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Abstract

The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential

alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a

computed imaging method (meaning that images are calculated from raw data). ABI can

simultaneously generate a number of planar parametric images containing information about

absorption, refraction, and scattering properties of an object. These images are estimated from raw

data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam

passed through the object at different angular positions of the analyzer crystal. The noise in the

estimated ABI parametric images depends upon imaging conditions like the source intensity

(flux), measurements angular positions, object properties, and the estimation method. In this

paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric

images and to investigate the effect of source intensity, different analyzer-crystal angular positions

and object properties on this bound, assuming a fixed radiation dose delivered to an object. The

CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise

performance that one can obtain regardless of which estimation method is used to estimate ABI

parametric images. The main result of this manuscript is that the variance (hence the noise) in

parametric images is directly proportional to the source intensity and only a limited number of

analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are

required to get the best parametric images. The following angular measurements only spread the

total dose to the measurements without improving or worsening CRLB, but the added

measurements may improve parametric images by reducing estimation bias.

Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced

Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though

the proposed methodology can be used to evaluate any other ABI parametric image estimation

technique.

1. Introduction

Analyzer-based phase-contrast imaging (ABI) utilizes the Bonse-Hart camera (Bonse and

Hart, 1965), which is schematically shown in Figure 1. This system uses a system of

diffracting crystals to make precise measurements of the angular content of an X-ray beam

after it traverses an object. Specifically, the Bonse-Hart camera allows one to measure the
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beam angular intensity profile (AIP), i.e. X-ray beam intensity as a function of the angular

direction of propagation at each pixel. To achieve this, the ABI system uses a highly

collimated (directional) and quasi-monochromatic imaging beam that is obtained by the use

of a double crystal monochromator. As the collimated X-ray beam passes through the object

(e.g., a patient’s body), the beam will be attenuated by absorption processes, deflected due to

refraction, and directed into a broadened range of angular directions due to ultra small-angle

X-ray scattering (USAXS). After passing through the object, the beam strikes the analyzer-

crystal, which diffracts the beam traveling in a specific narrow direction according to

Bragg’s law. This beam is then detected by a pixelated X-ray detector. The imaging beam at

the location of the object is usually wide (i.e. size in x axis direction) but only several

millimeters in the vertical height (i.e. size in y axis direction). Therefore the object is

mounted on a scanning stage driven by a stepping motor, thus allowing object scanning in

the vertical direction. Next, by changing angular position (rocking) of the analyzer-crystal

(in short analyzer), a number of raw images are acquired and used to calculate parametric

images describing object properties.

For example, in the well-known diffraction enhanced imaging technique (DEI) (Chapman et

al., 1997), the acquisition is done at two angular analyzer positions and it can therefore

simultaneously estimate two parametric images, which contain information about refraction

and absorption properties of the object. In multiple image radiography (MIR) (Wernick et

al., 2003), which is an improvement upon the DEI, the acquisition is done at a number -

larger than three - of angular analyzer positions; therefore, in addition to the previous two

planar parametric images, MIR can also estimate ultra small-angle X-ray scattering

(USAXS).

Examples of MIR images for formalin fixed human thumb tissue are shown in Figure 2. The

attenuation image shows the absorption and Compton scatter rejection together (Chapman et

al., 1997). The refraction image in MIR shows the integrated effect of refractive index

variations along the beam path, and the USAXS image represents the sub-pixel textural

structure of the object.

Because the contrast of the refraction and USAXS images does not rely on the absorption of

X-ray by the object, ABI can be performed at X-ray energies higher than conventional

radiography where radiation exposure to the patient can be low. In addition, ABI parametric

images are virtually immune to degradation due to Compton scatter at higher angles and

have good contrast, which can help to eliminate breast compression as in conventional

mammography. For these reasons, ABI is emerging as a potential alternative to conventional

radiography (Faulconer et al., 2009; Faulconer et al., 2010; Kitchen et al., 2011; Honnicke

et al., 2012; Zhao et al., 2012). As additional reading see (Brankov and Zysk, 2012; Suortti

et al., 2013) for a border overview of ABI and (Zhou and Brahme, 2008; Coan et al., 2009;

Anastasio and La Riviere, 2012; Bravin et al., 2013; Coan et al., 2013; Lider and

Kovalchuk, 2013; Liu et al., 2013) for phase-sensitive imaging in general.

Like many other modern imaging systems, ABI is an indirect imaging method, meaning that

one must process the measured data in order to obtain the final parametric images.
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Therefore, the noise properties in ABI parametric images depend on the imaging conditions

and the estimation method.

