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NOETHERIAN RING EXTENSIONS WITH TRACE CONDITIONS

ROBERT B. WARFIELD, JR.

Abstract. Finite ring extensions of Noetherian rings with certain restrictions
on the corresponding trace ideals are studied. This setting includes finite free
extensions and extensions arising from actions of finite groups when the order
of the group is invertible. In this setting we establish the following results which
were previously obtained (for finite extensions without trace conditions) only
under strong restrictions on the rings involved. Let R C S be an extension of
Noetherian rings such that S is finitely generated as a left 73-module and such
that the left trace ideal of S in R is equal to R . If S is right fully bounded,
or is a Jacobson ring, then R has the same property; furthermore, R and S
have the same classical Krull dimension. If S is finitely generated as both a
right and a left Ä-module, if both trace ideals of S in R are equal to R , and
if S satisfies the strong second layer condition, then this condition also holds
in R .   Finally, we compare the link graphs of R and S .

Introduction

Many applications of Noetherian rings depend on a transfer of information
between a Noetherian ring 5 and a Noetherian subring R such that 5 is finitely
generated as an ^-module on at least one side. (For brevity we will refer to
such ring embeddings as finite extensions.) Instances include embeddings of
group algebras kH ckG where H is a subgroup of finite index in G, scalar
extensions R c K ®k R where R is a /c-algebra and k c K is a finite field
extension, fixed rings and skew group rings 5G c 5 c 5 * G where G is a
finite group of automorphisms of 5, and embeddings of enveloping algebras
t/(go) C U(g) where g = go©gi is a finite-dimensional Lie superalgebra. Such
applications have motivated the search for general transfer theorems for finite
extensions of Noetherian rings. (See for example [5; 6, Chapters 7, 10, 12; 13;
14; 15, Chapter 10; 17; 18].) However, many results of this nature either require
further hypotheses on the internal structure of the rings involved (e.g., that the
rings satisfy the second layer condition) or place additional restrictions on the
embedding (e.g., that the extension ring be free as a right module over the base
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450 R. B. WARFIELD, JR.

ring). The goal of this paper is to develop a transfer theory for finite extensions
of Noetherian rings under assumptions which unite the above examples.

Our focus is primarily on the following setting: Let Re S be an extension
of Noetherian rings such that 5 is finitely generated as a right i?-module and
such that the trace ideal of 5 viewed as a right i?-module is equal to R. (Recall
that the right trace ideal of a right .R-module M is the ideal in R obtained
by summing the images f(M) over all / 6 Hom(AfR, RR).) This situation
encompasses in particular the case of fixed rings R = SG for a finite group G
of automorphisms of 5 such that |G| is invertible in 5, as well as the case
where 5 is free as a right ^-module. Moreover, many of our results are proved
in more general and symmetric settings involving Noetherian bimodules with
trace conditions. These bimodule results allow information to be passed from
5 to R just as well as from R to 5, in part because the 5- Ä-bimodule sSr
automatically satisfies the condition that the left trace ideal is equal to 5.

The information we seek to transfer between R and 5 is mostly concerned
with prime ideals. In particular, we prove that the following properties descend
from 5 to R : the Jacobson condition, coincidence of primitive ideals with
G-ideals, and left full boundedness. When our hypotheses on the extension
R c 5 are left-right symmetric, the strong second layer condition descends
from 5 to R. (That each of these properties ascends from R to 5 is already
known.) Moreover, we show that R and 5 must have the same classical Krull
dimension, and we make some preliminary steps toward comparing the right
Krull dimensions. Finally, we prove a lying over theorem sensitive to links
between prime ideals of R. For this last result we assume the existence of a
symmetric dimension function—such as Gelfand-Kirillov-dimension—on the
prime factors of R and 5.

We now introduce our basic notation and conventions. We denote the right
trace ideal in a ring A of a right A -module M by Tr(MA) and the left trace
ideal of a left ^4-module A by Tr(^ A). When there is no confusion we will
refer simply to the trace ideal of a module. Recall that a prime ideal P of
5 is said to lie over a prime Q of R provided Q is minimal over P n R.
By a Noetherian bimodule we will mean a bimodule Noetherian on each side,
and by a torsionfree bimodule a bimodule torsionfree on each side. We denote
the reduced rank of a module M by p(M), the classical Krull dimension of
a ring A by clKdim^, and the right Krull dimension of A by rKdim^.
Finally, for an ideal / in a ring A, the set of elements of A that are regular
modulo / will be denoted   WA(I)   or   W(I).

The reader is referred to [6, 9, 15] for the definitions of unexplained terms
and for background information.

1. The Jacobson condition

It is proved in [5, Theorem 1] that if F is a right Noetherian ring with a right
Noetherian subring U such that Vu is finitely generated, then F is a Jacobson
ring if U is a Jacobson ring. In this section we consider the converse under
suitable restrictions on the right trace ideal. In [5, Theorem 2] it is shown that
the converse holds when V satisfies a polynomial identity, and in [14, Corollary
4.7] it is shown that the converse holds when U and V are Noetherian rings
satisfying the second layer condition.
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Recall that if R and 5 are prime Noetherian rings and if B is a nonzero
R- 5-bimodule which is finitely generated and torsionfree as both a left and a
right module, then B is said to be a bond from R to 5   [9].

Definition 1.1. Let R and 5 be Noetherian rings and let B be a Noetherian
R- 5-bimodule. Let P be a prime ideal of R, and let Q be a prime ideal of
5.

