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The interplay between current and magnetization fluctuations and dissipation in layered-ferromagnetic-
normal-metal nanostructures is investigated. We use scattering theory and magnetoelectronic circuit theory to
calculate charge and spin-current fluctuations. Via the spin-transfer torque, spin-current noise causes a signifi-
cant enhancement of magnetization fluctuations. A special focus is on spin valves in which one of the ferro-
magnets is pinned. We find that the magnetization noise and damping are tensors that depend on the magnetic
configuration. For symmetric spin valves in which both layers fluctuate, dynamic cross-talk between the layers
becomes important, causing a possibly large difference in noise level between the parallel and antiparallel
magnetic configurations. Due to giant magnetoresistance �GMR�, the magnetization fluctuations in spin valves
induce resistance noise, which is identified as a prominent source of electric noise at relatively high current
densities. The resistance noise is shown to vary considerably with the magnetic configuration, partly due to the
dependence of the angular GMR. The contribution from spin-current fluctuations to the resistance noise is
shown to be significant. Resistance noise is an experimentally accessible quantity that can be measured to
verify our results.

DOI: 10.1103/PhysRevB.79.214407 PACS number�s�: 72.70.�m, 72.25.Mk, 75.75.�a

I. INTRODUCTION

New functionalities can be realized by integrating ferro-
magnetic elements into electronic circuits and devices. The
interplay between magnetism and electric currents in these
structures is utilized by the giant magnetoresistance �GMR�,
the operating principle of the read heads in modern magnetic
hard disk drives. Considerable progress has been made in
improving magnetic random access memories.1 Efforts to
further miniaturize and improve the performance of magne-
toelectronic devices are ongoing in academic and corporate
laboratories. Low power consumption and noise levels are
essential. In spite of the technological relevance, a compre-
hensive understanding of coupled current and magnetization
noise, and the related energy dissipation in nanoscale mag-
netoelectronic circuits is lacking.

From the early studies of Johnson2 and Nyquist,3 we
know that the equilibrium voltage noise power in conductors
is proportional to the electric resistance. This relation be-
tween the equilibrium noise and the out-of-equilibrium en-
ergy dissipation is a standard example of the fluctuation-
dissipation theorem �FDT�.4,5 In recent years, important
advances have been made in the understanding of electronic
equilibrium �thermal� and nonequilibrium �shot� noises in
mesoscopic conductors.6

The electron spin plays an important role in electrical
noise phenomena in magnetic multilayers. In early theoreti-
cal studies7–12 of charge and spin-polarized current noise in
such systems, magnetizations were assumed to be static.
However, the magnetization itself fluctuates as well. Thermal
fluctuations of the magnetization vector in isolated single-
domain ferromagnets have been analyzed by Brown,13 who

introduced a stochastic Langevin field acting on the magne-
tization to account for thermal agitation. His proof that this
field’s �white-noise� correlator is proportional to the magne-
tization damping �see below� is another manifestation of the
FDT.14,15 The stochastic field can be introduced into the spa-
tiotemporal equation of motion for the magnetization
�Landau-Lifshitz-Gilbert �LLG� equation�, affecting, e.g.,
current-driven magnetization dynamics and reversal.16–19

A moving magnetization vector in ferromagnets under-
goes viscous damping that relaxes the magnetization toward
the lowest �free-� energy configuration. This process is in
practice well described by a phenomenological damping con-
stant, introduced by Gilbert.20,21 Despite some progress,22–28

a rigorous quantitative understanding of the magnetic damp-
ing in transition-metal ferromagnets has not yet been
achieved. The theory of the enhanced Gilbert damping in
ferromagnets in good electrical contact with a conducting
environment is in a better shape. The loss of angular momen-
tum due to spin-current pumping into the environment agrees
with the Gilbert phenomenology,29,30 and experiment and
theory addressing the additional damping agree well with
each other.30

