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Abstract

The optical fiber transmission links form the backbone of the communications
infrastructure. Almost all of voice and data (internet) traffic is routed through
terrestrial and submarine optical fiber links, connecting the world together. In-
vention of the optical amplifiers (OAs) and wavelength-division multiplexing
(WDM) technology enabled very high capacity optical fiber communication
links that run for thousands of kilometers without any electronic repeaters, but
at the same time brought many design challenges. As electronic amplifiers do,
OAs add noise to the signal they amplify. In the design of an optical fiber
communication link, the prediction of the deterioration the information signals
experience due to the nonlinearity of the optical fiber and the optical noise gen-
erated by the OAs is essential. In this paper, we first present a short overview
of optical fiber communication systems and the challenges that faces one from
a modeling, analysis and design perspective. Then, we describe novel formula-
tions and computational techniques for the analysis of the interplay between the
information signals and the optical noise due to the fiber nonlinearity as they
propagate together along the fiber link. Our formulations are similar, in spirit,
to the linear(ized), time-varying formulations for noise analysis in analog/RF
electronic circuits. We then investigate signal-noise mixing due to optical fiber
nonlinearities using the techniques developed. Finally, we discuss the use of
the generated results in the performance evaluation of communication links,
and comment on system design implications.

1 Introduction
The optical fiber transmission links form the backbone of the commu-
nications infrastructure. Almost all of voice and data (internet) traffic
is routed through terrestrial and submarine optical fiber links, connect-
ing the world together. Invention of the optical amplifiers (OAs) and
wavelength-division multiplexing (WDM) technology enabled very
high capacity optical fiber communication links that run for thousands
of kilometers without any electronic repeaters, but at the same time
brought many design challenges.
In WDM optical fiber communications, information bits are used

to modulate the (light) carriers at many wavelengths, which are then
transmitted in a single strand of fiber. The signal levels deteriorate
during transmission due to the loss of the optical fiber, which need
to be restored by OAs for reliable detection. OAs have very wide
bandwidths, e.g., 4 THZ, they can amplify many wavelength carri-
ers at once. As electronic amplifiers do, OAs add noise ( ✁ white and
stationary) to the signal they amplify. A long-haul optical fiber com-
munication link may be several thousands of kilometers long, and it
may have tens of optical amplification sites placed at regular inter-
vals ( ✁ 80 km) along the link, as shown in Figure 1. The information
signals in a number of WDM channels and the noise added by the
OAs travel together in the optical fiber and impinge on the electronic
receiver. The optical fiber is a lossy, dispersive, and nonlinear trans-
mission medium. Due to the nonlinearity of the fiber, the information
signals at different wavelengths and noise added by the OAs mix with
each other as they propagate together along the fiber. The propagation
of the signals and noise in an optical fiber is governed by a nonlinear
partial differential equation (PDE), the so-called generalized nonlin-
ear Schrödinger equation (NLSE), which can be derived directly from
Maxwell’s equations that govern the propagation of light waves in a
dielectric waveguide, i.e., the optical fiber.
In the design of an optical fiber communication link, it is essential

to be able to predict the deterioration the information signals experi-
ence due to the dispersion and nonlinearity of the optical fiber, and
the optical noise generated by the OAs. In this paper, we focus on the
analysis of the mixing of the information signals with noise, as op-
posed to the mixing of the information signals with each other, due to
the fiber nonlinearity.
The mixing of the information signals with each other is also of

great importance in systems design. We touch upon this phenomenon
on several occasions in the paper, but a detailed treatment of signal-
signal mixing analysis is beyond the scope of this work. There has
been considerable effort and tremendous progress made on this prob-
lem in the literature. However, the need for more efficient, semi-
analytical analysis techniques is still there.
Commonly, the prediction of noise-signal mixing is performed

with a Monte Carlo-type propagation simulation, where the informa-✂
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Figure 1: WDM optical fiber communication link

tion signals and randomly generated optical noise are simulated to-
gether in a numerical solution of the NLSE. This kind of simulation is
inefficient, because one needs to repeat the simulation for sufficiently
many sample paths of the noise process. It also is incapable of pro-
viding systems design intuition. In a Monte-Carlo type simulation,
one simulates signal-signal and signal-noise mixing together, which
hides the separate and quite different performance degradation mech-
anisms due to these mixing processes. The “separated” analysis of
these mechanisms, in fact, provides valuable systems design intuition,
as we will demonstrate in this paper.
There has also been analytical approaches to the noise-signal mix-

ing analysis problem in optical fiber propagation, and considerable
progress has been made. It was first investigated in 1990 by Gor-
don and Mollenauer [1]. In their original treatment, they considered
a system with a single unmodulated carrier, and ignored dispersion in
the fiber. The dispersion in the fiber is of paramount importance in
the analysis of signal-noise mixing. Kikuchi [2] included dispersion
in his analysis, but it was also restricted to a single unmodulated car-
rier. Poggiolini and Benedetto et. al. [3] considered amulti-wavelength
system with unmodulated carriers and took dispersion into account in
their innovative analytical approach.
In this paper, we consider the most general case, a multi-