(i) If there exists a nonzero R- 5-bimodule subfactor B' of B such that
the left annihilator of B' is P, the right annihilator of B' is Q, and B' is
a torsionfree (R/P)- (5/ß)-bimodule, then B' is said to be a B-bond from
R/P   to   S/Q.

(ii) Let B(Q) denote the R- 5-bimodule preimage in B of the right (5/0-
torsion submodule of the right (5/ö)-module B/BQ. Alternatively, since R
and 5 are Noetherian, note that

73(ß) = Ç]{ker(f) | / e Hom(735, (S/Q)s)} .

(iii) Similarly, define (P)B to be the R- 5-bimodule preimage in B of the
left (JR/P)-torsion submodule of the left (R/P)-module   B/PB.

Lemma 1.2. Let R, S, and B be as in (1.1).
(i) If Q is a prime ideal of S, and if Tr(Bs) % Q, then there exists a

subbimodule C < B such that B/C is a B-bond from R/P to S/Q for
some prime ideal P of R.

(ii) If P is a prime ideal of R, and if Tr(RB) g P, then there exists a
subbimodule C < B such that B/C is a B-bond from R/P to S/Q for
some prime ideal Q of S.
Proof, (i) Since a right 5-module homomorphism /: t3 —> 5 can be chosen
such that f(B) % Q, it follows that there exists a nonzero right 5-module
homomorphism   B -* S/Q.   Hence,   B/B(Q)   is not equal to zero. Let

Bo/B(Q)  = 0 < BX/B(Q)  < < Bn/B(Q)  = B/B(Q)
be a left affiliated series for the left i?-module   B/B(Q), and let P be the left
annihilator of  B/Bn-X.   Since   B/Bn_x   is a torsionfree right (5/Q)-module
[6, Proposition 7.7], it follows that B/Bn_x   is a 5-bond from R/P to S/Q.

(ii)  This follows symmetrically.    D

Proposition 1.3. Let R, B, 5, and Q be as in (1.1).
(i) If R is a Jacobson ring and  Tr(Bs)<£Q,  then   S/Q   is semiprimitive.
(ii) If R and  S/Tr(B$)   are Jacobson rings, then S is a Jacobson ring.

Proof, (i) It follows from 1.2(i) and the assumption of the Jacobson condition
for R that there exists a prime semiprimitive factor of R bonded to S/Q.
Part (i) then follows from the bond invariance of semiprimitivity [8, Theorem
6.1].

(ii) This follows directly from (i).   D

Corollary 1.4. Let V be a Noetherian ring with a Noetherian subring U. If V
is finitely generated as a right U-module, and if both U/Tr(Vrj) and V are
Jacobson rings, then U is a Jacobson ring.
Proof.   This follows from an application of 1.3(a) to the bimodule   yV¡j .   D
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2. Classical characterizations of primitivity
Recall that a G-ideal of a (Noetherian) ring R is a prime ideal P with the

property that the intersection of all prime ideals strictly containing P is strictly
larger than P. (In other terminology, P is locally closed in Spec(JR).) Also, if
R is an algebra over a field k and P is a prime ideal of R then P is rational
(over k ) provided the center of the classical quotient ring of R/P is an
algebraic extension of k .

Let F be a Noetherian ring, U a Noetherian subring, and assume that V
is finitely generated on each side as a [/-module. It is shown in [19, Corollary
2] that if either of the following properties holds for U then the same property
must also hold for V : (a) each right primitive ideal is a G-ideal, (b) each
(7-ideal is right primitive. Moreover, if in addition U ç V is an extension
of /c-algebras, where k is a field, then it is shown in [13, Corollary 1.5] that
if one of the following properties holds for U then the same property must
hold for V : (c) each rational prime ideal is right primitive, (d) each right
primitive ideal is rational. In this section the descent of such characterizations
is considered.

Proposition 2.1. Let R, B, and S be as in (1.1).
(i) Let P be a right primitive ideal of R such that Tr(RB) <¿ p. If each

right primitive ideal of S is coartinian then P is coartinian, while if each right
primitive ideal of S is a G-ideal then P is a G-ideal. If R and S are algebras
over a field k acting centrally on B, and if each right primitive ideal of S is
rational then P is rational.

(ii) Let Q be a prime ideal of S such that Tr(Bs) g Q. If each G-ideal of
R is right primitive and Q is a G-ideal then Q is right primitive. If R and S
are algebras over afield k acting centrally on B, if each rational prime ideal of
R is right primitive, and if Q is rational, then Q is right primitive.

Proof, (i) It follows from 1.2(ii) that there exists a bond from R/P to S/Q
for some prime ideal Q of 5, and so [13, Lemma 1.3] implies that Q is right
primitive. It follows from [ 11, Proposition] that R/P is artinian if S/Q is
artinian, from [ 19, Theorem 1 ] that P is a C7-ideal if Q is a G-ideal, and from
[3, Corollary 2.7] that P is rational if Q is rational.

(ii) It follows from 1.2(i) that there exists a bond from R/P to S/Q
for some prime ideal P of R. Part (ii) can then be deduced from a similar
argument to (i), using [3, Corollary 2.7; 13, Lemma 1.3].   D

Corollary 2.2. Let V be a Noetherian ring with a Noetherian subring U.
(i) If V is finitely generated as a right U-module, and each right primitive

factor ring of U is artinian, then each right primitive factor ring of V is artinian.
Moreover, if V is finitely generated as a left U-module, if U/Tr(rjV) is
artinian, and if each right primitive factor ring of V is artinian, then each right
primitive factor ring of U is artinian.