The electronic and magnetic fluctuations in magnetoelec-
tronic structures are intimately coupled to each other.31,32 For
example, the magnetization noise in ferromagnetic films in
good electric contact with normal metals has been predicted
to increase due to spin-current fluctuations: the spin-current
components polarized perpendicularly to the magnetization
are absorbed at the interface, leading to a fluctuating spin-
transfer torque33–36 that induces additional magnetization
noise. This noise is related to the excess Gilbert damping
caused by the angular-momentum loss due to spin pumping,
in accordance with the FDT.
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Here we investigate the interplay between �zero-
frequency� current and magnetization noise in multilayers of
alternating monodomain magnetic and nonmagnetic films.
We take advantage of the FDT to relate the equilibrium elec-
tric �current and voltage� and magnetic �magnetization and
field� noises to the corresponding dissipation of energy. We
start by reviewing the noise in a single monodomain ferro-
magnet sandwiched by normal metals, including technical
details that were omitted in Ref. 31. Both thermal equilib-
rium �Johnson-Nyquist� current noise and nonequilibrium
shot noise are taken into account. Next, we consider spin
valves, i.e., two ferromagnetic films separated by a normal-
metal spacer.37 We consider both a symmetric structure in
which both layers fluctuate, as well as an asymmetric one, in
which one layer is assumed fixed. Magnetoelectronic circuit
theory38–40 is used to calculate the charge and spin-current
fluctuations. The resulting enhanced magnetization noise and
Gilbert damping in principle are tensors that depend on the
magnetic configuration. Our focus is on uniformly magne-
tized ferromagnets that can be described in the so-called
macrospin approximation. Additional interesting effects oc-
cur in nonuniformly magnetized ferromagnets.41

Spin valves provide an opportunity to indirectly measure
magnetization noise via resistance fluctuations, which are
manifested by voltage noise for a current-biased system or
current noise for a voltage-biased system.42,43 This offers an
experimental test of our theory. We obtain analytical expres-
sions for the magnetic contribution to the induced electric
noise for different magnetic configurations. The noise is of
potential importance for the performance of spin-valve read
heads.43 For symmetric structures in which both layers fluc-
tuate, dynamic cross-talk between the layers becomes impor-
tant, causing a possibly large difference in noise level be-
tween the parallel �P� and antiparallel �AP� magnetic
configurations. Our results for these spin valves include pre-
viously presented findings as a limiting case.37 After the
completion of this work,44 it was shown that spin valves in
equilibrium also exhibit colored voltage fluctuations caused
by spin pumping of the moving magnetizations.45

The paper is organized as follows. We begin by reviewing
the fluctuation-dissipation theorem, applied to magnetic sys-
tems. In Sec. III, the noise properties of a single ferromag-
netic thin film sandwiched by normal metals is worked out in
detail, emphasizing the relation of the noise to the damping.
In Sec. IV, we consider current noise, magnetization noise,
and magnetization damping in spin valves, and use the re-
sults to calculate the resistance noise induced by GMR. Sec-
tion V concludes our paper.

II. FLUCTUATION-DISSIPATION THEOREM

The FDT relates the spontaneous time-dependent changes
in an observable of a given system in thermal equilibrium to
its linear response to an external perturbation that couples to
that observable. For example, in an electric conductor the
spontaneous fluctuations in the electric current are propor-
tional to the dissipative �real� part of the conductivity, i.e.,
the response function to an applied electric field.2,3 Similarly,
the equilibrium fluctuations of the magnetization vector in a

ferromagnet are proportional to the dissipative part of the
magnetic susceptibility, i.e., imaginary part of the response
function to an applied magnetic field. In the following, we
briefly recapitulate this FDT for magnetic systems.

Sufficiently below the Curie temperature, changes in the
modulus of the magnetization are energetically costly and
may be disregarded. For sufficiently small magnetic struc-
tures spin waves freeze out of the problem. Hence, a small
ferromagnetic particle or thin film is well described in terms
of a single magnetization vector Msm, where Ms is the mag-
nitude of the magnetization and m is a unit vector �“mac-
rospin” model�. The time-dependent equilibrium fluctuations
of the magnetization are characterized by the autocorrelation
function ��mi�t��mj�t���, where �mi�t�=mi�t�− �mi�t�� are
transverse fluctuations. Here the brackets denote statistical
averaging at equilibrium, and i and j denote Cartesian com-
ponents perpendicular to the equilibrium/average magnetiza-
tion direction. The classical FDT states that these fluctuations
are related to the magnetic susceptibility:

��mi�t��mj�t��� =
kBT

2�MsV
� d�e−i��t−t���ij��� − � ji

� ���
i�

,

�1�

where T is the temperature, V is the volume of the ferromag-
net, and �ij��� is the ij component of the transverse mag-
netic susceptibility at frequency �. The latter is the linear
�causal� response function that describes the changes in the
magnetization, �mi�t�, caused by an external driving field
H�dr��t�:

�mi�t� = �
j
� dt��ij�t − t��Hj

�dr��t�� . �2�

An alternative form of the FDT that turns out to be useful in
the course of this paper can be derived by introducing a
stochastic magnetic field h�0��t� with zero mean. This field
effectively represents the coupling of the magnetization to
the dissipative degrees of freedom, and is viewed as the
cause of the thermal fluctuations �m�t�. The microscopic ori-
gin of h�0��t� does not concern us here but it might, e.g.,
represent thermally excited phonons that deform the crystal
anisotropy fields. From Eq. �2� it follows that �mi���
=� j�ij���hj

�0���� in frequency domain. Inverting this rela-
tion, the correlator of the stochastic field has to obey the
relation

�hi
�0��t�hj

�0��t��� =
kBT

2�MsV
� d�e−i��t−t�� �� ji

−1����� − �ij
−1���

i�
,

�3�

where �ij
−1��� is the ij component of the inverted �Fourier-

transformed� susceptibility.

III. SINGLE FERROMAGNET

The magnetization dynamics of an isolated single-domain
ferromagnet is well described by the LLG equation20,46
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dm

dt
= − �0m � Heff + 	0m �

dm

dt
, �4�

where �0 is the gyromagnetic ratio, Heff is the effective mag-
netic field, and 	0 is the Gilbert damping constant. The ef-
fective field has contributions due to crystal and form
anisotropies, as well as externally applied magnetic fields.
By linearizing this LLG equation we can evaluate the mag-
netic susceptibility and the equilibrium magnetization noise.
The average equilibrium direction of the magnetization is
aligned with Heff to minimize the energy: m0=Heff / 	Heff	. A
weak external driving field is included by substituting Heff
→Heff+H�dr��t�. In the present model only the component of
H�dr� transverse to the magnetization will solicit a response
m�t�
m0+�m�t� of the magnetization. Here �m�t� is nor-
mal to m0. To lowest order in �m�t�, the LLG equation gives
the inverse susceptibility tensor matrix,

�−1 =
1

�0
��0	Heff	 − i�	0 i�

− i� �0	Heff	 − i�	0
� , �5�

in the plane normal to m0. This expression for transverse
susceptibility �5� assumes that the effective magnetic field is
a constant which is often not the case. However, a depen-
dence of the effective field Heff on m does not affect the
intrinsic noise properties that we will now discuss and we
will relax this assumption later in our paper.

The magnetization noise follows from substituting Eq. �5�
into Eq. �1�. The correlator of the stochastic field is obtained
from Eqs. �3� and �5� and does not depend on the effective
field:13

�hi
�0��t�hj

�0��t��� = 2kBT
	0

�0MsV
�ij��t − t�� . �6�

The relation between the equilibrium magnetization fluctua-
tions and the dissipation in the form of the Gilbert damping
is evident.

Up to now we considered a ferromagnet isolated from the
outside world. Its dynamics is altered by embedding into a
conducting environment.29 A ferromagnet with time-
dependent magnetization “pumps” an angular-momentum
�spin� current,

Is
pump =




4�

Re g↑↓m �

dm

dt
+ Im g↑↓dm

dt
� , �7�

into an adjacent conductor. Here g↑↓ is the dimensionless
transverse spin �“mixing”� conductance that depends on the
interface transparency between ferromagnet and proximate
metal.38–40 When the spin current is efficiently dissipated in
the conductor, thus not building up a spin accumulation close
to the interface, the loss of angular momentum corresponds
to an extra torque �Is

pump / �MsV� on the right-hand side of Eq.
�4�. This is equivalent to an increased Gilbert damping and a
modified gyromagnetic ratio:29

1

�0
→

1

�
=

1

�0

1 −

�0
 Im g↑↓

4�MsV
� , �8�

	0 → 	 =
�

�0

	0 +

�0
 Re g↑↓

4�MsV
� . �9�

In the strong-coupling limit �intermetallic interfaces�,
Im g↑↓�Re g↑↓, and we are allowed to disregard the differ-
ence between � and �0.