wavelength system with modulated carriers with dispersion included.
The treatment of this most general case requires the concepts of non-
stationarity and frequency correlation for stochastic processes, i.e.,
noise signals, which we will discuss later. In Section 2, we describe
novel formulations for the analysis of the interplay, i.e., mixing, be-
tween the information signals, i.e., modulated light carriers, and the
optical noise due to the fiber nonlinearity. As with many other non-
linear and nonstationary stochastic problems, the problem in hand is
conceptually challenging and computationally complex. We try to
alleviate these difficulties through the use of semi-analytical formu-
lations and sophisticated numerical techniques for the computational
problem. In this context, “semi-analytical” is used to mean that, even
though the formulation itself is fully analytical, it does not yield to
a closed-form solution, and still requires the numerical solution of
(partial) differential equations. However, the equations that need to
be solved are different, and involve different variables, compared with
the ones solved with the brute-forceMonte Carlo simulation approach.
In particular, we use linear(ized)

✄
time,space ☎ -varying, nonstationary

formulations. Our approach is similar, in spirit, to the linear(ized),
time-varying formulations for noise analysis in analog/RF electronic
circuits [4]. A linearization formulation was also used by Poggi-
olini et. al. [3].
For the numerical computation problem, we employ linearly

(diagonally)-implicit multistep (not to be confused with implicit lin-
ear multistep) integration methods to solve the stiff systems of dif-
ferential equations generated by our noise analysis formulations. We
describe, in Section 3, these numerical methods and their practical im-
plementation for optical fiber communication link analysis. Then, in
Section 4, we present results generated by the proposed and imple-
mented techniques in the investigation of signal-noise mixing due to
the optical fiber nonlinearities. We discuss the use of the generated
results in determining the performance of communication links, and
discuss system design implications.
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2 Formulations for linear(ized) noise analysis

The nonlinear Schrödinger equation that governs the evolution of the
complex envelope U ✆ z ✝ t ✞ for the electric field in single-mode optical
fibers [5] is given below

∂U ✆ z ✝ t ✞
∂z ✟✡✠ 12αU ✆ z ✝ t ✞ ✠ j 12β2

∂2U ✆ z ✝ t ✞
∂t2☛ 1

6
β3

∂3U ✆ z ✝ t ✞
∂t3

☛
jγ ☞U ✆ z ✝ t ✞✌☞ 2 U ✆ z ✝ t ✞ (1)

where t is time, z is the position in the propagation direction along the
fiber, α models the loss of the fiber (assumed frequency/wavelength
independent here), the terms with β2 and β3 model 2nd and 3rd order
dispersion (the effect of which is equivalent to an all-pass linear fil-
ter with phase distortion), and the term with γ models the nonlinearity
of the fiber. First order dispersion β1 has been factored out through
a change of variable, since it amounts to a pure time delay, without
any phase distortion. Values of the parameters for loss, dispersion and
nonlinearity for various kinds of fibers are available. (1) can be de-
rived directly from Maxwell’s equations [5]. U ✆ z ✝ t ✞ is the complex
envelope for the electric field. The very high frequency ( ✁ 200 THZ)
lightwave carrier, as well as the transverse, i.e., x ✠ y, electric fieldprofile, have been factored out of (1) through some verified approxi-

mations [5]. U ✆ z ✝ t ✞ and (1) are normalized in such a way that ☞U ✆ z ✝ t ✞✍☞ 2
is the instantaneous optical power.

Next, we derive a linear PDE for noise analysis, and then in Sec-
tion 2.2, we describe a covariance matrix formulation for stochastic
noise characterization. We also have developed and implemented a
frequency-decomposed formulation for noise analysis. This alterna-
tive formulation has some benefits, its implementation can be paral-
lelized for efficiency, and we have further developed it into a reduced-
order-modeling formalism. Unfortunately, we are forced to skip the
description of this formulation here due to space limitations and the
prohibitive cost of the excess page fees.

2.1 Derivation of linear PDE for noise analysis

Let A ✆ z ✝ t ✞ be the solution of (1) without any noise in the system.
Hence A ✆ z ✝ t ✞ satisfies (1). We describe the numerical computation
of A ✆ z ✝ t ✞ in Section 3. A ✆ z ✟ 0 ✝ t ✞ is the signal launched into thefiber. Note here that we do not place a restriction on the launched

signal A ✆ 0 ✝ t ✞ 1. Now, we consider the system with noise and substitute
U ✆ z ✝ t ✞ ✟ A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞ in (1)
∂ ✎ A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✑✏

∂z ✟✒✠ 12α ✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✓✏ ✠ j 12β2
∂2 ✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✑✏

∂t2☛ 1
6

β3
∂3 ✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✓✏

∂t3
☛
jγ ☞✔✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✕✏✖☞ 2 ✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✓✏

(2)

where a ✆ z ✝ t ✞ is a perturbation to A ✆ z ✝ t ✞ due to the noise of the OAs. We
now subtract (1),withU ✆ t ✝ z ✞ replaced by A ✆ z ✝ t ✞ , from (2) and obtain