In the past, experimental ABI investigations were limited to synchrotron facilities due to the

need for a very bright synchrotron X-ray radiation source that allows collimatization and

monochromtization of the beam, with double crystal monochromator, while still having

sufficient number of photons for imaging. Recently, efforts have been underway to

implement ABI with a bench-top system employing conventional X-ray tube sources

(Chapman et al., 2006; Vine et al., 2007; Nesch et al., 2009; Connor et al., 2011) in which

the source photon flux is the major performance constraint.

Therefore, in this paper, we will quantify the parametric images noise due to two major

causes: limited source intensity and analyzer angular positions by using the Cramér-Rao

lower bound (CRLB) (Kay, 1993). CRLB is the minimum bound for the variance of any

unbiased estimator and defines the best noise performance that one can obtain in parameter

estimation from the raw data. The CRLB methodology unfortunately does not provide the

minimum variance unbiased (MVU) estimator.

The work presented here is an extension of preliminary conference results (Majidi et al.,

2008b; Marquet et al., 2006) where we used simulated phantom data. In (Brankov and Zysk,

2012) we presented some theoretical results, but in this paper we take this approach a step

further including two experimental data sets, providing the full derivation, and clearly

identifying source intensity and analyzer angular position impact on parametric images. In

addition to MIR we also provide findings for analyzer angular positions selected in DEI

(Chapman et al., 1997) and scatter-DEI (Rigon et al., 2003).

The idea of assessing the quality of the raw data by quantifying the parametric image quality

is not new. For example, in (Pagot et al., 2005) the authors evaluated the best angular

measurement positions for the refraction and scattering signals, as defined by area contrast,

for a scenario where only two images were acquired. In our approach we define a more

general statistical approach, based on CRLB, to assess the quality of the raw data. We also

go a step further and present methodology to optimize the analyzer angular positions at

which we measure beam’s AIP. Finally we finish by using CLRB to evaluate the

performance of three estimation methods, in this work that is MIR (Wernick et al., 2003),

DEI (Chapman et al., 1997) and scatter-DEI (Rigon et al., 2003). The presented evaluation

methodology can be directly used on other estimation methods like extended-DEI (Chou et

al., 2007; Rigon et al., 2007) and model based MIR (Majidi et al., 2008a). The purpose of

this work is not to fully evaluate MIR or any other technique or to prove conclusively that

any estimation methods will always perform best. The study is merely an illustration of the

proposed procedure for quantifying noise and selecting analyzer angular positions by

utilizing CRLB. The illustration reveals pitfalls and gains that one can encounter during this

process.

First, we present the ABI image formation model (Khelashvili et al., 2006) based on

radiative transfer theory (Ishimaru, 1997), followed by derivation of the CRLB in section 3.

In section 4, we use CRLB as a guide to optimize the set of analyzer angular positions while
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in section 5 we evaluate the performance of three previously mentioned estimation methods.

The conclusions are given in section 6.

2. Image formation model

In (Khelashvili et al., 2006), the image formation model was derived using radiative transfer

theory. According to this model the AIP of the beam after passing through the object can be

written as the following convolution:

(1)

where R(θ) is the AIP of the beam that would be measured in absence of any object on the

detector plane, * denotes one-dimensional convolution, and I0 is the total number of photons

per pixel for a preset total radiation exposure. The function R(θ) is called the intrinsic

rocking curve as it is an inherent property of the imaging system and can be accurately

measured and modeled as a Pearson type VII function which we will show later.

In ABI, the object is characterized by a hypothetical quantity called the object function, f

(θ;ν), where θ is the angular direction of propagation and ν is a vector containing the

parameters that define object interaction with the X-ray beam.

The full object model given in (Khelashvili et al., 2006) and summarized in Appendix A, is

derived using radiative transfer theory where the object is modeled as a scattering, stratified

medium. The full object function given in Eq A-3 is uniquely described by eight object

parameters. Fortunately the approximate simplification of the full image formation model,

also shown in Appendix A, yields to the following Gaussian curve for the object function

defined by only three parameters:

(2)

Now, at each pixel the object is characterized by a parameter vector, ν = [ν1,ν2,ν3]T,

containing the following parameters: ν1, which conveys information about total attenuation

by the object, ν2 is the angle of refraction caused by the object, and ν3 is the angular beam

divergence (analogous to variance) induced by the object. This object function is the AIP

that would result from illuminating the object with a unit intensity, perfectly collimated

beam, i.e., a beam having its initial AIP described by a Dirac delta function δ(θ). In this

context, the effect of the object on the X-ray beam is a convolution in terms of the

propagation direction θ, and in this sense, the object function plays the role of an angular

impulse-response (aka Green’s) function. By measuring the parameters of this impulse

response function, one can obtain attenuation, refraction, and USAXS parameters, which can

be displayed in the form of images.

