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1. Introduction

Pseudo MV -algebras were introduced by Georgescu and Iorgulescu in [7] and
[8], and independently by Rach̊unek in [10] (he uses the name generalized
MV -algebra) as a non-commutative generalization of MV -algebras which
were introduced by Chang in [1]. As it is well known, MV -algebras are an
algebraic counterpart of the  Lukasiewicz many valued propositional logic.
Therefore pseudo MV -algebras are an algebraic model of a non-commutative
generalization of the  Lukasiewicz logic, which allows two different negations
(see [11] for details).

The theory of fuzzy sets was first developed by Zadeh in [13]. Since
then this idea has been applied to other algebraic structures such as
semigroups, groups, rings, ideals, modules, vector spaces and topologies.
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Recently, Jun and Walendziak in [9] applied the concept of fuzzy sets to
pseudo MV -algebras. They introduced the notions of fuzzy ideal and fuzzy
implicative ideal in a pseudo MV -algebra, gave their characterizations and
provided conditions for a fuzzy set to be a fuzzy (implicative) ideal. Further,
the author in [4], [5] and [6] introduced the fuzzy maximal and fuzzy prime
ideals of pseudo MV -algebras and obtained some related properties.

It is well known that every (proper) ideal of pseudo MV -algebra is an in-
tersection of prime ideals. But there are pseudo MV -algebras in which every
ideal has such decomposition as finite. These algebras are called Noetherian
and this paper is devoted to them and also to dual case Artinian.

The paper is organized as follows. In Section 2 we recall some basic
definitions and results of pseudo MV -algebras. In Section 3 we introduce
the notions of Noetherian pseudo MV -algebras and Artinian pseudo MV -
algebras and investigate some of their related properties. Further, we char-
acterize them in terms of fuzzy ideals in Section 4.

2. Preliminaries

Let A = (A,⊕,− ,∼ , 0, 1) be an algebra of type (2, 1, 1, 0, 0). Set x · y =
(y− ⊕ x−)

∼
for any x, y ∈ A. We consider that the operation · has priority

to the operation ⊕, i.e., we will write x ⊕ y · z instead of x ⊕ (y · z). The
algebra A is called a pseudo MV-algebra if for any x, y, z ∈ A the following
conditions are satisfied:

(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(A2) x ⊕ 0 = 0 ⊕ x = x,

(A3) x ⊕ 1 = 1 ⊕ x = 1,

(A4) 1∼ = 0, 1− = 0,

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

(A6) x ⊕ x∼ · y = y ⊕ y∼ · x = x · y− ⊕ y = y · x− ⊕ x,

(A7) x · (x− ⊕ y) = (x ⊕ y∼) · y,

(A8) (x−)∼ = x.

Throughout this paper A will denote a pseudo MV -algebra.
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As it is shown in [8], if we define

x 6 y ⇐⇒ x− ⊕ y = 1,

then (A,6) is a bounded distributive lattice in which the join x∨ y and the
meet x ∧ y of any two elements x and y are given by:

x ∨ y = x ⊕ x∼ · y = x · y− ⊕ y;

x ∧ y = x · (x− ⊕ y) = (x ⊕ y∼) · y.

Definition 2.1. A subset I of A is called an ideal of A if it satisfies:

(I1) 0 ∈ I,

(I2) if x, y ∈ I, then x ⊕ y ∈ I,

(I3) if x ∈ I, y ∈ A and y 6 x, then y ∈ I.

Under this definition, {0} and A are the simplest examples of ideals.

Proposition 2.2 (Walendziak [12]). Let I be a nonempty subset of A. Then

I is an ideal of A if and only if I satisfies conditions (I2) and

(I3′) if x ∈ I, y ∈ A, then x ∧ y ∈ I.

Denote by I(A) the set of ideals of A and note that I(A) ordered by set
inclusion is a complete lattice.

Remark 2.3. Let I ∈ I(A). If x, y ∈ I, then x · y, x ∧ y, x ∨ y ∈ I.