∂a ✆ z ✝ t ✞
∂z ✟✒✠ 12αa ✆ z ✝ t ✞ ✠ j 12β2

∂2a ✆ z ✝ t ✞
∂t2

☛ 1
6

β3
∂3a ✆ z ✝ t ✞

∂t3☛
jγ ☞✔✎ A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✑✏✗☞ 2 ✎A ✆ z ✝ t ✞ ☛ a ✆ z ✝ t ✞✓✏ ✠ jγ ☞A ✆ z ✝ t ✞✌☞ 2 A ✆ z ✝ t ✞ (3)

For linear(ized) noise analysis, we ignore all terms in (3) that are not
linear in a ✆ z ✝ t ✞ , justified by the fact that a ✆ z ✝ t ✞ is much “smaller” than
A ✆ z ✝ t ✞ , otherwise, the communication link is not useful.

∂a ✆ z ✝ t ✞
∂z ✟✘✠ 12αa ✆ z ✝ t ✞ ✠ j 12β2

∂2a ✆ z ✝ t ✞
∂t2

☛ 1
6

β3
∂3a ✆ z ✝ t ✞

∂t3☛
2 jγ ☞A ✆ z ✝ t ✞✍☞ 2 a ✆ z ✝ t ✞ ☛ jγA ✆ z ✝ t ✞ 2 a ✆ z ✝ t ✞✕✙ (4)

where ✙ denotes “complex-conjugate”. In (4), a ✆ z ✝ t ✞ is a complex-
valued scalar function of z and t. We decompose a ✆ z ✝ t ✞ into its real
(in-phase) and imaginary (quadrature) components

a ✆ z ✝ t ✞ ✟ ar ✆ z ✝ t ✞ ☛ j ai ✆ z ✝ t ✞ A ✆ z ✝ t ✞ ✟ Ar ✆ z ✝ t ✞ ☛ j Ai ✆ z ✝ t ✞ (5)

1Authors in [3] assume that A ✚ 0 ✛ t ✜ is a comb of continuous-wave (CW), i.e., unmod-
ulated, optical carriers. Moreover, with their formulation, they also ignore (four-wave)
mixing among the carriers themselves.

With (5), (4) becomes

d

dz

✢
ar ✆ z ✝ t ✞
ai ✆ z ✝ t ✞✤✣ ✟✥✠ 12α

✢
ar ✆ z ✝ t ✞
ai ✆ z ✝ t ✞✦✣☛ 1

2
β2 ✧ 0 ∂ 2

∂t2✠ ∂ 2

∂t2
0 ★ ✢ ar ✆ z ✝ t ✞ai ✆ z ✝ t ✞ ✣ ☛ 16β3 ✧ ∂ 3

∂t3
0

0 ∂ 3

∂t3
★ ✢ ar ✆ z ✝ t ✞ai ✆ z ✝ t ✞ ✣☛

γ

✢ ✠ 2Ar ✆ z ✝ t ✞ Ai ✆ z ✝ t ✞ ✠ Ar ✆ z ✝ t ✞ 2 ✠ 3Ai ✆ z ✝ t ✞ 2
3Ar ✆ z ✝ t ✞ 2 ☛ Ai ✆ z ✝ t ✞ 2 2Ar ✆ z ✝ t ✞ Ai ✆ z ✝ t ✞ ✣ ✢ ar ✆ z ✝ t ✞ai ✆ z ✝ t ✞ ✣

(6)

In the linear(ized) PDEs (4) and (6) above, A ✆ z ✝ t ✞ is the determinis-
tic multi-channel modulated optical signal, and a ✆ z ✝ t ✞ is the stochastic
perturbation due to noise.

2.2 Covariance matrix formulation for noise analysis

We start by discretizing time t with N time points t1 ✝ t2 ✝✗✩✖✩✖✩✖✝ tNt ✪ 1 ✝ tNt
which are not necessarily equispaced. We define the column vectors

ac ✆ z ✞ ✟ ✎ a ✆ z ✝ t1 ✞ a ✆ z ✝ t2 ✞✬✫✗✫✖✫ a ✆ z ✝ tNt ✞ ✏ T
Ac ✆ z ✞ ✟ ✎A ✆ z ✝ t1 ✞ A ✆ z ✝ t2 ✞✭✩✖✩✖✩ A ✆ z ✝ tNt ✞ ✏ T (7)

where the bold characters and the subscript c denote that ac ✆ z ✞ and
Ac ✆ z ✞ are complex-valued vector functions of z. The time dependence
has disappeared because of the collocation points we have introduced.
We separate ac ✆ z ✞ and Ac ✆ z ✞ into their real and imaginary parts

ac ✆ z ✞ ✟ ar ✆ z ✞ ☛ j ai ✆ z ✞ Ac ✆ z ✞ ✟ Ar ✆ z ✞ ☛ jAi ✆ z ✞ (8)

and form the real-valued long column vectors

a ✆ z ✞ ✟✯✮ ar ✆ z ✞ T ai ✆ z ✞ T ✰ T A ✆ z ✞ ✟✯✮ Ar ✆ z ✞ T Ai ✆ z ✞ T ✰ T (9)