The image formation model given in Eq (1) and object function given in Eq (2) was

previously used in (Wernick et al., 2003; Rigon et al., 2003; Rigon et al., 2007) in an add-

hoc fashion. For other image formation models see (Suhonen et al., 2007; Diemoz et al.,
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2010; Pavlov et al., 2001; Arfelli et al., 1998) where the authors usually assume a bell-

shaped rocking curve such as Gaussian or Lorentzian convolved with an object function but

no derivation of the object function was provided such as in (Khelashvili et al., 2006). All

image formation models listed above are defined on a pixel-by-pixel basis; see (Wernick et

al., 2003) for the justification; hence, ν denotes the values for any arbitrary pixel in the

image.

In practice, measurements of g(θ;ν) are made on a digital detector for different angular

positions of the analyzer crystal that will be denoted as g[l]. The expected value of the

measured discrete AIP on the detector can be modeled as:

(3)

where l = 1,2,…,L represents the index of the analyzer angle θl, E[·] denotes the expected

value, and I0 / L represents the division of total exposure dose among L measurements.

In practical implementation of ABI using conventional X-ray tubes, photon flux will be the

performance constraint; therefore, we can assume that the measured data is photon-limited,

so Poisson noise will be the dominant noise source in raw ABI images (Wernick et al.,

2003). Under this noise model, the likelihood function of the raw data is given by:

(4)

where g = [g[1],g[2],…,g[l]]T is a vector containing measured data.

3. Cramér-Rao lower bounds

To investigate the fundamental noise properties of ABI, we next consider the theoretical

limit on the noise variance in estimation of the parametric images. This can serve as a

foundation for optimizing the data acquisition procedure, as well as evaluation and

comparisons of estimation algorithms. In ABI, we have three parameters to estimate

simultaneously. The CRLB theorem for vector estimations (Kay, 1993) states that the

variance of any unbiased estimator of the ith element of the vector ν, denoted ν̂
i, is bounded

as follows:

(5)

in which Θ = {θ1,θ2,…,θL} is a set of analyzer angular positions, {․}i,i denotes ith diagonal

matrix element and I(ν;Θ) is a Fisher information matrix. This matrix has its ith column and

jth row elements defined by:

(6)
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Substituting (1)–(4) into (6) yields to the following Fisher information matrix, which is

derived in Appendix B:

(7)

where , and

(8)

where

(9)

(10)

(11)

Here, we note that the I′(ν;θl) matrix has rank one, so the inverse of the Fisher information

matrix, I−1(ν;Θ), exist only and only if at least three independent angular measurements are

acquired. Though the CRLB expressions are complicated, one can compute these bounds

numerically for any given set of analyzer angular measurements.

Here we will rewrite Eq (5) using result in Eq (7) as:

(12)

where:

(13)

Here one can note that the estimator variance bound is inversely proportional to the total

exposure dose I0 and directly to the number of angular measurements. This expression

shows that information given by one angular measurement can be interpreted independently

from the total exposure dose and the total number of angular measurements. Therefore the

results and conclusions obtained using a high flux source, like synchrotron, can be translated

to a low flux source, like a conventional X-ray tube. This equation also points out that the

estimators’ variance is a function of intrinsic system rocking curve and the object function
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and not only system rocking curve as sometimes assumed in literature (Kitchen et al., 2010;

Pagot et al., 2005).

Now we would like to point out that Eq (13) is strictly valid only for equal acquisition time

at each analyzer angular position. If one desires to modify acquisition times this can be

easily incorporated into CRLB as:

(14)

where tl is acquisition time for each individual angular position and  is the total

acquisition time needed to acquire I0 photons. Optimization of tl is left for future research.

Note that the specific form of rocking curve and object function does not affect the CRLB

equations derived in (13); therefore, the CRLB equations are general. Also note that

considerations in this paper do not take into account the effect of a finite source spot size.

This secondary effect is also left for future research.

If one considers methods like DEI (Chapman et al., 1997) or scatter-DEI (Rigon et al.,

2003) that only estimate two parameters and use a specific analyzer angular positions one

needs to modify bounds as follows. For DEI CRLB will become:

(15)

where ,

(16)

and νDEI = [ν1,ν2] assuming ν3 = 0.

Here we note that DEI is using angular measurements obtained at half of the rocking curve

full with at the half maximum (FWHM) as noted by θH, and θL in later figures.

For scatter-DEI we will have:

(17)

where ,
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(18)

and νS−DEI = [ν1,ν3] assuming ν2 = 0.

S-DEI is using angular measurements obtained at top and at the toe of the rocking curve as

noted by θTOP, and θTOE in later figures.

