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NOETHERIAN FIXED RINGS

DANIEL R. F ARK AS AND ROBERT L. SNIDER

One of the basic questions of noncommutative Galois
theory is the relation between a ring R and the ring S fixed
by a group of automorphisms of R. This paper explores
what happens when the group is finite and the fixed ring S
is assumed to be Noetherian Easy examples show that R
may not be Noetherian; however, in this paper it is shown
that R is Noetherian with some rather natural assuptions.
More precisely we prove the Theorem 2: Let S be a semi-
prime ring. Assume that G is a finite group of automorphisms
of 5 and that S has no | G [-torsion. If S° is left noetherian
then S is left noetherian.

Theorem 2 answers a question raised by Fisher and Osterburg [4].
This result rests on calculations which can best be described as

belonging to noncommutative Galois theory. The basic theorem here
may be of independent interest.

THEOREM 1. Let R be a semisimple artinian ring. If G is a
finite group of automorphisms of R and \G\ is invertible in R then
R is a finitely generated ring RG-module.

The proof of Theorem 1 follows the spirit of Karchenko's work
on polynomial identity rings ([6]).

1. A proof of Theorem 1* We will repeatedly need Levitzki's
fixed ring theorem ([8]): Suppose R is a semisimple artinian ring.
If G is a finite group of automorphisms of R with \G\ invertible in
R then Rσ is semisimple artinian.

LEMMA 1. // Theorem 1 is true when G is a simple group then
it is true for an arbitrary finite G.

Proof. By induction on the length of a composition series for G.
If G is not already simple choose HAG with 1 Φ H Φ G. By

Levitzki's theorem RH is semisimple artinian. G/H acts on RH and
RH has no |G/iϊ|-torsion; by induction RH is a finitely generated
right iϊ^-module. Again, induction shows that R is a finitely generat-
ed right ϋ^-module. The lemma follows.

We eventually assume that G is simple. In that case either G
consists entirely of outer automorphisms or entirely of inner auto-
morphisms.
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LEMMA 2. Let B be a simple artinian ring and let G be a
finite group of outer automorphisms of B. Then B is a finitely
generated right BG-module.

Proof. By [1], BG is a simple ring and B is a free module over
BG of rank \G\. (Cf. [5] for the case of a division ring.)

LEMMA 3. Let B be a simple artinian ring and let G be a
finite group of inner automorphisms of B. Assume \G\ is invertible
in B. Then B is a finitely generated right Bσ-module.

Proof. Let F be the center of B.
For each g eG pick one xeB such that 9b = xbx~ι for all beB.

Call the finite set so chosen, G. Then collection of sums, FG, is a
finite dimensional algebra over F. Since 1/|G| eF, Maschke's theorem
for twisted group algebras ([9]) states that FG is a separable
algebra. Thus there is a finite extension field K of F such that K
is a splitting field for each simple constituent of FG.

K (&F B is a simple artinian ring with center K. G acts on
K®FB by

*Qc (g) b) = k (x) 9b .

Obviously this action, too, is induced by inner automorphisms. A
straight-forward calculation shows that (K (x) B)G = K (x) BG. Similar-
ly, if K0B is a finitely generated right (K® B)G-modu\e then B is
a finitely generated ^-module.

Thus we replace B with K 0 ^ B and assume each simple con-
stituent of FG is a total matrix ring with entires in F. Let g? be
the set of centrally primitive idempotents in FG.

The crux of this lemma is to show that if e e £? then eBe is a
finitely generated right JB -̂module. An element of BG commutes with
elements of FG so it certainly commutes with e; hence eBe is a right
^-module. Let ε^ be a set of matrix units for eFG. If x is in
eBe, set

Ma) = Σ ekixεikk

π%j(x) commutes with each of the matrix units. Since F is the center
of By it commutes with eFG. Thus it commutes with FG. In other
words, πiά{x) is in BG. The map πtj: eBe —> BG is a right jBG-module
map by the argument at the beginning of this paragraph. We claim
that the map
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is injective. F o r if Σfc εk^jk = 0 for all i and j , multiple on t h e
right b y εti:

e^xSjj — 0 for all i and j .

Hence exe — 0. B u t x e eBe implies exe = x. We finish this p a r a g r a p h
by noticing t h a t Levitzki ' s theorem says t h a t BG is r i g h t noetherian.
Since eBe is isomorphic t o a submodule of a finitely generated BG-
module, eBe is finitely g e n e r a t e d .