Another term which modifies the magnetization dynamics
is the so-called spin-transfer torque.33,34 It is also propor-
tional to the spin-mixing conductance introduced above38–40

and represented by adding −�0Is,abs / �MsV� to the right-hand
side of Eq. �4�. Here Is,abs is the spin-polarized current trans-
versely polarized to the magnetization, which is absorbed by
the ferromagnet on an atomic length scale, thereby transfer-
ring its angular momentum to the magnetization. Spin pump-
ing and spin-transfer torque are related by an Onsager reci-
procity relation.47

Recently we have shown31 that the magnetization noise in
magnetoelectronic nanostructures can be considerably in-
creased as compared to an isolated ferromagnet. At elevated
temperatures, thermal fluctuations in the spin current exert a
fluctuating torque on the magnetization, increasing the noise.
For a ferromagnet sandwiched by normal metals, the en-
hancement of the noise is described by a stochastic field
h�th��t� similar to the intrinsic field h�0��t�. Its correlation
function reads31

�hi
�th��t�hj

�th��t��� = 2kBT
	�

�MsV
�ij��t − t�� , �10�

where

	� =
�
 Re g↑↓

4�MsV
�11�

is the enhancement of the Gilbert damping due to spin pump-
ing �see Eq. �9��. Assuming that h�0��t� and h�th��t� are statis-
tically independent, the total magnetization noise is thus
given by h�t�=h�0��t�+h�th��t�. We know that the total damp-
ing is determined by 	=	0+	�, and from Eqs. �6� and �10�
we see that the total noise is related to the total damping, in
agreement with the FDT. Hence, the thermal spin-current
noise is the stochastic process related to the enhanced dissi-
pation of energy by spin pumping. By calculating the noise
power we also know the damping and vice versa. In thin
ferromagnetic films, 	� can be of the same order or even
larger than 	0.30 In the following subsections we will give a
detailed derivation of Eq. �10�. We also evaluate the shot-
noise contribution to the magnetization noise, which is im-
portant at low temperatures.31 We note here that Eq. �10�
may be found also by direct application of Eq. �3� to the
LLG equation with spin pumping included.

A. Scattering theory

We study a thin ferromagnetic film connected to two nor-
mal reservoirs, as shown in Fig. 1. The reservoirs are perfect
spin sinks and the ferromagnet is taken to be thicker than the
magnetic coherence length �c=� / �k↑−k↓�, where k↑�↓� are
spin-dependent Fermi momenta. For transition metals, �c is
of the order of monolayers. The normal metals are character-
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ized by Fermi-Dirac distribution functions fL and fR with
chemical potentials 
L and 
R, where L and R refer to the
left and right sides at a common temperature T. We use the
Landauer-Büttiker �LB� scattering theory6 to evaluate the
spin-current fluctuations, and the LLG equation to calculate
the resulting magnetization noise.

In the LB approach electron transport is expressed in
terms of transmission probabilities between the electron
states on different sides of a scattering region. Here we in-
terpret the ferromagnetic film as a scatterer that limits the
propagation of electrons between the normal reservoirs. The
scattering properties of the ferromagnet and the bias between
the reservoirs determine the transport properties of the sys-
tem. The transport channels in the leads are modeled as ideal
electron waveguides in which the transverse and longitudinal
motions are separable. The transport channels at a given en-
ergy E are then labeled by the discrete mode index for the
quantized transverse motion, by which the continuous-wave
vector for the longitudinal motion is fixed. The LB
formalism6,48 generalized to describe spin transport leads to
the current operator,

ÎA
	��t� =

e

h
� dEdE�ei�E−E��t/


��aA�
† �E�aA	�E�� − bA�

† �E�bA	�E��� , �12�

at time t on side A �=L �left� or R �right�� of the ferromag-
netic film. Here, 	 and � denote components in 2�2 spin
space. aA	�E� and bA	�E� are operators for all transport chan-
nels at energy E that annihilate electrons with spin 	 in lead
A that move toward and away from the ferromagnet, respec-
tively �see Fig. 1�. The a operators are related to the b op-
erators by the scattering properties of the ferromagnet:

bA	�E� = �
B�

sAB	��E�aB��E� , �13�

where sAB	� is the scattering matrix for incoming electrons
with spin � in lead B �=L or R� scattered to outgoing states in
lead A with spin 	. The summation is over B=L ,R and over
spin �= ↑ ,↓. A similar relation holds for the creation opera-

tors. Current conservation implies that the scattering matrix
is unitary. Suppressing spin indices for simplicity �see Fig. 1�


bL

bR
� = 
r t�

t r�
�
aL

aR
� , �14�

where r=sLL, r�=sRR, t=sRL, and t�=sLR. In the following we
disregard spin-flip processes in the ferromagnet. Choosing
the spin-quantization z axis in the direction of the average
magnetization, this implies that sAB	�=sAB	�	�.