It is well known that the DEI and S-DEI methods are prone to artifact and bias. However,

DEI produces reasonably good images if the object is weakly scattering and S-DEI if the

object is weakly refracting.

A. Effect of the analyzer crystal angular position on CRLB

In imaging an object, the most important factor affecting the parametric image noise, after

the beam intensity I0 and the number of angular measurements (as noted in the previous

section), is the angular position of the analyzer crystal. In this section, we will analyze the

effect of the analyzer angular position θl on CRLB. To gain intuition about the effect of the

angular position, we approximate the true bounds, i.e. {I−1(ν;Θ)}i,i, with the inverse of the

diagonal elements of the Fisher information matrix, i.e. . This would be

equivalent to the estimation of each parameter individually, while the other two parameters

are known. Now we can define the following information functions:

(19)

(20)

(21)

These functions show the amount of information we can acquire from a measurement at

different analyzer angular positions. Since to visualize these functions one needs to know

object parameters, we will examine these functions, for parameters obtained experimentally,

in the experimental section.

B. CRLB for uniform set of analyzer angular positions

Next we will provide methodology to calculate and analyze the behavior of CRLB as we

increase the number of angular measurements, i.e. analyzer angular positions. We can see in

(3) that by increasing the number of measurements, L, we are decreasing the signal-to-noise

ratio in each angular measurement, which represents the fixed total exposure dose to the
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tissue regardless of how many angular measurement are collected and equal acquisition

time at each analyzer angular position.

First, we consider a uniform set of analyzer angular positions in the range of [θmin,θmax] so

the angular positions are defined as following:

(22)

Now for a given set of analyzer angular positions, Θu = {θ1,θ2,…,θL}, we can estimate the

expected CRLB as:

(23)

where E[·]w.r.t.ν represents the expectation over the probability density function (pdf) of the

parameter vector ν. Taking the expectation in (23) is an intractable problem. Therefore, we

approximate the expectation by the arithmetic average over the parameters obtained from

the experimental study:

(24)

where νc,c = 1,2,…,C represents the values of the parameter vector ν, at the cth pixel in a

pilot experimental study (e.g. human thumb or whole breast tissue study).

Now Eq (24) can serve as a basis for comparison of different sets of analyzer angular

positions. It allows us to examine what is the impact of increasing the number of angular

measurements, L, on estimated parametric images noise.

C. Optimal set of analyzer angular positions

In this section, we propose a method to investigate the possibility of further lowering the

CRLB and hence achieving better estimation performance by using non-uniform analyzer

angular positions.

To find a better set of non-uniform analyzer angular positions (denoted Θ*) with respect to

uniform angular positions, Θu, we define the following minimization problem:

(25)

where

(26)
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The main idea is: since the magnitude scales of the parametric images average CRLB are

different, we normalize each  by , which is the average CRLB

obtained for the uniform set of analyzer angular positions Θu with the same number of

angular measurements.

4. Experimental analysis of CRLB

As we pointed out earlier, to visualize Eqs (19)–(21) or to take the expectation in Eq (23) or

(26) one needs the probability density function (pdf) of the parameter vector. In general, this

is unmanageable, however one can estimate these quantities from an experimental study.

We want to stress that the purpose of experimental studies is not to fully evaluate ABI

imaging or to fully quantify noise and select a set of analyzer angular positions in general.

The study is purely an example to illustrate the proposed procedure of utilizing CRLB. The

results presented in this paper will be valid only for a similar imaging system, beam energy

and tissue types as in our experiments.

A. Experimental studies

Experimental data was acquired using a synchrotron light source at Brookhaven National

Laboratory; X15A beamline. A double Si (333) crystal was used for beam

monochromatization, and one Si (333) crystal was used as the analyzer.

a. A formalin fixed human thumb was imaged with the beam energy of 40keV and

angularly oversampled at 25 analyzer positions ranging from −4.8 to 4.8 μrad with

0.4 μrad increments.

b. An uncompressed, formalin fixed medium size breast was imaged with the beam

energy of 60keV and angularly oversampled at 21 analyzer positions ranging from

−2.4 to 2.4 μrad with 0.2 μrad increments.

Both data sets are measured with long exposure time approximately 10 hours per tissue;

therefore, achieving a high signal-to-noise ratio (>35dB) in the raw data. Next, using an

MIR estimation method (Wernick et al., 2003), we extract three parametric images.