(ii) Suppose that V is finitely generated as a left U-module. If either one
of the following properties holds for both V and U/Tr(uV), then the same
property also holds for U : (A) each right primitive ideal is a G-ideal, (B) each
right primitive ideal is rational (assuming V is an algebra over a field k and
U is a k-subalgebra).
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(iii) Suppose that V is finitely generated as a right U-module. If either one
of the following properties holds for both V and U/1r(Vu), then the same
property also holds for U : (C) each G-ideal is right primitive, (D) each
rational prime ideal is right primitive (where V is an algebra over a field k and
U is a k-subalgebra).
Proof. These statements follow from applications of (2.1) to the bimodules
yVr;   and jjVy.   ü

3. Boundedness

Recall that a prime ring is right bounded if each essential right ideal contains
a nonzero two-sided ideal. A ring is right fully bounded if each prime factor
ring is right bounded.

In [18, Theorem 21] it is shown that if U c V is a finite normalizing
extension of right Noetherian rings then U is right fully bounded if and only
if V is right fully bounded. In [14, Proposition 4.9] it is shown that if U is a
right fully bounded right Noetherian ring and V is any ring containing U as
a subring such that Vv is finitely generated, then F is a right fully bounded
right Noetherian ring.

Proposition 3.1. Let R, B, S, and P be as in (1.1).
(i) // 5 is right fully bounded and Tr(RB) g P, then R/P is right

bounded.
(ii) If S and R/ Tr(RB) are right fully bounded, then R is right fully

bounded.
Proof, (i) It follows from 1.2(ii) that there exists a bond from R/P to S/Q
for some prime ideal Q of 5. Assume now that R and 5 are prime and
that B is a bond from R to 5; to prove (i) it suffices to show that R is
right bounded. (We have Tr(RB) ^ 0 simply because B is a nonzero finitely
generated torsionfree left i?-module.)

Let / be an essential right ideal of R, and let c be a regular element of
R contained in /. The regularity of c ensures that cBs = Bs. From
[6, Corollary 4.18], for example, we deduce that B/cB is torsion as a right
5-module. The boundedness of 5 implies that if J = ann(B/cB)s, then
J > 0. Consequently, t3/t5/ is not faithful as a right 5-module, and it
follows from [6, Proposition 7.4] that B/BJ is not faithful as a left A-module.
Let   K = annR(B/BJ), observing that   KBQcB.

Now let L = Tr(Ä73). Note that L is nonzero and that L = fx(B) + ■ ■ ■ +
fn(B)   for some   fx, ... , fn € Hom(R73 ,RR).  Therefore,

0 < KL = fx(KB) + --- + fn(KB) C fx(cB) + "- + fn(cB) = cL C I.

Hence R is right bounded and (i) follows.
(ii) This follows from (i).   D

Corollary 3.2. Let V be a Noetherian ring with a Noetherian subring U such
that V is finitely generated as a left U-module. If V and U/Tr(rjV) are right
fully bounded then U is right fully bounded.
Proof.   This follows from an application of 3.1(h) to   \jVv .   D
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4. Krull dimension

Jategaonkar proves in [9, Theorem 8.2.8] that if R and 5 are Noetherian
rings satisfying the second layer condition, and if there is a Noetherian R- 5-
bimodule which is faithful as both a left and a right module, then R and 5
have the same classical Krull dimension. In this section we show that the same
conclusion can be reached if the second layer condition hypothesis is replaced
with suitable trace conditions. (When R isa subring of 5 such that 5 is finitely
generated on each side as an i?-module it can still be the case that the classical
Krull dimensions of R and 5 differ—such a ring extension is constructed in
[7, §2].) We also offer some observations on how trace conditions can help to
relate the right Krull dimensions of R and 5.

Lemma 4.1. Let R and S be Noetherian rings, and let B be a Noetherian
R- S-bimodule. Suppose that S is prime and that B is torsionfree as a right
S-module. If Q is a nonzero prime ideal of S such that B(Q) ^ B, then no
left affiliated prime of B/B(Q)   is minimal.
Proof. First, we may assume without loss of generality that B is faithful as a
left i?-module. Let F be a left affiliated prime of B/B(Q). There exists a
bimodule subfactor of B/B(Q) which has annihilator equal to P and which
is torsionfree as a left (R/P)-module. Consequently, using for example [6,
Lemma 10.5], we see that if P is minimal then   pR(B/B(Q)) > 0.

Since Q t¿ 0 there exists a regular element ceQ. Note that BcQB(Q)
and that Be =< B as left ^-modules. Hence pR(B/B(Q)) < pR(B/Bc) = 0,
using for example [6, Lemma 10.4]. This inequality contradicts the previous
paragraph.   D

Lemma 4.2. Let R and 5 be Noetherian rings, and let B be a Noetherian R- 5-
bimodule such that Tr(Bs) = 5. If Q is a prime ideal of S and B' = B/B(Q)
then   Tr((B')s/Q)=S/Q.
Proof. Since Tr(Bs) = 5 we have fx(B) + ■■■ + fn(B) = S for some
f\, ... , fn in Hornos, 5s). Each f induces a homomorphism g¡ e
nom((B')SIQ, (S/Q)s/Q), for 1 < i < n. Further, gx (B') + ■■■ + gn(B') =
S/Q.  The lemma follows.   D

Theorem 4.3. Let R and 5 be Noetherian rings, and let B be a Noetherian
R-S-bimodule such that   Tr(Bs) = S.   Then   clKdim(5) < clKdim(Ä).
Proof. Suppose that the conclusion of the theorem is false and that R, S, and
B have been chosen such that a = clKdim(5) > clKdim(iî) and such that a
is minimal among classical Krull dimensions contradicting the conclusion. We
may assume without loss of generality that 5 is prime and Bs is torsionfree,
given (4.2) and the fact that the classical Krull dimension of some prime factor
of 5 will equal a .