N e x t we show t h a t if e and / a r e different e lements of i? t h e n
fBe is a finitely g e n e r a t e d r i g h t .B^-module. (Of course it is a BG-
module as above.) Since B is simple, BeB = B. T h u s we can choose
vt e fBe and ut e eBf so t h a t

/ = Σ ViUi .

Define φ: fBe —• φ Σ * eBe by φ(τ/) = ( t t ^ ) , a r i g h t J5G-module m a p .
φ(#) = 0 ==> w ty = 0 for each i ==> ( Σ v^i)?/ = 0 => fy = 0. But /?/ = y.
Hence ^ is injective. Finish t h e a r g u m e n t as before.

Because B — Σβ,/e β /Bβ, B is a finitely g e n e r a t e d r i g h t B^-module.

Proof of Theorem 1. I n d u c t on t h e order of G. Assume G is
simple.

Let e be a centra l ly pr imit ive idempotent in i2. eR is a simple
art inian r i n g . Moreover t h e stabilizer H = S t a b G (e) a c t s on eR and

6βjB. By L e m m a s 2 and 3, ei? is a finitely generated r i g h t

Claim. (eR)H = e(RG).

Certainly e(RG) Q (eR)H. Let G = Urer^-H" be a coset decomposi-
tion of G with 1 6 Γ. G permutes the centrally primitive idempotents
of R and for a Φ β in Γ, ae Φ βe. Equivalently, if 7 Φ 1 is in Γ,
e('e) = 0. If a;6(ei2)ff define ί̂ α?) = Σrβr( r^). If ίίeG, {^7|τeΓ}
are also coset representatives for H. Thus gtΓ(x) = tΓ(x). That is,
tΓ{x) 6 J?0. But etΓ(x) — x by the remarks above about multiplying
idempotents. Thus (eR)H Q (eRG).

We now know that eR is a finitely generated right e(RG)-modxύe.
That means eR is a finitely generated ^-module. Since R = Σ* ̂ ?>
we are done.

2* Theorem 2 and its relatives*

LEMMA 4. Lei A be a semiprime ring. Assume G is a finite
group of automorphisms of A and A has no \G\-torsion. Then trG

does not vanish on any nonzero right ideal of A.
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(Here trG(a) = Σ (^) )
geG

Proof. Suppose J is a right ideal of A with trG(I) = 0. If
J — ΈigeG

9I then J is a G-in variant right ideal of A with trG(J) = 0.
By [2], J is nilpotent. But the only nilpotent right ideal in a semi-
prime ring is 0.

Proof of Theorem 2. SG is left Goldie, so according to [6], S
is (semiprime) left Goldie. Let R be the left quotient ring for S;
R is semisimple artinian. By Theorem 1 we can find a finite set of
generators x19 , xn for J? as a right it^-module. Choose a regular
t and st both in S such that xi = ί"1^.

iu = Σ?=i t'^iR0 =>tR = Σ i ^jβ*. But tR = R since ί is invertible.
Thus we assume ^ e S.

Define Γ: S-> φ Σ?=i Sσ by Γ(α) = [ίrβ(αa0]?βl.
 Γ i s clearly a

left S^-module map. We will be done once we prove that T is
injective.

T(a) — 0 implies trG(ax%) = 0 for all i. But trG is a rî rfeί RG-
module map. Thus trG(aR) = 0. By the previous lemma, a = 0.

We have actually proved that S is a finitely generated S^-module!
One might well ask whether the requirement that S have no

G|-torsion can be dropped. Consider the following counterexample.
Let F be a field of characteristic p > 2 and let Φ be the free group
on x and y. If S denotes the ring of two-by-two matrices over the
group algebra F[Φ] then S is semiprime but not noetherian. Let G
be the multiplicative subgroup of S generated by

1 01 Γl 1

o -iMo iΓ
"1 x

0 1
and

1 y
0 1

G is isomorphic to the semidirect product of Z/p 0 Z/p 0 Z/p with
r l O i

Z/2. Since char F Φ 2, S° " J is the collection of diagonal matrices.

The only diagonal matrices fixed by L J are the scalar matrices.
Now a simple calculation shows that SG consists of those scalars in
the center of F[Φ]. But it is well known that the center is F, a
patently noetherian ring.