B. Intrinsic rocking curve – Pearson type VII approximation

In (Suhonen et al., 2007; Diemoz et al., 2010; Pavlov et al.; Arfelli et al., 1998) the authors

assume a bell-shaped rocking curve such as Guassian or Lorentzian. In (Hall et al., 1977;

Kitchen et al., 2010; Kitchen et al., 2007) the authors have determined experimentally that

for the ABI system as in Figure 1 the rocking curve can be accurately modeled better using a

Pearson type VII function as:

(27)

where in our experiments using three Si (333) crystals and for the incident photon energy of

40keV, a = 0.7146, and m = 2.3737, and of 60keV, a = 0.5355, and m = 4.3005. In both

cases we assumed c = 1.0. Here c defines the curve amplitude, m governs the rate of decay
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of the tails, and both a and m determine the profile width. This Pearson type VII function

has limits of the Gaussian (m = 1), modified Lorentzian (m = 2) and Cauchy (m = ∞)

distributions (Hall et al 1977). Given the variety of functions the Pearson type VII function

encompasses, it can provide a superior fit to near-perfect crystal reflections rocking curves.

The shapes of these rocking curves can be seen in Figure 3.

In Figure 3 we also indicated analyzer angular positions used in DEI (Chapman et al., 1997)

θL,θH and scatter-DEI (Rigon et al., 2003) θTOP,θTOE defined earlier.

C. Effect of the analyzer angular position

Examples of functions, defining the effect of the analyzer angular position θl on CRLB, as

defined by Eqs (19)–(21) for four different object parameter vectors are given in Figure 4.

The parameter vectors in use are extracted from two formalin-preserved human tissue

samples (details are given in the experimental section): a human thumb (shown in Figure 2)

and a whole breast. Each point at these functions shows the relative information at that

analyzer angular position.

In short, if we desire to minimize CRLB (i.e. noise) in νi parameter estimation, using L

angular measurements, we should acquire these measurement at analyzer positions, Θ =

{θ1,θ2,…, θL}, so that  is maximized.

In addition to Vi (θ) functions, Figure 4 shows analyzer angular positions as defined in DEI,

θH,θL, and S-DEI, θTOP,θTOE. If we look at the V1(θ) function of the absorption parameter in

Figure 4 a) and b), we can see that the maximum amount of information is at θ = 0μrad in

both graphs. If we are concerned with the refraction parameter, we should look at V2(θ)

function for the average object AIP, where it is easy to observe that the maximum for

different imaging setup and tissues combination occurs at different angular positions. For the

thumb sample imaged at 40keV this is at θ = ±1.9 μrad, and for the breast sample imaged at

60keV this is at θ = ±0.9 μrad. Here it is worth noting that the “No object” V2 (θ) function

would indicate θH,θL, as the best measuring positions. Finally, for the USAXS parameter we

should consider the V3(θ) function. Two graphs indicate three regions with almost equal

importance for the thumb sample: this is at θ = 0, and ± 2.9μrad and for the breast tissue at θ

= 0, and ±1.6μrad. Here it is worth noting that the “No object” V3(θ) function would

approximately give θTOP,θTOE as the best measuring positions.

Next in Figure 4 c) and d) we show information functions for extreme object parameters.

These graphs indicate that different regions in the object may provide a very different object

AIP, and therefore, optimal set of analyzer angular positions. More sophisticated angular

position selection methods that can take this variability into account are left for future

research.

From the considerations above, it is clear that in order to optimize the set of analyzer angular

positions, one needs to consider and know in advance: 1) which parameter or combination of

parameters are of interest, 2) the tissue type, 3) tissue region of interest, 4) imaging energy

and intrinsic system rocking curve.
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Let us stress one additional result evident from Figure 4, that is, if one would optimize the

analyzer angular positions only considering intrinsic system rocking curves (“No object”

curves), suboptimal angular positions would be chosen. To correctly choose analyzer

angular positions one needs to incorporate the object effect. To our knowledge, this paper is

the first to point this out obviously. Other authors considered parametric image information

content and quality based on the rocking curve only (Rigon et al., 2003; Pagot et al., 2005;

Pagot et al., 2003; Chapman et al., 1997).

D. Experimental optimization of the number of analyzer angular measurements

The behavior of CRLB as we increase the number of angular measurements is given by Eq

(24). As this equation indicates, we will use an average over the object parameters for the

whole sample (thumb or breast), however it is important to note that different regions in the

object may provide very different parameters (see Figure 4 for example), and therefore,

results. For example, the structure’s boundaries will give much larger refraction than other

points in the image. This means that very different results could be obtained in the various

areas. Therefore, as we pointed out earlier, the results presented in this paper could be

directly used only for a similar imaging system and tissue properties, however the present

methodology can be used for optimizing any ABI system/imaging setup.

In the presented experiments we will consider a uniform set of analyzer angular positions in

the range of [−5,5]μrad for thumb tissue and [−2.4,2.4]μrad for breast tissue (see Eq. (22)

and Figure 7a) and b) to visualize the proposed set of analyzer angular positions).

