executions of some applica-
tions.

Unfortunately, there still remain unknowns in sev-
eral metrics for this topology despite intense research
activity [2]–[5], [7], [12]. Among the unsolved problems
is the node-to-set disjoint paths problem: Given a
source node s and a set D = {d1, d2, · · · , dk} (s /∈ D) of
k destination nodes in a k-connected graph G = (V, E),
find k paths from s to di (1 <= i <= k) which are node-
disjoint except for s. This is one of the most impor-
tant issues in the design and implementation of paral-
lel and distributed computing systems [8], [10], [13] as is
the node-to-node disjoint paths problem [9], [11]. Once
these k paths are obtained, they achieve fault tolerance;
that is, at least one path can survive with k − 1 faulty
components.

In general, node-disjoint paths can be obtained in
polynomial order time of |V | by making use of the max-
imum flow algorithm. However, in an n-pancake graph,
the number of nodes is equal to n!, so in this case its
complexity is too large. In this paper, we propose an
algorithm which is of polynomial order of n instead of
n! and present the results of computer simulation.

The rest of this paper is organized as follows. Sec-
tion 2 introduces pancake graphs as well as the notion
of classes, and the problem is formalized. Section 3 ex-
plains our algorithm in detail. Computer simulation is
reported in Sect. 4. Section 5 describes conclusions and
future work.

2. Preliminaries

Definition 1: For an arbitrary permutation u =
(a1, a2, · · · , an) of n symbols, 1, 2, · · · , n, the prefix re-
versal operation Pi(u) (2 <= i <= n) is defined as follows:
Pi(u) = (ai, ai−1, · · · , a1, ai+1, ai+2, · · · , an).

Definition 2: An n-pancake graph, Πn, has n! nodes.
Each node has a unique address which is a permutation
of n symbols 1, 2, · · · , n. A node which has an address
u = (a1, a2, · · · , an) is adjacent to n − 1 nodes whose
addresses are elements of the set {Pi(u) | 2 <= i <= n}.

Figure 1 shows an example of a 4-pancake graph.
Note that the address (a1, a2, · · · , an) is denoted as
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Fig. 1 An example of a 4-pancake graph.

a1a2 · · · an in the figure and that a pair of edges ending
in the same letter, e.g. ‘a’, are connected.

Definition 3: In an n-pancake graph, a subgraph
which is induced by nodes that have a common sym-
bol k at the last position of their addresses constitutes
an (n − 1)-pancake graph. This subpancake graph is
specified by Πn−1k using the common symbol k as an
index.

Definition 4: For an arbitrary node u in an n-
pancake graph Πn, a subset of nodes obtained by alter-
native applications of Pn and Pn−1 is a class to which
u belongs and is denoted by C(u).

Theorem 1: With respect to classes in an n-pancake
graph where n >= 3, the following properties hold:

1. Each node belongs to exactly one class.
2. Each class has 2n nodes which together constitute

a ring structure.
3. Each subpancake graph overlaps with each class by

exactly two nodes.
4. Each node has two neighbor nodes that belong to

the same class as the node and n−3 other neighbor
nodes which belong to different classes from each
other.

Proof: Each property is proved as follows:

1. For any node u in Πn, assume that u belongs to
classes C1 and C2. Let a and b be nodes in C1 and
C2, respectively. Then there exists a path from a
to b that is obtained by alternative application of
Pn and Pn−1 to a. Hence, b ∈ C1 and C2 ⊂ C1.
Similarly, C1 ⊂ C2 holds and C1 = C2.

2. For any node u = (u1, u2, · · · , un) in Πn,
Pn(u) = (un, un−1, · · · , u1), Pn−1(Pn(u)) =
(u2, u3, · · · , un, u1), · · ·, Pn ◦ (Pn−1 ◦ Pn)k−1(u) =
(uk−1, uk−2, · · · , u1, un, un−1, · · · , uk), (Pn−1◦Pn)k

(u) = (uk+1, uk+2, · · · , un, u1, u2, · · · , uk), · · ·, Pn ◦
(Pn−1 ◦ Pn)n−1(u) = (un−1, un−2, · · · , u1, un),
(Pn−1 ◦ Pn)n(u) = (u1, u2, · · · , un) = u. Focus-
ing on the first and the last symbols of the address
of each node, these 2n nodes are all distinct and
they constitute a ring structure.

function route(s=(s1,...,sn),d=(d1,...,dn));

begin

E := ∅;
for i := n to 1 step -1

if si /= di then begin

find k such that sk = di;

s′ := Pk(s);
if k > 1 then E := E ∪ {(s,s′)};
s := Pi(s

′);
E := E ∪ {(s′,s)}

end;

return E
end

Fig. 2 A polynomial time routing algorithm.