With (9), (6) turns into

da ✆ z ✞
dz ✟✥✠ 12αa ✆ z ✞ ☛ 1

2
β2

✢
0 ✱ 2✠ ✱ 2 0 ✣ a ✆ z ✞ ☛ 16β3

✢ ✱ 3 0
0 ✱ 3 ✣ a ✆ z ✞☛

γ

✢ ✠ 2D ✎Ar ✆ z ✞✑✏ D ✎Ai ✆ z ✞✕✏ ✠ D ✎Ar ✆ z ✞✕✏ 2 ✠ 3D ✎Ai ✆ z ✞✑✏ 2
3D ✎Ar ✆ z ✞✕✏ 2 ☛ D ✎Ai ✆ z ✞✑✏ 2 2D ✎Ar ✆ z ✞✑✏ D ✎Ai ✆ z ✞✑✏ ✣ a ✆ z ✞

(10)

where ✱ 2 and ✱ 3 are second-order and third-order differentiation op-
erators (or matrices) in time, and D ✎ ✫ ✏ is a diagonal operator (or a
diagonal matrix with the elements of the argument vector on the main
diagonal). At this point, we do not make any assumptions on how the
time differentiation operators ✱ 2 and ✱ 3 are implemented. We define✲ ✆ z ✞ ✟ ✢ ✠ 2D ✎Ar ✆ z ✞✕✏ D ✎Ai ✆ z ✞✑✏ ✠ D ✎Ar ✆ z ✞✑✏ 2 ✠ 3D ✎Ai ✆ z ✞✕✏ 2

3D ✎Ar ✆ z ✞✑✏ 2 ☛ D ✎Ai ✆ z ✞✑✏ 2 2D ✎Ar ✆ z ✞✑✏ D ✎Ai ✆ z ✞✑✏ ✣
(11)✳

2 ✟ ✢ 0 ✱ 2✠ ✱ 2 0 ✣ ✳
3 ✟ ✢ ✱ 3 0

0 ✱ 3 ✣ (12)

With (11) and (12), (10) turns into

da ✆ z ✞
dz ✟✴✠ 12αa ✆ z ✞ ☛ 1

2
β2
✳
2 a ✆ z ✞ ☛ 1

6
β3
✳
3 a ✆ z ✞ ☛ γ

✲ ✆ z ✞ a ✆ z ✞ (13)
Now we form

d ✎ a ✆ z ✞ a ✆ z ✞ T ✏
dz ✟ da ✆ z ✞dz a ✆ z ✞ T ☛ a ✆ z ✞ da ✆ z ✞ Tdz (14)

and let K ✆ z ✞ be the z-dependent covariance matrix for the time-
collocated stochastic perturbation

K ✆ z ✞ ✟✶✵ ✎ a ✆ z ✞ a ✆ z ✞ T ✏ (15)

where ✵ ✎ ✫ ✏ denotes the probabilistic “expectation” operator. Note thatK ✆ z ✞ is a real and symmetric matrix. Then, we substitute (13) in (14),
take the expectation of both sides, and obtain

dK ✆ z ✞
dz ✟✥✠ αK ✆ z ✞ ☛ 1

2
β2 ✷ ✳ 2 K ✆ z ✞ ☛ K ✆ z ✞ ✳ T2 ✸ ☛

1

6
β3 ✷ ✳ 3 K ✆ z ✞ ☛ K ✆ z ✞ ✳ T3 ✸ ☛ γ ✷ ✲ ✆ z ✞ K ✆ z ✞ ☛ K ✆ z ✞ ✲ ✆ z ✞ T ✸ (16)

which is a system of linear differential equations for the covariance
matrix of the time-collocated stochastic perturbation. We will refer to
this equation as COVODE during the rest of our treatment. Note that
even though

✳
2 and

✳
3 above do not depend on z,

✲ ✆ z ✞ is a z-varying
coefficient matrix which can be calculated by substituting A ✆ z ✝ t ✞ in
(11). By solving the system of differential equations above, one can
compute the noise covariance matrix K ✆ z ✟ L ✞ at the end of the fiberlink given an “initial” launch condition K ✆ z ✟ 0 ✞ . The numerical com-putation of K ✆ z ✞ is described in Section 3. Note that the stochastic
perturbation a ✆ z ✝ t ✞ is, in general, a nonstationary stochastic process
as a function of time t, which is captured by the covariance matrix
formalism described above.
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3 Numerical methods and implementation
In this section, we will describe the numerical solution of✹ Equation (1) (NLSE) for the deterministic multi-channel modulated
optical signal, in Section 3.1✹ Equation (16) (COVODE) for the covariance matrix of the time-
collocated noise, i.e., stochastic perturbation, in Section 3.2