The outgoing charge and spin currents are given, respec-

tively, by Ic,A�t�=�	ÎA
		�t� and Is,A�t�=−�
 /2e��	��̂	�ÎA

�	�t�,
where �̂= ��̂x , �̂y , �̂z� is the vector of Pauli matrices. The
expectation values for charge and spin currents are evaluated
using the quantum statistical average �aAm	

† �E�aBn��E���
=�AB�mn�	���E−E��fA�E� of the product of one creation and
one annihilation operator, where m and n label the transport
channels. The creation and annihilation operators obey the
anticommutation relation

�aAm	
† �E�,aBn��E��� = �AB�mn�	���E − E�� , �15�

whereas the anticommutators of two creation or two annihi-
lation operators vanish. Similar relations hold for the b op-
erators. The average

�aAk	
† �E1�aBl��E2�aCm�

† �E3�aDn��E4��

− �aAk	
† �E1�aBl��E2���aCm�

† �E3�aDn��E4��

= �AD�BC�kn�lm�	������E1 − E4�

���E2 − E3�fA�E1��1 − fB�E2�� , �16�

where the subscripts A ,B ,C ,D denote leads, k , l ,m ,n denote
transport channels, and 	 ,� ,� ,� denote spins, is needed for
the calculation of the current fluctuations. We also need the
identity

�
CD

Tr�sAC	
† sAD�sBD�

† sBC	� = �ABMA, �17�

which follows from the unitarity of the scattering matrix.
Here the trace is over the space of the transport channels, and
MA is the number of transverse channels in lead A, all at a
given energy.

The charge and spin-current correlation functions read

Sc,AB�t − t�� = ��Ic,A�t��Ic,B�t��� , �18�

and

Sij,AB�t − t�� = ��Isi,A
�t��Isj,B

�t��� , �19�

where �Ic,A�t�= Ic,A�t�− �Ic,A�t�� denotes the deviation of the
charge current from its average value in lead A at time t, and
�Isi,A

�t� is the deviation of the vector component i �i=x ,y, or
z� of the spin current. We are interested mainly in the low-
frequency noise, i.e., the time integrated value of the corre-
lation functions:

Sc,AB�� = 0� =� d�t − t��Sc,AB�t − t�� . �20�

Two fundamentally different types of current noise have to
be distinguished: thermal �equilibrium� noise and �nonequi-

a
L

F
b

L

b
R

a
R

N N

t

t’

r r’

FIG. 1. A thin ferromagnetic �F� film is sandwiched by normal
metals �N�. The current fluctuations in the system are evaluated in
terms of transmission probabilities for the electron states, with the
aid of second-quantized annihilation and creation operators. The
operators shown in the figure are annihilation operators, with the a
operators annihilating electrons moving toward the ferromagnet,
and the b operators annihilating electrons moving away from the
ferromagnet. Also shown are the reflection and transmission matri-
ces r ,r� , t , t� �see Eq. �14��, for simplicity without spin indices.
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librium� shot noise. In general, the total noise is not simply a
linear combination of both types. Nevertheless, it is conve-
nient to treat the two noise sources independently, by sepa-
rately investigating the noise of an unbiased system at finite
temperatures in Sec. III B and the shot noise under an ap-
plied bias at zero temperature in Sec. III C.

B. Thermal noise

At equilibrium fL= fR= f , and the average current van-
ishes. However, at finite temperatures, the occupation num-
bers of the electron channels incident on the sample fluctuate
in time and so does the current. Using Eqs. �12�, �13�, �16�,
and �17�, and f�1− f�=kBT�−�f /�E�, we recover the well-
known Johnson-Nyquist noise,

Sc,AA
�th� �� = 0� =

2e2

h
kBT�g↑ + g↓� , �21�

in the zero-frequency limit. Here g	=Tr�1−r	
†r	�, where the

trace indicates again a summation over transport channels, is
the spin-dependent dimensionless conductance of the ferro-
magnet, to be evaluated at the Fermi energy. The superscript
�th� emphasizes that the fluctuations are caused by thermal
agitation. The result for Sc,AB

�th� ��=0�, where B�A, differs
from the above expression only by a minus sign since current
direction is defined as positive toward the ferromagnet on
both sides, and charge current is conserved. The Johnson-
Nyquist noise �Eq. �21�� is a manifestation of the FDT since
it relates the equilibrium current noise to the dissipation of
energy parametrized by the conductance.