3. The proof of the previous property shows that, for
any subpancake graph Πn−1k, each class contains
exactly two nodes whose addresses have symbol k
at their last position.

4. For each node u = (u1, u2, · · · , un) in Πn, Pn(u)
and Pn−1(u) belong to C(u) by definition. Other
neighbor nodes Pi(u) (2 <= i <= n − 2) are in the
same subpancake as u. Hence, from the previ-
ous property, they belong to different classes from
C(u). In addition, for any pair of nodes Ph(u)
and Pk(u) (2 <= h < k <= n − 1), Pn−1(Ph(u)) =
(un−1, un−2, · · · , uh+1, u1, u2, · · · , uh, un) and Pk

(u) = (uk, uk−1, · · · , u1, uk+1, · · · , un). Then,
there is no solution for h and k (2 <= h < k <= n−1)
which satisfy the equality of these nodes, Hence,
C(Ph(u)) 	= C(Pk(u)).

For instance, there are three classes, C1, C2 and
C3, each of which consists of 8 nodes, in a 4-pancake
graph Π4.

C1 = {(1, 2, 3, 4), (4, 3, 2, 1), (2, 3, 4, 1), (1, 4, 3, 2),
(3, 4, 1, 2), (2, 1, 4, 3), (4, 1, 2, 3), (3, 2, 1, 4)}

C2 = {(2, 1, 3, 4), (4, 3, 1, 2), (1, 3, 4, 2), (2, 4, 3, 1),
(3, 4, 2, 1), (1, 2, 4, 3), (4, 2, 1, 3), (3, 1, 2, 4)}

C3 = {(1, 3, 2, 4), (4, 2, 3, 1), (3, 2, 4, 1), (1, 4, 2, 3),
(2, 4, 1, 3), (3, 1, 4, 2), (4, 1, 3, 2), (2, 3, 1, 4)}

In addition, a traversal from the beginning in each class
shows that the nodes in it constitute a ring structure.

Definition 5: In a pancake graph, a class path is a
subpath of a ring structure constituted by a class.

Finally, we present a simple unicast routing al-
gorithm because no shortest-path-routing algorithm of
polynomial order of n for n-pancake graphs was found.
Figure 2 shows the algorithm. Its time complexity is
O(n2) and its path length is O(n).

3. Algorithm NS

In this section, we propose an algorithm called NS for
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the node-to-set disjoint paths problem in an n-pancake
graph.

Algorithm NS consists of Procedures 1 and 2. Pro-
cedure 1 concerns the special case where all destina-
tions belong to the subpancake that includes the source
node. It applies Algorithm NS within the subpancake
to obtain n − 2 disjoint paths and then establishes a
path between the remaining destination node and the
source via nodes outside of the subpancake. On the
other hand, Procedure 2 concerns a general case. It
first constructs n−1 disjoint paths from n−1 nodes in
the subpancake graph that includes the source to the
destination nodes by making use of class paths. Then
Procedure 2 reconnects one of these paths to the source
by discarding its subpath. Finally it applies Algorithm
NS within the subpancake recursively to complete n−2
other disjoint paths. Each procedure invokes Algorithm
NS within itself. Hence, Algorithm NS has a recursive
structure.

3.1 Classification

If n <= 2, the problem is trivial. That is, a 2-pancake
graph consists of two nodes and an edge between them.
Hence, if one node is the source, then the other one is
the destination, and the path is the edge itself. This is
the base case of Algorithm NS. Therefore, we assume
n >= 3 in the following. We can fix the source node
as s = (1, 2, · · · , n), taking advantage of the symmetric
properties of Πn. Let D = {d1, d2, · · · , dn−1} be the
set of destination nodes and C = {C1, C2, · · · , Ck} be
the collection of classes to which all destination nodes
belong. Then let us consider the following two cases.

Case 1 All destination nodes belong to the same sub-
pancake graph as the source node (D ⊂ Πn−1n).

Case 2 There exists a destination node in a sub-
pancake graph to which the source node does not
belong. (D 	⊂ Πn−1n).