First, from Figure 5, we can see the improvement in average CRLB as we increase the

number of analyzer angular measurements. We can observe that for lower numbers of

angular measurements, the attenuation and USAXS parameter bounds are higher for L even

numbers than for L odd numbers. This is because the maximum amount of information for

attenuation and USAXS, as measured by V1(θ) and V3(θ) (see Figure 4), is at θ = 0 μrad,

which is not sampled when using an even number of measurements. On the other hand,

measuring at θ = 0 μrad does not contain any information about refraction (see V2 (θ) in

Figure 4) and that is why the average CRLB for the refraction image lies on almost the same

curve for odd and even numbers of angular measurements.

Another observation that can be made from Figure 5 is that after a certain number of angular

measurements (11 for both data sets), there is almost no improvement or loss in the average

CRLB bounds. Therefore, in the case of a Minimum Variance Unbiased (MVU) estimator,

there is neither benefit nor loss in acquiring more than 11 images at uniformly spaced

analyzer angular positions for a fixed total radiation dose.

At this point we would like to stress that the Cramér-Rao lower bound (CRLB) is used to

quantify the noise properties in parametric images of an unbiased estimator and defines the

best noise performance that one can obtain regardless of which method is used to estimate

ABI parametric images.
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E. Experimental optimization of the analyzer angular positions

Here we will investigate the possibility of lowering the CRLB and hence achieving better

estimation performance by using a set of non-uniform analyzer angular positions Θ*

according Eq. (25). For Θu, we used a uniform angular positions in the same range of

[−5,5]μrad and [−2.4,2.4]μrad as before depending on the tissue type.

To optimize the objective function in (26), we used the exhaustive search method. For every

number of angular measurements, we evaluated J(Θ) at every possible combination of

analyzer angular positions (with minimum spacing of 0.2 μrad) and we defined the best set

of positions as the one that has the smallest value of J (Θ).

In order to decrease computation time, we limited the number of possible patterns by

imposing two constraints: We always measure at θ = 0, and our angular-sampling positions

are always symmetrical around zero since Vi(θl), on average, is always symmetrical around

zero. We selected an exhaustive search method for it simplicity, and also since it guarantees

a globally optimal solution. The needed computational time needed for this optimization was

8 hours on a iMAC with Intel Core i5 2.9 GHz with 16 GB RAM. Other gradient type of

optimization methods (Chong and Żak, 2008) may be used in future.

The resulting average CRLBs of optimal non-uniform and uniform set of analyzer angular

positions are shown in Figure 6. One can observe that the attenuation and refraction CLRBs

can be significantly improved over uniform angular positions while the USAXS parameter

CRLB shows minor improvement. The presented results indicate that one can reduce

estimator variance considerably by using a non-uniform set of analyzer angular positions

that is optimized for the tissue of interest and a given ABI system.

Figure 6 also show CRLBs for analyzer angular positions as proposed in the DEI and S-DEI

methods. Here we can see that for a weakly scattering and refracting object, like breast

tissue, DEI and S-DEI angular positions seem to achieve optimal CRLB as one would

expect bearing in mind the curves shown in Figure 4 b) and d).

The key result of this section is that only three angular measurements are required to get the

best parametric images. As before, the second intriguing observation is that the successive

angular measurements only spread the total dose to the additional measurements without

improving or worsening CRLB.

The optimal set of analyzer angular positions for different numbers of angular positions and

the two tissue samples are shown in Figure 7. As we can see, the angular measurements tend

to converge to three dominant angular positions. These positions approximately correspond

to the locations with the maximum information measured by Vi(θl), for the averaged AIP, in

Figure 4.

5. DEI, S-DEI and MIR estimator comparison to CRLB

The graphs in Figure 5 and Figure 6 can be used as a benchmark, that is a lower bound, to

evaluate the performance of ANY estimator. In this section, we will investigate the

performance of the multiple-image radiography estimator (MIR) as described in (Brankov et
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al., 2006), DEI (Chapman et al., 1997) and scatter-DEI (Rigon et al., 2003) with respect to

CRLB. The presented evaluation methodology can be directly used on other estimation

methods like extended-DEI (Chou et al., 2007; Rigon et al., 2007) and model based MIR

(Majidi et al., 2008a).

Specifically we will evaluate the MIR, DEI and S-DEI estimators by calculating estimators’

variance, squared bias, and Mean Square Error (MSE) and comparing it to CRLB. The

purpose of this section is not to fully evaluate MIR, DEI or S-DEI but it is merely an

example to illustrate the proposed evaluation procedure.