3.1 Numerical solution of NLSE

(1) is a PDE which combines a low-order (zeroth) nonlinear term with
higher-order (2nd and 3rd) linear terms. To obtain efficient and ac-
curate numerical solutions for such PDEs, it is desirable to use high-
order approximations in space z and time t [6]. Spectral methods offer
very high time resolution for (1) [7, 8]. Once the time part of (1) is
spectrally discretized and the resulting system of ordinary differential
equations (ODEs) is transformed into the spectral domain, one obtains

d

dz
Â ✆ z ✞ ✟ L Â ✆ z ✞ ☛

N ✮ Â ✆ z ✞ ✰ (17)

where N is a nonlinear operator, and L is a diagonal matrix (operator).
L has widely varying values on the diagonal, since the diagonal ele-
ments are the summation of a quadratic and cubic function of the fre-
quency variable (due to 2nd and 3rd order dispersion). Hence, the lin-
ear part of the system of ODEs in (17) is stiff. This stiffnes combined
with the nonlinearity in (17) precludes the use of high-order schemes
for z-integration because of severe stability restrictions [8, 6]. The sta-
bility restriction imposes an upper limit on the size of the z-steps that
can be taken.
L in (17) (which is in the spectral domain) is diagonal and can be

applied trivially. However, the nonlinear operator N in (17) needs to
be implemented in the time-domain, this requires two FFTs, one to go
back to the time-domain and another one to come back to the spectral
domain. The nonlinear operator N is diagonal in the time-domain.
In the optical fiber communication community, the z-stepping

method of choice is the so-called split-step method [7], an explicit
z-stepping scheme based on operator splitting. When a sufficiently
small step size is not used with this method, inaccuracies due to in-
stability in numerical integration manifests itself as induced spurious
tones, which are called fictitious four-wave mixing in the photonics
literature [9].
If an implicit scheme is used for z-stepping, larger steps can be

taken compared with an explicit scheme. However, even implicit z-
stepping may suffer from (milder) stability restrictions on the step size
when high-orders are used. One may be limited by a second-order
A-stable scheme, e.g., trapezoidal formula. Moreover, an implicit
scheme applied to (17) requires the solution of a system of nonlinear
equations at every z-step.
The idea behind the linearly-implicit schemes [8, 6] arises from

the observation that the stiffness in (17) is due to the linear part, and
hence one can use an implicit (possibly A-stable) multi-step formula
to advance the linear part and an explicit high-order scheme to advance
the nonlinear part. Then, the step-size would become accuracy-limited
and not stability-limited. Moreover, the solution of only a linear sys-
tem of equations at every step would be needed. L in (17) is diagonal
when time discretization is done with a spectral method, and hence
the linear system of equations that need to be solved at every z-step is
diagonal and has a trivial solution.
Fornberg and Driscoll [8] describe an extension of the linearly-

implicit scheme above. In addition to applying separate explicit and
implicit integration methods for the nonlinear and the linear part, they
also split the linear part into low, medium and high Fourier wavenum-
ber regions. These wavenumber regions correspond to slow, medium
and fast time scales. In the slider method they propose, they use a dif-
ferent integration scheme for each (Fourier wavenumber) region in the
linear part. For the low Fourier wavenumber region, they use the same
explicit high-order scheme used for the nonlinear part. In one ver-
sion of the slider method, Fornberg and Driscoll [8] use low:AB7/AB7,
medium:AB7/AM6 and high:AB7/AM2* for the (nonlinear/linear part
where ABk is the explicit kth order Adams-Bashfort formula, and AMk
is the implicit kth order Adams-Moulton formula. The diagonal linear
term L in (17) has a complex spectrum with a very small real part com-
pared with the imaginary part. The (frequency-independent) real part
is due to the loss of the fiber, and the (strongly frequency-dependent)
imaginary part is due to 2nd and 3rd order dispersion. The boundaries
between the low, medium, and high Fourier wavenumber regions are
determined by the extent of the stability regions along the imaginary
axis for the integration schemes used for the linear part. AM2* above
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is a modified second-order formula, which is given by

Ân ✺ 1 ✠ Ân ✟ h2 ✻ 32LÂn ✺ 1 ☛ 1
2
LÂn ✪ 1 ✼ (18)

when constant step sizes are used, with h as the z-step size [8]. Note
that (18) is a two-step second-order formula in contrast with the one-
step second-order AM2 (trapezoidal rule). It has an error constant of
1
3 compared with

1
12 for AM2. However, its stability region (Figure 2)

extends into the right-half-plane covering the imaginary axis. Forn-
berg and Driscoll [8] propose AM2* in place of AM2 for problems
with almost a purely imaginary spectrum.
We have implemented a self-starting, fully-variable step size ver-

sion of Fornberg and Driscoll’s linearly-implicit slider method out-
lined above for the numerical solution of (1):NLSE for the determinis-
tic multi-channel modulated optical signal. Automatic step size con-
trol is performed based on an estimation of the local truncation er-
ror [10]. Commonly used step size selection heuristics [10], as well
as new ones we found to be useful that are specific to the linearly-
implicit slider scheme described above, have been implemented in our
code. The new heuristics are involved with the coordination of trunca-
tion error computation and step size selection in the presence of differ-
ent integration schemes being used for the linear and nonlinear parts
of (17) and also for the low, medium and high Fourier wavenumber
regions of the linear part.
The numerical solution of NLSE has a computational complexity

of O ✆ Nz N f logN f ✞ , where N f is the number of Fourier modes used
in the spectral representation, and Nz is the number of z-steps. The
storage complexity is O ✆ N f ✞ .
For a comparison of the split-step method and the linearly-implicit

schemes as well as other integration schemes for solving stiff nonlin-
ear PDEs of the form in (17), please see [8, 6].