For every subset W ⊆ A, the smallest ideal of A which contains W , i.e., the
intersection of all ideals I ⊇ W , is said to be the ideal generated by W , and
will be denoted by (W ]. If W is a finite set, then an ideal (W ] is said to be
finitely generated. We will write (a1, a2, . . . , an] instead of ({a1, a2, . . . , an}].

Definition 2.4. Let I be a proper ideal of A (i.e., I 6= A). Then I is called
prime if, for all I1, I2 ∈ I(A), I = I1 ∩ I2 implies I = I1 or I = I2.

Definition 2.5. An ideal I of A is called normal if it satisfies the condition:

(N) for all x, y ∈ I, x · y− ∈ I ⇐⇒ y∼ · x ∈ I.
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Following [8], for any normal ideal I of A, we define the congruence on A:

x ∼I y ⇐⇒ x · y− ∨ y · x− ∈ I.

We denote by x/I the congruence class of an element x ∈ A and on the set
A/I = {x/I : x ∈ A} we define the operations:

x/I ⊕ y/I = (x ⊕ y) /I,

(x/I)− = (x−)/I,

(x/I)∼ = (x∼)/I.

The resulting quotient algebra A/I = (A/I,⊕,− ,∼ , 0/I, 1/I) becomes a
pseudo MV -algebra, called the quotient algebra of A by the normal ideal I.
Observe that for all x, y ∈ A,

x/I · y/I = (x · y) /I,

x/I ∨ y/I = (x ∨ y) /I,

x/I ∧ y/I = (x ∧ y) /I.

It is clear that:

(1) x/I = 0/I ⇐⇒ x ∈ I.

For P ⊆ A, we set P/I = {x/I : x ∈ P}.

Proposition 2.6. Let I be a normal ideal of A and let M ⊆ A/I. Then

M is an ideal of A/I if and only if there is an ideal P ⊇ I of A such that

M = P/I.

Proof. Assume that M is an ideal of A/I. Let P = {x ∈ A : x/I ∈ M}.
Clearly, P ⊇ I. Observe that P is an ideal of A. Indeed, let x, y ∈ P . Then
x/I, y/I ∈ M . Hence (x ⊕ y) /I = x/I ⊕ y/I ∈ M. Thus x ⊕ y ∈ P and the
condition (I2) is satisfied. Now assume x ∈ P and y ∈ A. Then x/I ∈ M
and we have (x ∧ y) /I = x/I ∧ y/I ∈ M. So x ∧ y ∈ P and the condition
(I3’) is also satisfied. Therefore, by Proposition 2.2, P is an ideal of A.
Obviously, M = P/I.

Conversely, assume that there is an ideal P ⊇ I of A such that M = P/I.
Let a, b ∈ M. Then a = x/I, b = y/I, where x, y ∈ P. Hence x ⊕ y ∈ P.
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Thus a ⊕ b = x/I ⊕ y/I = (x ⊕ y) /I ∈ P/I = M and (I2) is satisfied. Now
assume a ∈ M and b ∈ A/I. Then a = x/I, where x ∈ P and b = y/I,
where y ∈ A. We have x∧ y ∈ P and hence a∧ b = x/I ∧ y/I = (x ∧ y) /I ∈
P/I = M. So (I3’) is also satisfied. Therefore, by Proposition 2.2, M is an
ideal of A/I.

Definition 2.7. Let A and B be pseudo MV -algebras. A function f :
A → B is a homomorphism if and only if it satisfies, for each x, y ∈ A, the
following conditions:

(H1) f (0) = 0,

(H2) f (x ⊕ y) = f (x) ⊕ f (y),

(H3) f (x−) = (f (x))−,

(H4) f (x∼) = (f (x))∼.

Remark 2.8. We also have for any x, y ∈ A:

(a) f (1) = 1,

(b) f (x · y) = f (x) · f (y),

(c) f (x ∨ y) = f (x) ∨ f (y),

(d) f (x ∧ y) = f (x) ∧ f (y).

The kernel of a homomorphism f : A → B is the set

Ker(f) = {x ∈ A : f (x) = 0} .

Note that Ker(f) is an ideal of a pseudo MV -algebra A.

Proposition 2.9 (Georgescu and Iorgulescu [7]). A homomorphism f :
A → B is injective if and only if Ker(f) = {0}.