3.2 Procedure 1

In this section, we present Procedure 1 to address Case
1 in which D ⊂ Πn−1n. This procedure is used to con-
struct n − 1 paths from the source node s to the set
of destination nodes D = {d1, d2, · · · , dn−1} which are
node-disjoint except for the source. Note that, when
Algorithm NS is applied recursively within a subpan-
cake graph in Procedure 1, the distribution of the re-
vised set of destination nodes with respect to the sub-
pancake graph is used to determine whether to apply
Procedure 1 or Procedure 2.

Step 1 Apply Algorithm NS recursively within Πn−1n
to obtain n− 2 paths from s to D−{dn−1} which
are disjoint except for s. If dn−1 is on one of these
paths, say, a path from s to dh, then discard the

Fig. 3 Recursive application of Algorithm NS.

Fig. 4 Construction of a path through class C(dn−1).

Fig. 5 Construction of a path from s to u.

subpath from dn−1 to dh and exchange the indices
of dn−1 and dh. See Fig. 3.

Step 2 Construct a class path from node dn−1 to the
nearest node u in C(dn−1)∩Πn−11 such that node
Pn−1(dn−1) is not included in the path. See Fig. 4.

Step 3 Select an edge between s and Pn(s). Construct
a path from Pn(s) to u by using the polynomial
time routing algorithm shown in Fig. 2. See Fig. 5.

3.3 Procedure 2

In this section, we present Procedure 2 to address
Case 2 in which D 	⊂ Πn−1n. This procedure is used
to construct n− 1 paths from the source node s to the
set of destinations D = {d1, d2, · · · , dn−1} which are
node-disjoint except for s. Note that, when Algorithm
NS is applied recursively within a subpancake graph in
Procedure 2, the distribution of the revised set of des-
tination nodes with respect to the subpancake graph
is used to determine whether to apply Procedure 1 or
Procedure 2.

Step 1 For each Ci, do the following. If |Ci ∩D| = 1,
select a node in Ci ∩ Πn−1n and construct a class
path from the node to the destination node in Ci

such that the path does not include another node
in Ci∩Πn−1n. If |Ci∩D| >= 2, select both nodes in
Ci ∩ Πn−1n and construct two node-disjoint class
paths from the nodes to the nearest destination
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Fig. 6 Construction of paths through classes.

Fig. 7 Construction of paths to neighbor nodes of D3.

Fig. 8 Recursive application of Algorithm NS.

nodes in Ci. If there is exactly one destination
node in C(s) − Πn−1n, then select a path that
starts from s. Let D3 represent the set of the des-
tination nodes that are not terminal nodes of any
of the paths selected so far. In addition, the node
set D −D3 is divided into two subsets D1 and D2

so that any pair of nodes that belong to the same
class is separated. See Fig. 6.

Step 2 For each destination node di in D3, find
its neighbor node ci which satisfies the conditions
‘C(ci) /∈ C’ and ‘C(ci) 	= C(cj), if i 	= j’ in a
greedy manner. Note that such neighbor nodes can
be selected using the fact that |D3| <= n − 2k − 1
and using Property 4 of classes.

Step 3 For each ci obtained in Step 2, construct a class
path from a node in Πn−1n∩C(ci) to ci such that
each path must include only one node in Πn−1n ∩
C(ci). If there exists a node ci which belongs to
C(s), then the path that starts from s is selected.
See Fig. 7.

Step 4 Select an edge between each ci and correspond-
ing di.

Step 5 Among the paths selected in the previous steps,
if there is one that has s as its terminal node, then
apply Algorithm NS recursively to obtain n − 2
paths from s to terminal nodes in Πn−1n other
than s which are disjoint except for s and termi-
nate. See Fig. 8. Otherwise, go to Step 6.

Step 6 Find a subpancake that includes at least one
node (not necessarily a destination) on the paths
obtained in Steps 1 to 4. Let Πn−1k and u rep-
resent the subpancake and the node on the path,
respectively. Then construct a class path from s

Fig. 9 Specification of the target subpancake graph.

Fig. 10 Intercepting one of paths.

Fig. 11 Recursive application of Algorithm NS.

to the nearest node s̃ in Πn−1k ∩ C(s) such that
the path does not include Pn−1(s). See Fig. 9.

Step 7 Construct a path from s̃ to u by using the
algorithm shown in Fig. 2. If the path includes
some nodes on the paths selected in Steps 1 to 4,
let v represent the nearest such node from s̃ and
discard the subpath from v to u. Otherwise, let
u be v. Moreover, let w be the terminal node in
Πn−1n of the path selected in a previous step that
includes node v. Then discard the subpath from
w to v. See Fig. 10.