3.2 Numerical solution of COVODE

In contrast with the nonlinear NLSE:(1), COVODE:(16) is a linear sys-
tem of equations. The right-hand-side (RHS) of COVODE has terms
which have z-independent coefficient matrices. These arise from the
linear loss and dispersion terms in the original NLSE. RHS of COV-
ODE also has terms with z-dependent coefficient matrices. These
terms arise from the nonlinear term in the original NLSE. COVODE is
closely related to NLSE, and the same stiffness properties carry over.
Hence, we use the same linearly-implicit slider schemes (described
above) for the numerical integration of COVODE. In the context of
COVODE, it is not exactly accurate to call the integration schemes
as linearly-implicit, because all terms in COVODE are linear. To be
precise, we use implicit sliding schemes for the medium and high
wavenumber loss and dispersion terms in COVODE, and use explicit
high-order, e.g., AB7, schemes for the low wavenumber loss and dis-
persion terms and the z-varying linear terms due to the nonlinearity
of the fiber. Application of the “linearly” implicit integration schemes
to COVODE in (16) is straightforward, except for some tinkering re-
quired on how to apply the sliding scheme with a partition of slow,
medium and fast time scales.
We solve COVODE in (16) using the same spectral discretization

for time t that we use for NLSE. We first transform (16) into the spec-
tral domain. Then, the coefficient matrices

✳
2 and

✳
3 are given by

(12) where ✱ 2 and ✱ 3 are now diagonal matrices.
For COVODE, we use the same z-stepping scheme and the same

z-steps that is used and automatically selected for NLSE. At every z-
step, we first compute the solution of NLSE, Ac ✆ z ✞ ✟ Ar ✆ z ✞ ☛

jAi ✆ z ✞ ,
which is needed to evaluate the z-varying coefficient matrix

✲ ✆ z ✞ for
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Figure 3: Unmodulated carriers, diag(K f ):in-phase+quad.

COVODE in (11). In the spectral domain, the evaluation of the term
involving

✲ ✆ z ✞ in COVODE requires the use of FFTs. When we apply
an explicit multistep scheme to the z-varying terms involving

✲ ✆ z ✞ in
COVODE, and an implicit scheme to the loss and dispersion terms
involving α, ✱ 2 and ✱ 3 , we need to solve a matrix equation, at every
z-step, of the form given by

EK f ✆ zn ✞ ☛ K f ✆ zn ✞ E† ✟ F ✆ zn ✞ (19)

where † denotes conjugate-transpose, and

E ✟ ✢ Dd Do✠ Do Dd ✣ (20)

where Dd and Do are z-independent diagonal matrices. The subscript

f for K f ✆ zn ✞ denotes that we are in the spectral domain. (19) is a Lya-
punov matrix equation [11]. A direct-method solution of the Lyapunov

matrix equation using the Bartels-Stewart algorithm is O ✆ N3f ✞ [12].
However, since the coefficient matrix E is in a very special form, we
do not need to use the Bartels-Stewart algorithm which is meant to
handle arbitrary coefficient matrices. When E is in the form given by

(20), (19) can be solved with a specialized algorithm that isO ✆ N2f ✞ , the
description of which we are forced to skip due to space limitations.
With a flat and unstructured representation for the covariance ma-

trix, it is not possible to reduce the computational complexity of the

solution of (19) below O ✆ N2f ✞ . If the stochastic perturbation is a sta-
tionary process, then the covariance matrix in the spectral domain is

diagonal, and in the time domain it is Hermitian and Toeplitz2. Hence,
it is structured and can be represented withO ✆ N f ✞ numbers as opposed
to O ✆ N2f ✞ numbers. However, in general, the stochastic perturbation
is nonstationary, and there is no apparent exact structure in the covari-
ance matrix. Still, it is worthwhile to investigate if there is any (numer-
ically approximate) special structure that arises in the noise covariance
matrices and how it can be exploited for efficient representation and
computation. With an unstructured, flat representation for the covari-
ance matrix, the computational complexity for the numerical solution

of COVODE is O ✆ NzN2f logN f ✞ , the storage complexity is O ✆ N2f ✞ .
We have implemented the above outlined method for the numer-

ical solution of COVODE:(16) along with the numerical solution of
NLSE:(1). Noise analysis examples generated using this implementa-
tion and a discussion of system performance evaluation using the noise
analysis results is in Section 4.