Let ß = clKdim(/?) and let Q be a prime ideal of 5, necessarily nonzero,
such that clKdim(5/g) = ß. From (4.2) it follows that 73(g) ^ B.
Choose a left affiliated series for R(B/B(Q)) with corresponding affiliated
primes Fi, ... , Pt ■ From (4.1) it follows that none of these prime ideals
is minimal. Hence if I = annR(B/B(Q)) then clKdim(i?/7) < ß, and so
clKdim(5/g) > clKdim(Ä/7). Since Tr([75/73(g)]5/e) = 5/g, this contra-
dicts the minimality of a and the theorem follows.   D
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Corollary 4.4. If R and S are Noetherian rings, and if there is a Noetherian
R- S-bimodule B such that Tr(RB) = R and Tr(Bs) = S, then R and S
have the same classical Krull dimension.   D

Corollary 4.5. Let V be a Noetherian ring with a Noetherian subring U. If V
is finitely generated as a left U-module then clKdim(F) < clKdim(i/). If in
addition Tr(rjV) = U  then U and V have the same classical Krull dimension.
Proof.   This follows from applications of (4.3) and (4.4) to (/Fk .   D

Trace conditions on a Noetherian bimodule RB$ seem also to be helpful
in studying the relationship between the right Krull dimensions of R and 5.
We record here a few observations in this direction, stemming from discussions
with K. R. Goodearl and J. T. Stafford in 1986.

Consider a Noetherian bimodule RBS , and let T = Tr(RB). There exist
fx, ... , fn in Hom(«75, R R) such that J2 f(B) = T. Given any right ideal
/ of R, it follows that Yl fi(IB) = l^ ■ Thus we can recover IT from IB,
and so if T = R, the map I ^ IB provides an embedding from the lattice
of right ideals of R into the lattice of right 5-submodules of B . Consequently,

rKdim(5) > Kdim(75s) > rKdim(Ä)

in this case. This line of argument can be adapted to the case that 1r(RB) is
a coartinian ideal, as follows.

Theorem 4.6. Let R and S be right Noetherian rings, and B a nonzero R-
S-bimodule such that Bs is finitely generated. If the ideal T — Tr(RB) is
coartinian, then   rKdim(5) > rKdim(iî).
Proof. Since B is nonzero, so is 5. Hence, the result is clear in case R is right
artinian. Now assume that   rKdim(7?) > 0.   It suffices to prove the following

Claim. If 7* and J are any right ideals of R with I > J and Kdim(///) =
a > 1,  then   Kdim(IB/JB) > a .

This claim reduces, by an obvious transfinite induction, to the case a - 1,
and for that case we may assume that   I/J   is 1-critical.

Let P be the assassinator (i.e., the unique associated prime) of I/J, and
let /'// = ann//y(F). Since it is enough to show that Kdim(I'B/JB) > 1,
we may replace /by /'. Thus we may assume that (I/J)P = 0. Note that
rKdim(R/P) > 1   and so   TgP.

If Ix is a right ideal of R with I > Ix > J and IXB = JB, then as in
the discussion above, IXT = JT. But then (Ix/J)T = 0, contradicting the
fact that   TCP.  Thus   IXB > JB   whenever   I > Ix > J .

If IB/JB is artinian, choose a right ideal Ix of R such that I > Ix > J
and /iß is as small as possible. Then whenever I2 is a right ideal of R
with Ix > I2> J, we obtain IXB = I2B , and consequently IXT — I2T < I2 .
Since /// is 1-critical, J equals the intersection of the right ideals I2 of R
satisfying Ix > I2> J . But then I\T < J , again a contradiction. Therefore
Kdim(/73//73) > 1.   D

Corollary 4.7. Let R and S be Noetherian rings, and B a Noetherian R- S-
bimodule such that RB is faithful. If all nonminimal primes of R are co-
artinian, then   rKdim(5) > rKdim(Ä).
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Proof.   Choose a minimal prime P in R such that

rKdim^/P) = rKdim(Ä).

The prime P appears among the affiliated primes corresponding to any left
affiliated series for B by [6, Proposition 2.14]. Hence, t3 has a bimodule
subfactor C such that ann(ÄC) = P and C is a torsionfree left (R/P)-
module [6, Proposition 7.5]. Replace R and t3 by  R/P   and C.

Thus we may assume that R is prime and that RB is torsionfree. Now the
ideal T — Tr(RB) is nonzero, and so all primes containing T are coartinian.
Therefore T is coartinian, and the result follows from (4.6).   D

Corollary 4.8. Let V be a Noetherian ring with a Noetherian subring U such
that all nonminimal primes of U are coartinian. If V is finitely generated
as a left U-module, then rKdim(F) > rKdim([/). If in addition V is
finitely generated as a right U-module, then U and V have the same right
Krull dimension.
Proof. The first conclusion follows from an application of (4.7) to the bimod-
ule jjVv ■ Incase Vu is finitely generated, the inequality rKdim(F) <
rKdim({7)   is well known (see e.g. [15, Lemma 6.5.3(ii)(c)]).   D

5. The strong second layer condition
We refer the reader to [9] or [6] for the definitions of the right and left (strong)

second layer conditions, and for equivalent formulations of these conditions.
It is shown in [14, Theorem 4.2] that if F is a ring containing a Noetherian

subring U satisfying the (strong) second layer condition such that F is finitely
generated as a right and left [/-module then F satisfies the (strong) second
layer condition. An example in [7, §2] shows that a simple ring V (which
trivially satisfies the (strong) second layer condition) may contain a fixed ring
U under the action of a finite group such that U does not satisfy the second
layer condition. Therefore a general converse does not hold. In this section we
prove a converse for the strong second layer condition in the presence of trace
conditions. We start with a lemma which is presumably well known, but for
which we could find no reference.