However, the |G|-torsion restriction is not needed when S is
(semiprime) commutative or, more generally, when S has no nilpotent
elements. There are several difficulties in proving the last statement
along the lines of Theorem 2. First, there are division rings on
which trG vanishes. Even if this objection is met, our induction and
restriction techniques all ignore the question of fidelity of action.
Reconsider, for instance, Lemma 4. The Bergman-Isaacs theorem
states that if H is a group of automorphisms of J and trH(J) = 0
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then J — 0. Thus implicit in our argument is the proposition that
trG(J) = 0 => trG/κ(J) = 0 where K is the kernel of the action of G
on J. The implication is true because J has no |iΓ|-torsion.

We avoid these complications (and, of course, replace them with
other complications) by refining the notion of trace. Let G be a
finite group acting on a ring R. If Λ is a subset of G define tΛ:
R-+R by

= Σ
λeA

tA is an ϋ^-bimodule map. Notice that trG = tG.

LEMMA 5. Let G be a finite group acting on the division ring
D. Then there is a subset Λ £ ( ? such that tA is a mapping from
D onto DG.

Proof. Suppose we can find Λ such that tA is a nonzero func-
tion from D into DG. Say d e D such that tA(d) = w Φ 0. If x e DG,
t^dw^x) = tjβ)w~ιx = α. Thus ίΛ is surjective.

We argue by induction on the length of a composition series for
G. If G is simple and does not act faithfully then G acts trivially;
choose Λ = {1}. If G is simple group of automorphisms, a result of
Faith ([3]) shows that tG is not identically zero.

When G is not simple choose HAG with Hφ 1 and HΦ G. By
induction there is a subset A Q H such that £ :̂ D —> D f f is surjective.
G/iϊ acts on DH, so we can find C £ G/iϊ such that ic: D

H -> DG is
surjective. If .B consists of representatives in G for elements of C
then t0 = £B. Now ί̂ .̂  = ίa ί̂  is the desired map.

Let S be a ring without nilpotent elements. Suppose G is a
finite group of automorphisms of S such that SG is left noetherian.
By [7] S is a semiprime left Goldie ring. By the Faith-Utumi
theorem the quotient ring, R, of S has no nilpotent elements. Let
e be a centrally primitive idempotent of R.

LEMMA 6. S Π eR is a finitely generated left SG-module.

Proof. We first observe that the left quotient ring of S f] eR
in eR is the entire division ring eR. Choose z and s in S with z
regular such that e = z~ιs. Then s = zeeS f] eR. If xeeR choose
q and w in S with q regular such that qx = w. Then (sq)x = sw.
But sq and sw are in S Π eR with sg regular when considered as an
element in eR.

H = StabG (β) is a group which acts on S Π eR. Pick a trans-
versal, G = Γ-H. As in Theorem 1, if aeSH Π e# then



352 DANIEL R. FARKAS AND ROBERT L. SNIDER

tΓ(a) e SG and β ίΓ(α) = a .

Thus tΓ is an injective left S^-module map from SH Π eR into SG.
The Galois theory for division rings ([5]) as applied to eR implies

that eR is a finite dimensional right (eϋ^-vector space. As in the
proof of Theorem 2 we can choose a basis xlf , x% in S n eR. Use
Lemma 5 to find Λ £ H so that ίΛ is nondegenerate on eR. Define
Γ:Snβie — Θ Σ t i S G by

T(a) = [tr.Λ(α»i)lr«i

It is easy to check that T is a well defined left S^-module map.
The lemma is completed by showing that T is injective. Suppose
a Φ 0 and T(a) — 0. Then ίΓ £Λ(αα?έ) = 0 for each i. Since £Γ is
injective, tA{ax^) — 0 for each i. That is, £Λ(α ei?) = 0. But ei? is
a division ring: a eR — eR. We have contradicted the nonvanishing
of tA.

THEOREM 3. Let S be a ring without nilpotent elements. If G
is a finite group of automorphisms of S and SG is left noetherian
then S is left noetherian (in fact, is finitely generated as an SG-
module).

Proof. So far we have proved that Σe (S Π eR) is a finitely
generated left S^-module, where the sum is taken over the centrally
primitive idempotents of R.

As observed in the first paragraph of Lemma 6, S Π eR contains
an element invertible in eR. Consequently there is an element
deΣ(SΓ\eR) which is invertible in R. Define f:S->Σ(SΓιeR) by
f(s) = sd. Since / is an injective left S^-module map, S is a finitely
generated left SG-module.
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