The thermal spin-current noise can be obtained in a simi-
lar way. At zero frequency

Sij,AB
�th� �0� =


kBT

8�
�
	�

�i
	�� j

�	Tr�2�AB − sBA	
† sBA� − sAB�

† sAB	� ,

�22�

where the scattering matrices should again be evaluated at
the Fermi energy. The noise power of the z component �po-
larized parallel to the magnetization� of the spin current,

Szz,AA
�th� =




4�
kBT�g↑ + g↓� , �23�

differs from the charge current noise only by the squared
conversion factor, �
 /2e�2, from charge to spin currents. The
transverse �polarized perpendicular to the magnetization�
spin-current components fluctuate as

Sxx,AA
�th� = Syy,AA

�th� =



4�
kBT�gA

↑↓ + gA
↓↑� . �24�

The “spin-mixing” conductances gL
↑↓=Tr�1−r↑�r↓�†�= �gL

↓↑��

and gR
↑↓=Tr�1−r↑��r↓��

†�= �gR
↓↑�� parametrize the absorbtivity

of the ferromagnetic interfaces for transverse-polarized spin
currents. We see that also the spin-current noise obeys the
FDT since the spin-current correlators are proportional to the
conductances for the respective spin-current components.

The cross correlation Szz,LR
�th� =−Szz,LL

�th� reflects conservation
of the longitudinal spin current in the ferromagnet since spin-

flip scattering is disregarded. On the other hand, Sxx,LR
�th�

=Syy,LR
�th� =0 because the transverse spin current is absorbed at

the interfaces to a ferromagnet thicker than the magnetic co-
herence length.

C. Shot noise

Shot noise of the electronic charge current is an out-of-
equilibrium phenomenon proportional to the current bias.
Shot noise is due to the discreteness of the electron charge,
and the probabilistic incidence of electrons on the scatterer/
resistor. Let 
L−
R=eU with U as the applied voltage, and
take the temperature to be zero. We are here only concerned
with the current fluctuations although in this case also the
average charge current is nonzero. The average spin current
accompanying the average charge current does not exert a
torque on a single ferromagnet since the spin current is po-
larized along the direction of magnetization. From Eqs. �12�,
�13�, and �16�, and making use of the zero-temperature rela-
tions fA�1− fA�=0 and �dE�fL− fR�2=e	U	, we reproduce the
well-known charge shot-noise expression6

Sc,AA
�sh� �0� =

e3

h
	U	�Tr�r↑

†r↑t↑
†t↑� + Tr�r↓

†r↓t↓
†t↓�� . �25�

Again, the scattering matrices should be evaluated at the
Fermi energy, and the superscript �sh� emphasizes that this is
shot noise. Sc,AB

�sh� �0�=−Sc,AA
�sh� �0�, where B�A. The spin shot-

noise power is

Sij,AB
�sh� �0� =




8�
�
	�

�̂i
	��̂ j

�	� dE�
CD

fC�1 − fD�

�Tr�sAC	
† sAD�sBD�

† sBC	� . �26�

From this we find Szz,LR
�sh� =−Szz,LL

�sh� and Sxx,LR
�th� =Syy,LR

�th� =0, which
hold for the same reasons as for the thermal noise.