Lemma 5.1. Let R, 5, and T be prime Noetherian rings. If there exist bonds
from R to S and from S to T, then there exists a bond from R to T.
Proof. Let A be a bond from R to 5, and t3 a bond from 5 to T. There
is an isomorphism of R- F-bimodules

Fract(iî) ®R A ®5 t3 s A ®s Fract(5) «><? t3 =■ A <g>5 t3®t Fract(F),

which follows from [9, Theorem 5.2.2]. Since ,4®sFract(5) and Fract(5)®s73
are nonzero modules over the simple Artinian ring Fract(5), their tensor
product is nonzero, and so the tensor products above are nonzero. If C denotes
the natural image of A®sB in Fract(R)<g>RA®sB, then C must be nonzero,
and thus C is a bond from R to T.   D

Lemma 5.2. Let R, S, and T be Noetherian rings, such that R and T satisfy
the second layer condition. Suppose that RAs and sBt are Noetherian
bimodules which are faithful on each side. Assume that S is prime and that
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A$ and SB are torsionfree. Then R and T possess Artinian classical quotient
rings, and RA and Br are torsionfree (that is, RA is WR(0)-torsionfree and
Bt   is fér(0)-torsionfree).
Proof. We first show that R and T possess Artinian quotient rings. In light
of [9, Theorem 7.4.11] it suffices to show that the sets of minimal primes of R
and T are link closed, that each annihilator prime of 7> is a minimal prime,
and that each annihilator prime of  RR   is a minimal prime.

From (5.1) and [6, Proposition 7.7] it follows that there exist bonds from
R/P to T/Q for each pair of minimal primes P of R and g of T. It
then follows from [9, Theorem 8.2.8] that R/P and T/Q have the same
classical Krull dimension, for any such P and g. Consequently, again using
[9, Theorem 8.2.8], the sets of minimal primes of R and of T are each closed
with respect to links.

We next consider the annihilator primes of RA and Bt. Let g be
a maximal annihilator prime of t3t- . Then it follows from [6, Proposition
7.7] and (5.1) that there is a bond from R/P to T/Q for some minimal
prime ideal P of R. Hence, R/P and T/Q have the same classical Krull
dimension, by [9, Theorem 8.2.8]. We saw above that the minimal prime factors
of R and T all have the same classical Krull dimension, and it therefore follows
that g is a minimal prime of T. Hence all of the annihilator primes of fij-
are minimal, and a similar argument shows that all of the annihilator primes of
RA   are minimal.

Since TT embeds in some finite direct sum of copies of 73j-, each an-
nihilator prime of TT is also an annihilator prime of Bj. Thus, by the
paragraph above, all of the annihilator primes of TT are minimal primes. A
similar argument shows that each annihilator prime of RR is minimal, and it
now follows that R and T have Artinian quotient rings.

To see that #7- is torsionfree, let C denote the torsion submodule of
Bj, and suppose that C^O. If D is a right affiliated submodule of C
and P = ann(DT), then P is an annihilator prime of £7- and hence P is
minimal. From [6, Proposition 7.5] it follows that T>T¡p is torsionfree, and
since %T(0) = %t(N) ç Wt(P) (where A is the prime radical of T ), it follows
that Dt is torsionfree. This is impossible, and so Bj must be torsionfree.
Similar reasoning shows that   RA   is torsionfree.   D
Lemma 5.3. Let S and T be Noetherian rings, and suppose that B is a Noethe-
rian 5- T-bimodule which is faithful on each side. Suppose also that S has an
Artinian classical quotient ring, and that B is torsionfree as a left S-module.
Let I be an ideal of S not contained in any minimal prime. Then there exists
an ideal J of T, not contained in any minimal prime, such that BJ ç IB.
Proof. Since / is not contained in any minimal prime of 5, each of the primes
minimal over / contains an element of ^5(A), where A is the prime radical
of 5. Hence, there exists an element xeIr\Ws(N), and xe%(0) because
5 has an Artinian quotient ring. Now xBt = 73^, and it follows, for example
from [6, Lemma 10.4], that p((B/IB)T) — 0. Using for example [6, Lemma
10.5], it follows that (B/IB)T is a gj-(A')-torsion module, where A' is the
prime radical of T. Now consider a right affiliated series for B/IB . Since
(B/IB)j is ^7-(A')-torsion, none of its affiliated primes is a minimal prime.
Hence, the ideal J = ann(B/1B)T cannot be contained in any minimal prime
of T, and the lemma follows.   D
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Lemma 5.4. Let S be a prime Noetherian ring, let T be a Noetherian ring with
an Artinian classical quotient ring, and suppose that T satisfies the right strong
second layer condition. Assume that there exists a Noetherian 5- T-bimodule B
which is torsionfree and faithful on each side, and such that Tr(sB) = S. Let
M be a uniform faithful cyclic right S-module. Then the assassinator of Ms
is zero.
Proof. Suppose that P is the assassinator of M and that P ¿ 0 ; we will
arrive at a contradiction. Let J = ann(B/PB)T . From (5.3) it follows that J
is not contained in any minimal prime of T. Without loss of generality we may
assume that M - S/K for some right ideal K of 5. Since Tr(573) = 5 it
must be the case that B/KB ^ 0. Now choose a right ideal L of 5 containing
K such that L/K = annM P ■ The assumption Tr(^73) = 5 now implies that
LB/KB^O.   Note that   (LB/KB)J = 0.