Now we review some fuzzy logic concepts. First, for Γ ⊆ [0, 1] we define
∧

Γ = inf Γ and
∨

Γ = sup Γ. Obviously, if Γ = {α, β}, then α ∧ β =
min {α, β} and α∨β = max {α, β}. Recall that a fuzzy set in A is a function
µ : A → [0, 1] .



214 G. Dymek

Definition 2.10. A fuzzy set µ in a pseudo MV -algebra A is called a fuzzy

ideal of A if it satisfies:

(d1) µ (x ⊕ y) > µ (x) ∧ µ (y) for all x, y ∈ A,

(d2) for all x, y ∈ A, if y 6 x, then µ (y) > µ (x) .

It is easily seen that (d2) implies

(d3) µ (0) > µ (x) for all x ∈ A.

Proposition 2.11 (Jun and Walendziak [9]). Let µ be a fuzzy set in A.

Then µ is a fuzzy ideal of A if and only if it satisfies (d1) and

(d4) µ (x ∧ y) > µ (x) for all x, y ∈ A.

It is shown in [9] that if I is an ideal of A, then a fuzzy set

µI (x) =

{

α if x ∈ I,

β otherwise,

where α, β ∈ [0, 1] with α > β, is a fuzzy ideal of A. In particular, we have
that the characteristic function

χI (x) =

{

1 if x ∈ I,

0 otherwise

of an ideal I of A is a fuzzy ideal of A.

Proposition 2.12 (Jun and Walendziak [9]). Let µ be a fuzzy set in A.

Then µ is a fuzzy ideal of A if and only if its level subset

U (µ; α) = {x ∈ A : µ (x) > α}

is empty or is an ideal of A for all α ∈ [0, 1].

Proposition 2.13. Let µ be a fuzzy ideal of A. Then the set P (µ) = {x ∈
A : µ (x) > 0} is an ideal of A when it is nonempty.
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Proof. Assume that µ is a fuzzy ideal of A such that P (µ) 6= ∅. Obviously,
0 ∈ P (µ). Let x, y ∈ A be such that x, y ∈ P (µ). Then µ (x) > 0 and
µ (y) > 0. It follows from (d1) that µ (x ⊕ y) > µ (x) ∧ µ (y) > 0 so that
x ⊕ y ∈ P (µ). Now, let x, y ∈ A be such that x ∈ P (µ) and y 6 x. Then,
by (d2), we have µ (y) > µ (x), and since µ (x) > 0, we obtain µ (y) > 0. So
y ∈ P (µ). Thus P (µ) is an ideal of A.

3. Noetherian and Artinian pseudo MV -algebras

In this section we study Noetherian pseudo MV -algebras and Artinian pseudo
MV -algebras. Although some of theorems presented below are well-known
(in the theory of rings, for example), we give their proofs. Let’s start from
some definitions.

Definition 3.1. A pseudo MV -algebra A satisfies the maximal condition if
each nonempty set of ideals of A has a maximal element.

Definition 3.2. A pseudo MV -algebra A is said to satisfy the ascending

chain condition if for every ascending sequence I1 ⊆ I2 ⊆ · · · of ideals of A
there exists k ∈ N such that In = Ik for all n > k.

Definition 3.3. A pseudo MV -algebra A is called Noetherian if it satisfies
the ascending chain condition.

Now we have two simple theorems. The first of them characterizes Noethe-
rian pseudo MV -algebras and the second describes ideals of such pseudo
MV -algebras.

Theorem 3.4. Let A be a pseudo MV-algebra. The following conditions are

equivalent:

(a) A is Noetherian,

(b) A satisfies the maximal condition,

(c) each ideal of A is finitely generated.
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Proof. (a) ⇒ (b): Assume that A is Noetherian. Then A satisfies
the ascending chain condition. Let I be any nonempty set of ideals of A
and suppose that I has no maximal element. Take I1 ∈ I. Since I1

is not a maximal element of I, there exists an ideal I2 ∈ I such that
I1 ⊂ I2. Repeating the argument we obtain a strictly ascending sequence
I1 ⊂ I2 ⊂ · · · of ideals of A, which is a contradiction. Therefore A satisfies
the maximal condition.