4 Noise analysis examples and discussion
System model

For the noise analysis examples we are going to present in this sec-
tion, we use the model of an optical fiber communication link like the
one shown in Figure 1. The frequency separation between channels
was set to 25 GHz. The span length between amplifier sites was set to
80 km. In the link of Figure 1, there is an OA before the first span of
fiber. This OA sets the launch power for the channels, which was cho-
sen as 10 mW/channel for all of the simulations that we will present.
The WDM signal is launched into the link with the noise added by the
first OA. The OAs along the link compensate for the loss of one span
of fiber. They amplify the signal channels as well as the optical noise
(which was added by the previous OAs along the link and “modified”
by the fiber nonlinearity). The parameters used for the single-mode

2A Toeplitz matrix is a matrix whose entries are constant on each diagonal.

fiber were: α ✟ 0 ✩ 25 dB/km, β2 ✟✴✠ 21 ✩ 6ps2 ✽ km, β3 ✟ 0 ✩ 128ps3 ✽ km,
γ ✟ 1 ✩ 2W ✪ 1 ✩ km ✪ 1. Thus, the loss of a fiber span with a length of80 km is 20 dB. Hence, the OAs in the link have a power gain of 20 dB.
The noise added by the OAs is modeled as a complex (with uncorre-
lated in-phase and quadrature components), white (constant spectral
density) and stationary (constant power, i.e., variance, as a function
of time) process. The channel-combining and channel-selection band-
pass filters in the WDM multiplexer and WDM demultiplexer were
assumed to be ideal brick-wall filters.
For all of the examples we will present, number of Fourier modes

for spectral time discretization N f was set to 256, and 16 bits that
repeat periodically were used in random pulse streams. The number of
z-stepsNz depends on the truncation error tolerances and the frequency
content of the signals being simulated. For signals with rich content in
higher frequencies, smaller z-steps are required. For the simulations
we performed, Nz ranged in 400-4000 for an 80 km length of fiber.

Fiber without nonlinearity

If the fiber has no nonlinearity, the noise analysis becomes trivial, be-
cause no signal-noise mixing occurs. The dispersion in the fiber still
causes (linear) distortion to the signal channels. However, the second-
order stochastic properties, i.e., the spectral density, of optical noise is
not affected, because dispersion is equivalent to an all-pass filter with
phase distortion. When a stochastic process passes through such a
filter, its spectral properties remain unchanged. Thus, without nonlin-
earity, the optical noise at the end of link, impinging on the receiver, is
still stationary and white. The contribution from each OA to the total
accumulated optical noise at the end of the link is the same, because
the OAs compensate for the loss of one span of fiber. The optical noise
from different OAs is assumed to be uncorrelated with each other.

Fiber without dispersion, and a single unmodulated carrier

The noise analysis for this very special case can be performed ana-
lytically, as was done by Gordon and Molleanuer [1]. In this case,
optical noise (quadrature component with respect to the carrier) expe-
riences (uncolored) amplification but stays white, and also stationary
(assuming that the complex envelope in NLSE is centered at the single
unmodulated carrier). We compared the numerical results we obtained

with our noise simulator with the analytical results3 in [1], and as ex-
pected, the agreement is exact.

Stationary vs nonstationary, white vs colored noise

Stationary noise is characterized by a time-domain covariance matrix
Kt which is Hermitian and Toeplitz. In the spectral domain, the covari-
ance matrix is diagonal, indicating that there is no spectral correlation.
The spectral domain covariance matrix for nonstationary noise is non-
diagonal, and in the time-domain, it is not Toeplitz. For instance, the
values on the main diagonal (i.e., the variance or noise power as a
function of time) of the time-domain covariance matrix are not equal
for nonstationary noise. From now on and in the figures that will fol-
low, we will use K f to indicate the spectral domain covariance matrix,
and Kt for the time-domain covariance matrix. Please recall that Kt is
the covariance matrix for the time samples of optical noise, and both
Kt and K f are a function of z, the position along the fiber link. White

noise is characterized by a diagonal Kt (indicating no correlation be-
tween the time samples of noise) and a Hermitian ToeplitzK f . Notice

that this characterization is the dual of the characterization for sta-
tionary noise described above. Colored noise has a non-diagonal Kt
and hence a non-Toeplitz K f . Note that white noise is not necessarily
stationary. We can now deduce that white and stationary noise has a

diagonal K f and diagonal Kt with constant entries on the diagonal
4 .

The model that we use for the noise added by the OAs is white and
stationary.

Comb of unmodulated carriers

We first present noise analysis results for the case of unmodulated car-
riers. We simulated a system like in Figure 1 with 1, 3 and 5 WDM
channels. Figure 3 shows the main diagonal of K f for the optical
noise before the bandpass channel select filter (WDM demux) in the
receiver. K f in all of the figures we are going to present is normalized
with the K f one would obtain without any nonlinearity in the fiber.