Choose a right F-submodule C of B containing 7*Ct3 which is maximal
such that C n Lt3 = KB . Then (B/C)t is an essential extension of
((LB+C)/C)t, which is isomorphic to (LB/KB)T. Since F has an Artinian
quotient ring, the set of minimal primes of T is closed with respect to links.
Since J annihilates (LB/KB)t , and since T satisfies the right strong second
layer condition, it now follows from [9, Theorem 9.1.2] that there exists an ideal
I of T, not contained in any minimal prime, such that (B/C)I = 0 (see also
[6, Theorem 11.4]). Hence, BInLB ç KB. Now let H = anns(B/BI).
From (5.3) it follows that H jí 0. However, HB n LB ç KB. The
assumption Tr($73) = 5 now implies that H n L ç K. Therefore, it
follows from the uniformity of (R/K)s that (H + K)/K = 0, and so M H =
(S/K)H = 0. The lemma follows from this contradiction to the faithfulness
of   Ms.    D
Theorem 5.5. Let R, S, and T be Noetherian rings such that R and T satisfy
the second layer condition, and assume that there exist Noetherian bimodules
RAS and SBT such that Tr(As) = Tr(sB) = 5. If T satisfies the right
strong second layer condition, then so does S, while if R satisfies the left strong
second layer condition, then so does 5.
Proof. Assume that T satisfies the right strong second layer condition. If 5
does not, then by [6, Proposition 11.3] there exists a cyclic uniform right 5-
module M such that the ideal g = ann$(M) is prime while the associated
prime P of M strictly contains g. By (4.2),

Tr([A/A(Q)]s/Q) = Tr(5/ß[73/(g)y3])  = 5/g.
Replace 5 by 5/g, R and T by R/annR(A/A(Q)) and T/ann(B/(Q)B)T,
and A and t3 by A/A(Q) and B/(Q)B. Thus we may assume that 5 is a
prime ring, that As and ^t3 are torsionfree, and that RA, Bt , and Ms
are faithful.

Now by (5.2), T has an Artinian quotient ring and BT is torsionfree. But
then from (5.4) we obtain the contradiction P = 0. Therefore 5 must satisfy
the right strong second layer condition.

The final statement of the theorem is proved symmetrically.   D
Corollary 5.6. Let V be a Noetherian ring satisfying the strong second layer con-
dition and containing a Noetherian subring U suchthat V is finitely generated
on each side as a U-module. If Tr(Vrj) = Tr(ryF) = U then U satisfies the
strong second layer condition.   D
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We leave as an open question whether the analog of (5.6) for the plain second
layer condition holds. One case in which it does hold is when F is a finite free
centralizing extension of U ; see [1, Proposition 3.18; 2, Theorem 7.8(b)].

6. Lying over for links
In [ 17, Theorem 6] it is shown that if 5 is a Noetherian algebra of finite GK-

dimension (Gelfand-Kirillov-dimension) containing a Noetherian subalgebra R
such that 5 is finitely generated as a right i?-module and Tt(Sr) = R, then
for every prime ideal g of R there exists a prime F of 5 lying over g. Now
recall for a Noetherian ring R that there exists a link from a prime g of R to a
prime g' of R, denoted by g ~-> g', provided there exists an R- i?-factor
of (g n Q')/QQ' which is torsionfree on each side as an (R/Q)- (R/Q')-
bimodule. The directed graph structure thus obtained for the prime spectrum
of R is called the graph of links. The importance of this structure for the
representation theory of R is studied in [4, 12]. In this section we prove a lying
over theorem for links when certain trace, finiteness, and symmetry conditions
are present. (The symmetry condition will be automatically satisfied when the
rings involved are algebras of finite GK-dimension.) Our results parallel [14,
Theorem 5.3], where there is no trace related assumption but the presence of
the second layer condition is assumed.
Lemma 6.1. Let R and S be Noetherian rings such that R is a subring of S
and SR is finitely generated. If Q is a minimal prime of R there exists a
prime of S which lies over Q. Moreover, if P is any prime of S which lies over
Q, there exists an   (sSR)-bondfrom  S/P   to  R/Q.
Proof. Let g be a minimal prime of R. By Zorn's Lemma there is an ideal P
of 5 maximal with respect to the property that PnR eg. It is straightforward
to check that P is prime, and the minimality of g guarantees that P lies over
g. (The preceding argument is well known; see for example [15, Theorem
10.2.9].) The remainder of the lemma follows from [13, Lemma 1.1] or the
proof of [6, Lemma 7.15].   G
Lemma 6.2. Let R and S be Noetherian rings such that R is a subring of S,
SR is finitely generated, and Tr(SR) = R. Let I bean ideal of R. Then
there is an ideal K of S such that K DR ç I and such that if P is a prime
of S minimal over K then there is a prime Q of R containing I with an
(sSR)-bondfrom   S/P   to   R/Q.
Proof. Let S {I) = {565: f(s) e / for all / G Hom(5Ä, RR)} . (Note that
this definition is consistent with 1.1 (ii).) It is clear that S (I) is an 5-Ä-sub-
bimodule of 5 and that 5/ ç S(I). We may therefore regard S/S(I) as
an 5- (i?//)-bimodule. Since Tr(SR) = R, there are elements f\, ... , fn of
Hom(5Ä, RR) such that R = fx(5) + • • • + fn(S). We infer that if J is an
ideal of R, then / = /, (SJ) + ■■■ + fn(SJ). Consequently, if SJ ç S (I)
then   J c I.   Hence   S/S(I)   is faithful as a right (R/I)-module.