(b) ⇒ (c): Assume that A satisfies the maximal condition and I is any
ideal of A. Let I be the set of all finitely generated ideals of A contained
in I. The set I is nonempty, because {0} ∈ I. By the maximal condition,
I has a maximal element. Denote it by I1. Suppose that I1 6= I and I1 is
generated by the elements a1, a2, . . . , an. Then there exists an element b ∈ I
such that b /∈ I1. Let I2 be an ideal generated by a1, a2, . . . , an, b. Then
I1 ⊂ I2 and I2 ∈ I. This contradicts the maximality of I1. Hence I1 = I
and therefore I is finitely generated.

(c) ⇒ (a): Assume that each ideal of A is finitely generated. Let I1 ⊆
I2 ⊆ · · · be an ascending sequence of ideals of A. Then it is clear that
I =

⋃

∞

k=1
Ik is a finitely generated ideal of A. Let a1, a2, . . . , an ∈ A be

the generators of I. This means that ak ∈ Imk
for some mk ∈ N and

k = 1, 2, . . . , n. Let m = max{m1,m2, . . . ,mn}. Then ak ∈ Im for k =
1, 2, . . . , n. Since I is the minimal ideal containing ak for k = 1, 2, . . . , n, it
follows that I ⊆ Im. Thus Ik = Im for all k > m. Therefore A satisfies the
ascending chain condition and so it is Noetherian.

Theorem 3.5. Let A be Noetherian. Then every ideal of A can be written

as the intersection of a finite number of prime ideals.

Proof. Assume that A is Noetherian. Let I be the set of all ideals of
A, which cannot be written as the intersection of a finite number of prime
ideals. Assume that I is nonempty. Since A is Noetherian, we have, by
Theorem 3.4, that the set I has a maximal element. Denote it by I. Then,
since I cannot be written as the intersection of a finite number of prime
ideals, it is not prime. Thus we have I = I1 ∩ I2, where I1 and I2 are ideals
of A such that I  I1 and I  I2. Then I1, I2 /∈ I. Hence I1, I2 can both be
written as the intersection of a finite number of prime ideals. Thus the same
is true for I, which is a contradiction. Therefore I is empty and theorem is
proved.
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Theorem 3.6. If A is Noetherian, then A/I is Noetherian for every normal

ideal I of A.

Proof. Let A be Noetherian and I be a normal ideal of A. Let J1 ⊆
J2 ⊆ · · · be an ascending sequence of ideals of A/I. If p : A → A/I is
the canonical epimorphism, then p−1 (J1) ⊆ p−1 (J2) ⊆ · · · is an ascending
sequence of ideals of A. Since A is Noetherian, there is k ∈ N such that
p−1 (Jn) = p−1 (Jk) for all n > k. Then Jn = p(p−1(Jn)) = p(p−1(Jk)) = Jk

for all n > k, because p is surjective. Thus A/I satisfies the ascending chain
condition and so it is Noetherian.

Theorem 3.7. If A is Noetherian and f : A → A is a surjective homomor-

phism, then f is injective.

Proof. Assume that A is Noetherian and f : A → A is a surjective ho-
momorphism. Suppose that f is not injective. Then, by Proposition 2.9,
Ker(f) 6= {0}. It is obvious that

Ker(f) ⊆ Ker
(

f2
)

⊆ · · · , where fk = f ◦ f ◦ · · · ◦ f (k times).

We claim that Ker(fn) 6= Ker
(

f2n
)

for all n ∈ N. Indeed, suppose that
Ker(fn) = Ker

(

f2n
)

. Let y ∈ Ker(fn). Since fn is surjective, there exists
x ∈ A such that y = fn (x). So 0 = fn (y) = (fn ◦ fn) (x) = f 2n (x),
which implies that x ∈ Ker

(

f2n
)

= Ker(fn). Thus y = fn (x) = 0, i.e.,
Ker(fn) = {0}. This means that also Ker(f) = {0}, which is a contradiction.
Therefore we have a strictly ascending sequence

Ker(f) ⊂ Ker
(

f2
)

⊂ · · ·

of ideals of A. This cannot happen, because A is Noetherian. Thus f is
injective.