Step 8 For the terminal nodes of paths selected in
Steps 1 to 4 other than node w, apply Algorithm
NS recursively to obtain n − 2 paths from s to
these nodes which are disjoint except for s, and
terminate. See Fig. 11.

4. Proof of Correctness and Estimation of
Complexities

In this section, we give proofs that Algorithm NS shown
in the previous section constructs n − 1 paths from s
to the destination nodes which are node-disjoint except
for s.

Theorem 2: n − 1 paths constructed by Algorithm
NS are node-disjoint except for s. For n-pancake graph,
the time complexity T (n) and the sum of the path
lengths L(n) are O(n5) and O(n3), respectively.

Proof: By hypothesis of induction on n, the follow-
ing two lemmas are proved. They imply the theorem
immediately.
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Lemma 1: The n − 1 paths obtained by Procedure
1 are node-disjoint except for s. The time complexity
and the sum of path lengths are T (n− 1) + O(n4) and
L(n − 1) + O(n), respectively.

Proof: All paths constructed in Step 1 are node-
disjoint except for s by induction hypothesis. These
paths do not contain dn−1. Except for s and dn−1, all
nodes on the path constructed in Steps 2 and 3 are out-
side of Πn−1n. So, these n − 1 paths are node-disjoint
except for s.

The time complexity of Step 1 is T (n− 1) + L(n−
1) × n. By induction hypothesis, it is equivalent to
T (n−1) +O(n4). And the sum of path lengths of Step
1 is L(n − 1). For Steps 2 and 3, the time complex-
ity and the sum of path lengths are O(n2) and O(n),
respectively. Hence, the total complexities of the time
and the sum of path lengths are T (n− 1) + O(n4) and
L(n − 1) + O(n), respectively.

Lemma 2: The n − 1 paths obtained by Procedure
2 are node-disjoint except for s. The time complexity
and the sum of path lengths are T (n− 1) + O(n4) and
L(n − 1) + O(n2), respectively.

Proof: All paths selected in Steps 1 and 3 are node-
disjoint, because of the disjointness of classes. These
paths and edges selected in Step 4 are obviously dis-
joint except for their joint nodes. Paths obtained in
Steps 5 and 8 are node-disjoint except for s by in-
duction hypothesis. Similar discussion holds for other
cases. Hence, all paths constructed in Procedure 2 are
node-disjoint except for s.

The time complexities of Steps 5 and 8 are both
T (n−1). The time complexity of Step 2 is O(n4), which
governs the case. The sums of path lengths obtained in
Step 5 and 8 are both L(n−1). Those of Steps 1 and 3
are both O(n2), which govern the case. Then, in total,
the time complexity and the sum of path lengths are of
T (n − 1) + O(n4) and L(n − 1) + O(n2), respectively.

5. Computer Simulation

To evaluate average performance of Algorithm NS, we
repeated the following procedures for random combina-
tions of target nodes where the source node s is fixed
to the identity permutation (1, 2, · · · , n). The program
is written in the functional language Haskell, and it is
compiled by the Glasgow Haskell Compiler ghc with -O
and -fglasgow-exts options.

1. Set n−1 destination nodes other than s randomly.
2. Invoke Algorithm NS, count the sum of path

lengths, and measure the execution time.

We show the results of the average execution time
and the average sum of path lengths in Figs. 12 and 13,
respectively. They are obtained by 10,000 iterations
for each n. The horizontal axes represent the number

Fig. 12 Average execution time of Algorithm NS.

Fig. 13 Average sum of path lengths obtained by Algorithm
NS.

expressed by n in both figures, while the vertical axes in
Figs. 12 and 13 represent the average execution time in
seconds and the average sum of path lengths obtained
by Algorithm NS, respectively.

These figures show that Algorithm NS results in
n − 1 node-disjoint paths, the sum of whose length is
O(n3), and execution time is O(n5).

6. Conclusions

In this paper, we proposed a polynomial algorithm for
the node-to-set disjoint paths problem in n-pancake
graphs whose time complexity is O(n5) and the sum
of path lengths is O(n3). We also conducted computer
simulation and showed that the average execution time
and the average sum of path lengths are O(n5) and
O(n3), respectively. Future work includes improvement
of the algorithm to generate shorter paths in shorter ex-
ecution time as well as application of our approach to
other topologies of interconnection networks.
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