We now let K = anns(S/S(I)). Note that K is the largest two-sided ideal
of 5 contained within the left ideal S(I). Hence S(K n R) ç S(I), and
therefore KnRçl. Now observe that 5/5(7) is an (S/K)-(R/I)-bimodule
which is faithful and finitely generated on each side. That for each prime P of
5 minimal over K there exists a prime g of R such that S/P is (sSR)-
bonded to   R/Q   now follows from [6, Propositions 2.14, 7.5, and 7.7].   G
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Let R be a Noetherian ring containing prime ideals g and g'. Recall that
there exists an ideal link from g to g' provided there exists an i?-bond,
where R is considered as an R- iv-bimodule, from R/Q to R/Q'. Note that
R/Q provides an ideal link from g to itself. We say that there is a nontrivial
ideal link from g to itself if there exists an i?-bond from g to itself which
is a subfactor of RQR . For convenience we will also denote as nontrivial any
ideal link between distinct primes.

The next lemma is a refinement of [14, Theorem 5.Ii].
Lemma 6.3. Let R and S be Noetherian rings such that R is a subring of S.
Let Q and Q' be minimal prime ideals of R such that there is an ideal link
from Q to Q'.

(i) There exist primes P and P' of S such that P lies over Q and P' lies
over Q', and such that there is an ideal link from P to   P'   in S.

(ii) If each prime ideal of S intersects to a semiprime ideal of R, and if the
ideal link from Q to Q' is nontrivial, then the primes P and P' of (i) may
be chosen such that the ideal link between them is nontrivial.
Proof. Suppose that the ideal link from g to g' is given by the R- Ä-bimodule
///, where I and / are ideals of R. Regard 5 as an R- 7<-bimodule, and
consider the series

SdRdIdJdO
as a series of 7<-/<-subbimodules of 5. We also can choose a series of ideals of
5, say

S = S0DSlD"-DSn=0,
such that each factor 5,/5i+i, for 0 < i < n - 1, is a bond between two
primes of 5. By the Schreier Refinement Theorem, these two series of R-
7x"-subbimodules have isomorphic refinements. This means that there exists a
factor 5¡/5,+i, for some 0 < i < n - 1, which has an R- i?-bimodule
subfactor isomorphic to I'/J , where I' is an ideal of R and I D I' d J. Let
P be the left 5-annihilator of 5,/5,+i, and let P' be the right 5-annihilator
of Si/Si+i. Clearly g D P n R and Q' D P' n R. Since g and g' are
minimal we conclude that P lies over g and P' lies over g'. This proves
part (i).

Now suppose in addition that the ideal link I/J from g to g' is nontrivial
and that prime ideals of 5 intersect to semiprime ideals of R. Let A be the
prime radical of 5. Our hypothesis implies that the ideal M = N n R is
semiprime. Clearly M is nilpotent, and so M is the prime radical of R.
Since there cannot exist a nontrivial ideal link between Q/M and Q'/M in
R/M, it follows that (M n I)/(M n /) is a nontrivial ideal link from g
to g'. Replace I with Mil/ and / with M n J. Consider the series
NdMdIdJdO, and choose a series of ideals of 5, say N - No D
• • • D Nm — 0, such that each factor Nj/Nj+X, for 0 < j < m - 1, is a
bond between two primes of 5. An argument similar to the one in the previous
paragraph now proves the conclusion of (ii).   G

We next restrict our attention to collections of Noetherian rings which possess
a certain symmetry condition.

Definition 6.4. A collection X of Noetherian rings is said to possess a sym-
metric dimension function if there exists a function d assigning to each prime
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factor ring of each ring R e X an element of a fixed totally ordered set such
that d satisfies the following conditions:

(i) If P and g are prime ideals of a ring R e X such that Q> P then
d(R/Q) < d(R/P).

(ii) If R and 5 are prime factors of rings in X, and if there exists a bond
from R to 5, then  d(R) = d(S).
We extend such a function d to arbitrary factor rings R of rings in X by
setting d(R) equal to the maximum of d(R/P) for P ranging over the
minimal primes of R.

Remarks, (i) Let X be a collection of algebras of finite GK-dimension over a
fixed field k. For each prime factor R of an algebra in X let d(R) denote the
GK-dimension of R. It follows, for example, from [10, Corollary 3.16, Lemma
5.3, Corollary 5.4] that the dimension function d satisfies properties 6.4(i) and
6.4(h). Hence X possesses a symmetric dimension function. Now extend d to
arbitrary factors of algebras in X as in (6.4). It is an open question whether this
extension of d will be equivalent to GK-dimension. In other words, it is not
known whether the GK-dimension of an algebra R is equal to the maximum
value of the GK-dimensions of R/P for P ranging over the minimal primes
of R. (See [10, Chapter 5] or [15, Chapter 8] for more information.)

(ii) Note that (6.4) will be satisfied by classes X of Noetherian rings for
which the right Krull dimension equals the left Krull dimension in every bond
between prime factors of rings in X. It is therefore an open question whether
every collection of Noetherian rings possesses a symmetric dimension function.