Hence, the y-axis in all of K f plots represents noise amplification (in
dBs) due to signal-noise mixing. In Figure 3, the total noise power,

3The results in [1] are approximate if the number of spans is not large, and they need
to be modified to become exact for few spans.
4Hermitian, Toeplitz and diagonal matrix = a scalar multiple of the identity matrix.
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total for the in-phase and quadrature components, is shown. For the 5-
channel case, the noise amplification at the carrier frequencies reaches✁ 4 dB. It decreases rapidly as one moves away from the carrier fre-
quencies. This decrease is due to dispersion in the fiber. Without dis-
persion, the noise amplification would have been uncolored, constant
for all frequencies and equal to the value at f ✟ 0. Hence, without dis-persion, the effects of signal-noise mixing would have been disastrous.
Moreover, as observed in Figure 3, the increase in noise amplification
(away from the carriers) from the 1-channel to the 3-channel case is
more than the increase from the 3-channel case to the 5-channel one.
This means that signal-noise mixing due to nearby channels is more
severe than the noise-signal mixing due to channels further away. This
is again due to dispersion. Without dispersion, the noise-signal mixing
severity would be independent of the frequency separation between
channels. The above is true only for noise amplification away from
the carrier frequencies. The noise amplification at the carrier frequen-
cies is not affected by dispersion and increases severely as the number
of channels increase. In fact, the noise amplification at the carrier fre-
quencies is directly proportional to the number of channels. However,
the noise amplification away from the carrier frequencies has a much
milder dependence on the number of channels and does not increase
much more as the number of channels is increased. With unmod-
ulated carriers, the noise before the WDM demux is nonstationary,
however it becomes stationary after the bandpass channel select filter.

Carriers modulated with a single pulse

We now present noise analysis results when the carriers are modulated
with a single pulse. Upper plot in Figure 4 shows the spectrum of the
signal launched into the fiber, and also the signal spectrum at the end
of the span. Bottom plot in Figure 4 is the main diagonal of K f before

the channel select filter.

Carriers modulated with random pulse stream

We will now compare the noise analysis results for unmodulated car-
riers and carriers modulated with a random pulse stream. Figure 5
shows diag(K f ) for unmodulated and random pulse stream modu-
lated carriers, both before the channel select filter. The average car-
rier power was kept equal for the two cases. We observe that, with
modulation, the magnitude of noise amplification at the carrier fre-
quency decreases. However, the noise amplification at frequencies
away from, and in-between, the carriers increases. The total integrated
noise power is approximately equal for these two cases. If we focus on
the noise spectrum for the channel of interest centered at f ✟ 0, thereis more noise power in high frequencies in the modulated case com-
pared with the unmodulated one. This, in time domain, corresponds
to a smaller correlation width for noise. In other words, if noise is
sampled at the bit rate, then two consecutive samples will have a larger
correlation in the unmodulated case compared with the modulated one.

System design implications and performance evaluation

The results we obtained above using the noise analysis methodology
we developed and implemented have significant design implications,
and can be used in system performance (BER) evaluations, which we
briefly outline and summarize next.
Dispersion plays a significant role in the process of signal-noise

mixing. The effects of noise-signal mixing would be disastrous with-
out dispersion in the fiber.
With dispersion and nonlinearity in the fiber, the optical noise ex-

periences colored amplification due to signal-noise mixing, as seen in
Figure 5. Amplification is more severe around the carrier frequencies
and it is proportional to the number of channels. Amplification away
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Figure 5: Comparison between unmod. and mod. carriers: diag(K f )

from the carrier frequencies is much smaller and has a very mild de-
pendence on the number of channels. The optical noise sampled at the
bit rate in the receiver has much larger power (compared with the case
without signal-noise mixing) but the consecutive samples of noise be-
comes highly correlated due to low-frequency enhanced colored am-
plification. However, the correlation between consecutive samples is
not as large as one would predict with unmodulated carriers. The
modulation of the carriers results in a relatively smaller amplification
of low (around the carriers) frequency noise and a relatively larger
amplification of high (around the midpoint between the carriers) fre-
quency noise. The correlation between consecutive noise samples can
be used to guide the selection of the modulation scheme in system
design. For instance, modulation schemes which encode data differ-
entially between two samples at the bit rate can make use of the cor-
relation between the noise samples to improve BER performance in
the presence of signal-noise mixing. Without signal-noise mixing, the
optical noise stays white and the consecutive noise samples are uncor-
related.
The full stochastic characterization, including all correlation infor-

mation, of optical noise samples at the receiver is available from the
noise covariance matrices that our analysis techniques produce. This
information can be used in BER performance evaluation.

5 Future work
More efficient numerical methods and z-stepping strategies for NLSE,
a parallelized and/or reduced-order-modeling based implementation
of the frequency-decomposed formulation mentioned in Section 2, in-
vestigation of efficient special-structure-exploiting representations for
the noise covariance matrices, as well as the use and application of
the noise analysis techniques developed in this paper in the design
of signal-noise-mixing immune modulation schemes and system BER
estimation is part of the future work. We plan to include the imple-
mentations of the numerical techniques described in the paper in an
analysis and design tool for optical fiber communication links.
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