Now we define and investigate Artinian pseudo MV -algebras.

Definition 3.8. A pseudo MV -algebra A satisfies the minimal condition if
each nonempty set of ideals of A has a minimal element.

Definition 3.9. A pseudo MV -algebra A is said to satisfy the descending

chain condition if for every descending sequence I1 ⊇ I2 ⊇ · · · of ideals of
A there exists k ∈ N such that In = Ik for all n > k.
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Definition 3.10. A pseudo MV -algebra A is called Artinian if it satisfies
the descending chain condition.

The following simple theorem characterizes Artinian pseudo MV -algebras.

Theorem 3.11. Let A be a pseudo MV-algebra. Then the following condi-

tions are equivalent:

(a) A is Artinian,

(b) A satisfies the minimal condition.

Proof. (a) ⇒ (b): Assume that A is Artinian. Then A satisfies the de-
scending chain condition. Let I be any nonempty set of ideals of A and
suppose that I has no minimal element. Take I1 ∈ I. Since I1 is not a
minimal element of I, there exists an ideal I2 ∈ I such that I2 ⊂ I1. Repeat-
ing the argument we obtain a strictly descending sequence I1 ⊃ I2 ⊃ · · ·
of ideals of A, which is a contradiction. Therefore A satisfies the minimal
condition.

(b) ⇒ (a): Assume that A satisfies the minimal condition. Let I1 ⊇
I2 ⊇ · · · be a descending sequence of ideals of A. Then the set {In : n =
1, 2, . . .} of ideals has a minimal element. Denote it by Ik. Hence we have
that In = Ik for all n > k. Thus A satisfies the descending chain condition,
i.e., it is Artinian.

Theorem 3.12. If A is Artinian, then A/I is Artinian for every normal

ideal I of A.

Proof. Let A be Artinian and I be a normal ideal of A. Let J1 ⊇ J2 ⊇ · · ·
be a descending sequence of ideals of A/I. If p : A → A/I is the canonical
epimorphism, then p−1 (J1) ⊇ p−1 (J2) ⊇ · · · is a descending sequence of
ideals of A. Since A is Artinian, there is k ∈ N such that p−1 (Jn) = p−1 (Jk)
for all n > k. Since p is the canonical epimorphism, Jn = Jk for all n > k.
Thus A/I satisfies the descending chain condition and so it is Artinian.

Definition 3.13. A pseudo MV -algebra A is finitely cogenerated if for every
family {Ij : j ∈ J} of ideals of A such that

⋂

j∈J Ij = {0} there exists a
finite subset K of J such that

⋂

j∈K Ij = {0}.
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Theorem 3.14. If A satisfies the minimal condition, then A/I is finitely

cogenerated for every normal ideal I of A.

Proof. Assume that A satisfies the minimal condition and I is a normal
ideal of A. We have to prove that for every family {Mj : j ∈ J} of ideals
of A/I such that

⋂

j∈J Mj = {0/I} there exists a finite subset K of J such
that

⋂

j∈J Mj = {0/I}. By Proposotion 2.6, Mj = Ij/I for some ideal
Ij of A containing I. Since

⋂

j∈J Mj = {0/I} , we have
⋂

j∈J Ij = I by
(1). Let I = {

⋂

l∈L Il : L ⊆ J is finite}. Then I is a nonempty family
of ideals of A. Since A satisfies the minimal condition, I has a minimal
element. Let

⋂

k∈K Ik, where K ⊆ J and K is finite, be this minimal
element. We have I ⊆

⋂

k∈K Ik. Suppose that
⋂

k∈K Ik 6= I. Then we can
find x such that x ∈ Ik for all k ∈ K and x /∈ Im for some m ∈ J − K. But
K ∪ {m} is a finite subset of J and

(
⋂

k∈K Ik

)

∩ Im ⊆
⋂

k∈K Ik. Hence, by
the minimality of

⋂

k∈K Ik, we obtain
(
⋂

k∈K Ik

)

∩ Im =
⋂

k∈K Ik, that is
⋂

k∈K Ik ⊆ Im. So x ∈ Im, which is a contradiction. Thus
⋂

k∈K Ik = I and
hence

⋂

j∈K Mj = {0/I} . Therefore A/I is finitely cogenerated.