Lemma 6.5. Let S be a Noetherian ring possessing a symmetric dimension func-
tion d. Let P and P' be minimal primes of S such that there is an ideal
link from P to P'. Suppose further that d(S/P) = d(S/P') = d(S). If the
ideal link from P to P' is nontrivial then there exist primes Px,... ,Pm of
S, with m>2, suchthat Px — P and Pm = P', and such that F, ~> Pi+X
for   1 < i < m - 1.
Proof. Suppose a nontrivial ideal link from P to P' is given by I/J. Note
that since J annihilates /// on each side, J ç P n P'. We may assume
without loss of generality that J = 0. Let K be an ideal of 5 maximal among
ideals whose intersection with / is zero. Since KI = IK = 0, we see that K
is contained within both P and P' and that there is an ideal link in S/K via
(/ + K)/K from P/K to P'/K. So without loss of generality we may assume
that K — 0. Now let L be any ideal of 5 such that YL = 0 for some
nonzero subset Y of 5. Because SYS n / / 0, we see that L ç P' since
/ is torsionfree as a right (S/P' )-module. Hence P' is the unique associated
prime of 5s . Also, since the codimension of P' is equal to the dimension
of 5, and since d satisfies the properties of (6.4), we see that the right clique
(see [9]) of P' consists of minimal primes. Therefore, the right clique of P'
satisfies the strong second layer condition.

Let [/ = 1. anns(F'). Since P' is the only right associated prime of 5, we
see that U is an essential right ideal of 5. Since the right clique of P' satisfies
the strong second layer condition and incomparability, it follows from [4, §5]
or [9, Theorem 9.1.2] that   (S/U)Pn ■ ■ ■ P\ = 0   for some primes   Px, ... , Pn
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such that for each   1 < i < n   there is a nonzero sequence of links

Pi~*Qi\-~Qa~*~-~>Qi,m,~*P'.
Note that   P„-PxP' = 0.

Suppose that P ^ P'. Since Pn-PxP'çP, it then follows for some i
that P¡ ç F. But the minimality of P shows that P = F, and the conclusion
of the lemma follows in this case. So suppose that P — P'. Since the ideal link
is nontrivial, F ^ 0 and so fn//0. Hence, 1. an%(P n F) = P. Since
(Pn ■ ■ ■ Px)(P n /) = 0, we see that   P„ • • • P. Ç P.   The lemma follows.   G
Theorem 6.6. Let S be a Noetherian ring containing a Noetherian subring R
such that S is finitely generated as a right R-module. Suppose that {R, 5}
possesses a symmetric dimension function d, and suppose that Tr(SR) = R.
Let g and Q' be primes of R such that Q ~> g'. Then there are primes
Px, ... , Pm of S such that Px lies over Q and Pm lies over Q', and such
that Pi ~~* F!+i for 1 < i < m. While it may be the case that m = 1 and
no links occur, we can require that m > 1 if each prime ideal of S intersects
to a semiprime ideal of R.
Proof. Suppose the link from g to g' is given by the ideal factor (QnQ')/I.
Let d(R/Q) = a, and note by (6.4) that d(R/Q') = a. We apply (6.2),
obtaining an ideal K of 5 such that KnRC I c gng' and such that if F is
a prime of 5 minimal over K , then there is a bond between S/P and a prime
factor of R/I. Since the minimal primes of R/I are Q/I and Q'/I, it
follows from (6.4) that d(S/P) < a for every minimal prime P/K of S/K,
and so d(S/K) < a. It follows from (6.1) and (6.4) that if T/(K nR) is a
minimal prime of R/(K n R), then d(R/T) < a. We therefore conclude,
again using (6.4), that g and g' are primes minimal over R n K, and that
d(R/(RnK)) = a. Moreover, there is a link from Q/(RnK) to Q'/(Rf)K).
We may therefore assume without loss of generality that   K = 0.

We are now in the situation where d(R) — a and d(S) < a. If F is a
prime of 5 lying over g, then by (6.1) there is a bond from S/P to R/Q.
Hence, d(S/P) = a and F is a minimal prime of 5. Thus each prime of
5 lying over g is a minimal prime of codimension a, and similarly for each
prime of 5 lying over Q'. In particular, since there exist primes of 5 lying
over g by (6.1), it holds that d(S) = a. The theorem now follows from (6.3)
and (6.5).   G
Remark. It is not necessarily the case for a finite extension of Noetherian rings
R <-^ S with Tr(5j?) = R that prime ideals of 5 intersect to semiprime
ideals of R. For example, let S — M2(k), where k is a field, and let R be
the subring of matrices of the form (£ °). In this case there is a link from a
prime ideal of R to itself, and this link lifts to a trivial ideal link in 5.
Example 6.7. Let U be the enveloping algebra of a finite-dimensional semisim-
ple Lie algebra over an algebraically closed field k of characteristic zero. Then
U is a Noetherian domain of finite GK-dimension for which each module that
is finite dimensional over k is completely reducible. Let G be a finite group of
automorphisms of U, and let A = UG . It can be deduced from [16] that (i)
U is finitely generated as a right and left .4-module, (ii) Tr([/^) = A , (iii)
each prime ideal of U intersects to a semiprime ideal of A, and (iv) each
right v4-module finite dimensional over k is completely reducible.
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Our approach above allows a somewhat more abstract result. Let R be a
Noetherian /c-subalgebra of U such that U is finitely generated as a right R-
module, such that prime ideals of U intersect to semiprime ideals of R, and
such that Tt(Ur) = R. It follows from (6.6) that each right Fv-module finite-
dimensional over k is completely reducible: Letting d denote GK-dimension
we see that {R, U} possesses a symmetric dimension function; see [10] or
[15]. It then follows from (6.6) and (6.1) that each link between co-finite-
dimensional maximal ideals of R implies the existence of a link between co-
finite-dimensional maximal ideals of U. However, a link between co-finite-
dimensional maximal ideals in a Noetherian ring occurs precisely when there is
a nonsplit extension of the corresponding simple modules.
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