It is worth noting that the images estimated using the DEI and S-DEI method are prone to

artifacts that are, most of the time, mitigated in the MIR method (as shown in (Wernick et

al., 2003)). Similar methods to MIR have also been proposed independently in (Pagot et al.,

2003) and (Rigon et al., 2003). Other ABI methods like extended-DEI (Chou et al., 2007;

Rigon et al., 2007) use different assumptions about image formation, different number and

location of the angular measurements.

A. Simulated data

To evaluate the estimation methods’ variance, squared bias, and Mean Square Error (MSE)

we need to use simulated data for which true values of the parametric images are known.

First, parametric images are estimated using experimental data described in the

Experimental study section. Note that these raw images are acquired by angular

oversampling and under high beam intensity, and as such, they result in accurate, low noise

and bias, parametric images. Now we use these parametric images as true values to simulate

AIPs according to the image formation model as given in (3). After simulating the angular

sampling, we simulate the effect of noise by generating Poisson distributed values, i.e.

(28)

where ~ denotes distributed according and we assume that I0 = 1800 photons, which is a

reasonable number of photons. To reduce statistical variations we generated 1000

independed noise realizations. Note that, according CRLB equation given in (13), the

number assumed photons will only change graphs scale and not general conclusions.

B. Image acquisition using a uniform set of analyzer angular positions

The results for the human thumb study are shown in Figure 8 a). We can see that DEI and

SDEI estimator are highly biased. The same can be said for MIR for a low number of

angular measurements (less than 7) where MIR occasionally even has variance lower than

the average CRLB. However after 11 angular measurements, the bias of the estimation

becomes negligible compared to the variance and MIR becomes approximately, for tested

tissue, an MVU estimator, meaning that it achieves the best performance possible as defined

by the CRLB for an unbiased estimator. Similar results are obtained for the breast study,

which are shown in Figure 8 b).

Note that in (Huang et al., 2007; Diemoz et al., 2010) the authors showed that if the object

scatter and refraction is sufficiently larger MIR methods still could have unwanted artifacts
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and, as such, may not becoming MVU. The origin of this is probably two fold: 1) small

range of the analyzer angular-sampling and 2) insufficient angular-sampling density. This

consideration is left for future research.

In order to evaluate the above results visually, we presented images for six different

numbers of angular measurements in Figure 9. Visual inspection of images also confirms

that 11 angular measurements seem sufficient for good parametric image estimation.

Note that the above concepts of bias, variances or MSE are hard to demonstrate visually by

the images as in Figure 9, as for example a potential bias is likely not to be noticed by the

eye. However, since images are usually evaluated visually, their visual appearance is

important.

One should note that we did not specify which estimator could achieve average CRLB for a

non-uniform set of analyzer angular positions. The MIR estimator in (Brankov et al., 2006)

is designed for a uniform set of analyzer angular positions and cannot be directly applied to

a nonuniform set of positions. The problem of finding an MVU estimator for the non-

uniform set of analyzer angular positions is left for future research.

6. Conclusion

In this work we derived the Cramér-Rao lower bound (CRLB) for analyzer-based phase-

contrast imaging using the image formation model based on radiative transfer theory

(Khelashvili et al., 2006). The CRLB is the minimum bound for the variance of any

unbiased estimator and defines the best noise performance that one can obtain. We analyzed

a situation in which the total exposure dose to the imaged object remains fixed regardless of

the number of angular measurements. The results in this paper show that for a minimum-

variance unbiased (MVU) estimator, only a limited number of angular measurements

(eleven for uniform and three for optimal non-uniform set of analyzer angular positions) are

required to get the best parametric images. The second intriguing observation is that the

successive angular measurements only spread the total radiation dose to the additional

measurements without improving or worsening the CRLB, however the added

measurements usually can improve parametric images by reducing estimation bias.

The presented analysis is performed using data from two tissue samples. The findings

obtained for these two particular tissue samples and imaging energies cannot be generalized,

as the results are dependent on the tissue type, on the crystal reflection, energy, analyzer

angular-sampling range, etc. Very different results could, in principle, be obtained in other

conditions. For example, tissue with very large refraction and scattering angles could require

a larger number of angular measurement steps. However the purpose of this work is not to

fully evaluate any particular ABI technique or to prove conclusively that any methods or a

set of analyzer angular positions will always perform the best. This study is merely an

example to illustrate the proposed procedure for a given imaging system setup and tissue

type.

We also showed that it is possible to minimize average CRLB (average over the whole

image) further by deforming the set of analyzer angular positions from uniform. However,

Majidi et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2015 April 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the problem of finding an MVU for the non-uniform analyzer angular positions is still an

open research problem.