By Theorems 3.11 and 3.14, we have the following corollary.

Corollary 3.15. If A is Artinian, then A/I is finitely cogenerated for every

normal ideal I of A.

Since {0} is the trivial normal ideal of a pseudo MV -algebra A and we can
associate A/ {0} with A, we obtain the following corollary.

Corollary 3.16. If A is Artinian, then it is finitely cogenerated.

We shall end this section with two examples.

Example 3.17. Let A = {(1, y) ∈ R2 : y > 0} ∪ {(2, y) ∈ R2 : y > 0},
0 = (1, 0), 1 = (2, 0). For any (a, b), (c, d) ∈ A, we define operations ⊕,− ,∼

as follows:

(a, b) ⊕ (c, d) =



















(1, b + d) if a = c = 1,

(2, ad + b) if ac = 2 and ad + b 6 0,

(2, 0) in other cases,
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(a, b)− =

(

2

a
,−

2b

a

)

,

(a, b)∼ =

(

2

a
,−

b

a

)

.

Then A = (A,⊕,− ,∼ ,0,1) is a pseudo MV -algebra. Let I = {(1, y) ∈ R2 :
y > 0}. Then I is the unique proper ideal of A. Therefore A is Noetherian
as well as Artinian pseudo MV -algebra.

Example 3.18. Let B be the set of all increasing bijective functions f :
R→ R such that

x 6 f (x) 6 x + 1 for all x ∈ R.

Define the operations ⊕,− ,∼ and constants 0 and 1 as follows:

(f ⊕ g) (x) = min {f (g (x)) , x + 1} ,

f− (x) = f−1 (x) + 1,

f∼ (x) = f−1 (x + 1) ,

0 (x) = x,

1 (x) = x + 1.

Then B = (B,⊕,− ,∼ , 0, 1) is a pseudo MV -algebra. Note that for an arbi-
trary r ∈ R a set

Ir = {f ∈ B : f(r) = r}

is an ideal of B (see [2], [3]). Now take a set

Js = {f ∈ B : f(x) = x for all x > s}

for any s ∈ R. It is easy to see that

Js =
⋂

r>s

Ir,

i.e., Js is the ideal of B for any s ∈ R. Moreover, we have that Js1
⊆ Js2

for
s1 6 s2. Now we can take an ascending sequence
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J1 ⊆ J2 ⊆ · · ·

of ideals of B which does not stop in any time. Thus B is not Noetherian.

Observe also that if we take a descending sequence

J−1 ⊇ J−2 ⊇ · · ·

of ideals of B, then it never stops, and therefore B is not Artinian as well.

4. Fuzzy characterizations of Noetherian and Artinian

pseudo MV -algebras

In this section we characterize Noetherian pseudo MV -algebras and Artinian
pseudo MV -algebras using some fuzzy concepts, in particular, fuzzy ideals.

Theorem 4.1. Let A be a pseudo MV-algebra. The following statements

are equivalent:

(a) A is Noetherian,

(b) for each fuzzy ideal µ of A, Im(µ) = {µ (x) : x ∈ A} is a well-ordered

set.

Proof. (a) ⇒ (b): Assume that A is Noetherian and µ is a fuzzy ideal of
A such that Im(µ) is not a well-ordered subset of [0, 1]. Then there exists
a strictly decreasing sequence {µ (xn)} , where xn ∈ A. Let tn = µ (xn)
and Un = U (µ; tn) = {x ∈ A : µ (x) > tn}. Then, by Proposition 2.12,
Un is an ideal of A for every n ∈ N. So U1 ⊂ U2 ⊂ · · · is a strictly
ascending sequence of ideals of A. This contradicts the assumption that A
is Noetherian. Therefore Im(µ) is a well-ordered set for each fuzzy ideal µ
of A.

(b) ⇒ (a): Assume that the condition (b) is satisfied and A is not
Noetherian. Then there exists a strictly ascending sequence

I1 ⊂ I2 ⊂ · · ·

of ideals of A. Let µ be a fuzzy set in A such that
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µ (x) =

{

0 if x /∈ In for every n ∈ N,

1

k
if x ∈ Ik − Ik−1 for k = 1, 2, . . . ,

where I0 = ∅. We show that µ is a fuzzy ideal of A. We begin by proving
that µ satisfies (d1). Let x, y ∈ A. We have three cases.

Case 1. x /∈ In for all n ∈ N or y /∈ In for all n ∈ N.

Then µ (x) = 0 or µ (y) = 0. Thus µ (x ⊕ y) > µ (x) ∧ µ (y) = 0.

Case 2. x ∈ Ik − Ik−1 and y ∈ Il − Il−1 for k > l.

Then µ (x) = 1

k
6 µ (y) = 1

l
. Since x, y ∈ Ik, x ⊕ y ∈ Ik. Hence µ (x ⊕ y) >

1

k
= µ (x) = µ (x) ∧ µ (y)}.

Case 3. x ∈ Ik − Ik−1 and y ∈ Il − Il−1 for k 6 l.

Analogous.

Therefore (d1) is satisfied. Now, we prove that µ satisfies (d4). Let
x, y ∈ A. We have two cases.

Case 1. x /∈ In for all n ∈ N.

Then µ (x ∧ y) > µ (x) = 0.

Case 2. x ∈ Ik − Ik−1 for some k = 1, 2, . . ..

Then µ (x) = 1

k
. Since x∧ y 6 x, we have x∧ y ∈ Ik and so µ (x ∧ y) >

1

k
=

µ (x).

Therefore (d4) is also satisfied. Thus, by Proposition 2.11, µ is a fuzzy
ideal of A, but Im(µ) is not a well-ordered set, which is a contradiction.
Hence A is Noetherian.

Corollary 4.2. Let A be a pseudo MV-algebra. If for every fuzzy ideal µ of

A, Im(µ) is a finite set, then A is Noetherian.

Theorem 4.3. Let A be a pseudo MV-algebra and let T = {t1, t2, . . .}∪{0},
where {tn} is a strictly decreasing sequence in (0, 1). Then the following

conditions are equivalent:
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(a) A is Noetherian,

(b) for each fuzzy ideal µ of A, if Im(µ) ⊆ T , then there exists k ∈ N such

that Im(µ) ⊆ {t1, t2, . . . , tk} ∪ {0}.

Proof. (a) ⇒ (b): Assume that A is Noetherian. Let µ be a fuzzy ideal
of A such that Im(µ) ⊆ T . From Theorem 4.1 we know that Im(µ) is a
well-ordered subset of [0, 1]. Thus there exists k ∈ N such that Im(µ) ⊆
{t1, t2, . . . , tk} ∪ {0}.

(b) ⇒ (a): Assume that (b) is true. Suppose that A is not Noetherian.
Then there exists a strictly ascending sequence

I1 ⊂ I2 ⊂ · · · .

of ideals of A. Let I =
⋃

n∈N
In. Then I is an ideal of A. Define a fuzzy set

µ in A by

µ (x) =

{

0 if x /∈ I,

tm where m = min{n ∈ N : x ∈ In}.

It is easy to see that µ is a fuzzy ideal of A. This contradicts our assumption.
Thus A is Noetherian.

The following theorem characterizing Artinian pseudo MV -algebras is dual
to Theorem 4.3. Therefore its proof is left to the reader.

Theorem 4.4. Let A be a pseudo MV-algebra and let T = {t1, t2, . . .}∪{1},
where {tn} is a strictly increasing sequence in (0, 1). Then the following

conditions are equivalent:

(a) A is Artinian,

(b) for each fuzzy ideal µ of A, if Im(µ) ⊆ T , then there exists k ∈ N such

that Im(µ) ⊆ {t1, t2, . . . , tk} ∪ {1}.

Corollary 4.5. Let A be a pseudo MV-algebra. If for every fuzzy ideal µ of

A, Im(µ) is a finite set, then A is Artinian.
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