Last, we evaluated the MIR (Brankov et al., 2006) DEI (Chapman et al., 1997) and scatter-

DEI (Rigon et al., 2003) estimators. MIR becomes an MVU estimator, which achieves

average CRLB, when more than 11 uniformly spaced angular measurements are used.
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Appendix

A. Approximation of the Object Function

Here we review the image formation model proposed in (Khelashvili et al., 2006). The

image formation model is based on radiative transfer theory and the object is modeled as a

stratified medium where the stratum is characterized by a linear absorption coefficient μ(r⃑) =

μ(z) and by a spatially varying refractive index n(r⃑) = n0 + ny (z)y where r ⃑ = (x, y, z)T is the

spatial coordinate of the system and the z coordinate is the direction of X-ray beam

propagation. Furthermore, the object is assumed to have identical scattering centers

distributed in the medium with the density ρn(r ⃑) = ρn (z). Each scatter center is characterized

by its extinction cross section σext, which is defined as the sum of the scattering cross

section σs and the absorption cross section σa. Next, we use a quantity called albedo

(Khelashvili et al., 2006), defined as

(A-1)

And for each scattering center we also define:

(A-2)

where αp is the beam broadening due to a single scattering center (von Nardroff, 1926) and δ

is the difference between the refractive indices of the medium and the scatters. Now, by

using the equation presented in (Khelashvili et al., 2006), we can write the object function

for this stratum as

(A-3)

where μ ̅(z) ≜ ρn(z)σa + μ(z), and
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(A-4)

(A-5)

where Z is the thickness of the medium. We can relate the terms in the summation of Eq.

(A-3) to an expectation of a Gaussian curve with k /αp variance over a Poisson probability

distribution function of k. Interestingly, the summation in Eq (A-3) can be derived by

statistical argument in which the random distribution of scatterers is modeled by the Poisson

process. Here is it interesting to note that the full model is defined by eight model

parameters σs,σa,ρn,μ,αp,n0,ny,Z.

For large values of τ(Z)W0, we can accurately approximate this object function by the

dominant term that is a Gaussian curve, where k = τ(Z)W0. Then we can rewrite (A-3) in the

following form:

(A-6)

where:

(A-7)

(A-8)

(A-9)

and ν1 describes the net linear absorption of the medium (including absorption in scattering

centers), ν2 is the scaled refractive index gradient, and ν3 can be interpreted as USAXS

parameter of the medium.

B. Derivation of Cramér-Rao Lower Bounds

From (8) we have:
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(B-1)

The log-likelihood function of the data is given by

(B-2)

By taking the derivatives we have:

(B-3)

(B-4)

By taking the expected value of (B-4) and substituting (3) and (4) into the result, noticing

that gl ≜ E [g[l]], we get:

(B-5)

(B-6)

where:

(B-7)

(B-8)

(B-9)

Alternatively, we can rewrite (B-6) in normalized from as:
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(B-10)

where , and

(B-11)

where

(B-12)

(B-13)

(B-14)
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Figure 1.
Schematic diagram of ABI imaging system (not drawn to scale). In this paper, we

investigate the effect of the analyzer position on the noise performance.
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Figure 2.
MIR projections of a human thumb. The images are acquired with the beam energy of

40keV at 25 analyzer positions ranging from −4.8 to 4.8 μrad with 0.4 μrad increments (see

experimental sections for acquisition details).
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Figure 3.
Example of a Rocking Curve for Si (333) Crystal at beam energy of (a) 40 keV (FWHM =

1.4μrad); (b) 60keV (FWHM = 1.0μrad).
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Figure 4.
Examples of information functions for parameter plotted on the logarithmic scale. Each

function indicates the relative value of obtaining an angular measurement at a given angular

analyzer position θl in regard to estimation of one of the object parameters. (a) For thumb

sample imaged at 40 keV, (b) for breast data imaged at 60keV, in c) and d) we show

information functions for extreme object parameters.
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Figure 5.
CRLB for an unbiased estimator vs. number of angular measurements using a uniform set of

analyzer angular positions. (a) For thumb sample imaged at 40 keV, (b) for breast data

imaged at 60keV.
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Figure 6.
CRLB for an unbiased estimator vs. number of angular measurements for both optimal and

uniform set of analyzer angular positions. (a) For thumb sample imaged at 40 keV, (b) for

breast data imaged at 60keV.
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Figure 7.
Analyzer angular positions in optimal and uniform set of analyzer angular positions for

different number of angular measurements. (a) For thumb sample imaged at 40 keV, (b) for

breast data imaged at 60keV.
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Figure 8.
Variance, MSE, squared bias, and CRLB vs. number of angular measurements for optimized

set of analyzer angular positions. (a) For thumb sample imaged at 40 keV, (b) for breast data

imaged at 60keV.
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Figure 9.
Estimated MIR images using uniform set of analyzer angular positions with different

number of angular measurements. Observe that there is little or no improvement after L>11.
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