D. Magnetization noise and damping

The absorption of fluctuating transverse spin currents at
the ferromagnet’s interfaces implies a fluctuating spin-
transfer torque on the magnetization. The resulting increment
of the magnetization noise can be calculated using Eq. �4�,
which by conservation of angular momentum is modified by
the spin torque −�0Is,abs�t� / �MsV�. Here Is,abs=Is,L+Is,R is the
�instantaneously� absorbed spin current. �Recall that, on both
sides of the ferromagnet, positive current direction is defined
toward the magnet.� Since Is,abs is perpendicular to m, we
may in general write Is,abs=−m� �m�Is,abs�, such that the
modified stochastic LLG equation reads

dm

dt
= − �0m � �Heff + h�0��t��

+ 	0m �
dm

dt
+

�0

MsV
m � �m � Isabs

� . �27�

For the single ferromagnetic scatterer �Is,abs�=0 but
�Is,abs�t��0. We can thus define h�t�=−1 / �MsV�m��Is�t�
to be a stochastic “magnetic” field that takes into account the
�thermal or shot� spin-current noise that comes in addition to
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the intrinsic noise field h�0��t�. The correlators of the field

�hi�t�hi�t��� =
1

Ms
2V2�

AB

Sjj,AB�t − t�� , �28�

and

�hi�t�hj�t��� = −
1

Ms
2V2�

AB

Sji,AB�t − t�� , �29�

for i , j=x ,y; i� j are directly obtained from the current
noise. h�t� per definition has no component parallel to the
magnetization. In the limit that the current noise is “white”
on the relevant energy scales �temperature, applied voltage,
and exchange splitting�, we can approximate Sij,AB�t− t��

Sij,AB��=0���t− t��. Using Eq. �22� we then find the al-
ready advertised result �Eq. �10��

�hi
�th��t�hj

�th��t��� = 2kBT
	�

�0MsV
�ij��t − t�� ,

for the thermally �th� induced stochastic field. Here 	�
=�0
 Re�gL

↑↓+gR
↑↓� / �4�MsV� is the spin-pumping enhance-

ment of the Gilbert damping constant. This result is in agree-
ment with the FDT �Eq. �3�� with a total Gilbert damping
	=	0+	�.

Using Eq. �26� and the unitarity of the scattering matrix
we find for the stochastic field generated by the shot noise
h�sh�:

�hi
�sh��t�hj

�sh��t��� =



4�

e	U	
Ms

2V2�ij��t − t���Tr�r↑r↑
†t↓�t↓�

†�

+ Tr�r↓�r↓�
†t↑t↑

†�� . �30�

For a simple Stoner model it can be shown that, for typical
experimental voltage drops in nanoscale metallic spin valves,
h�sh� can dominate h�th� at temperatures of the order of 10
K.31 In the following section we concentrate on room tem-
perature, at which shot noise may be disregarded.

IV. SPIN VALVES

We now proceed to consider the noise properties of spin-
valve nanopillars, i.e., layered structures consisting of two
ferromagnets F1 and F2 with respective unit magnetization
vectors m1 and m2 that are separated by a thin normal-metal
spacer N, as sketched in Fig. 2. We first assume that F2 is
highly coercive, such that the fluctuations of it’s magnetiza-
tion vector are small. Such a “pinning” is routinely achieved
in spin valves, e.g., by “exchange biasing.” We relax this
condition in Sec IV E.

The magnetization noise of the free layer F1 is caused by
intrinsic processes as well as by fluctuating spin currents in
the neighboring normal metals. The latter source is affected
by the presence of the second ferromagnet. Magnetoelec-
tronic circuit theory38–40 enables us to compute the current
fluctuations and thus the magnetization noise of composite
structures such as spin valves.

Fluctuations of m1 cause an easily measurable electrical
noise since the resistance of spin valves depends on the rela-

tive orientation of the magnetizations �GMR�. Resistance
noise is also interesting from a technological point of view
since it affects the sensitivity of spin-valve read heads in
magnetic storage devices.

In the following, we briefly explain the spin-current noise
calculation by magnetoelectronic circuit theory. The stochas-
tic field that acts on the free layer F1 and the related Gilbert
damping are found for different magnetic configurations. Us-
ing the LLG equation, we then calculate the fluctuations of
the magnetization vector and the resulting resistance noise.
We finish this section by considering spin valves in which
both ferromagnets are identically susceptible to fluctuations.

A. Circuit theory

Magnetoelectronic circuit theory38–40 is a tool in deter-
mining transport properties of magnetoelectronic hetero-
structures such as the spin valve shown in Fig. 2. It is based
on the division of a given structure into resistive elements
�scatterers�, nodes �low resistance interconnects�, and reser-
voirs �voltage sources�. The current through local resistors is
calculated by LB scattering theory, which requires that nodes
and reservoirs are characterized by �semiclassical� distribu-
tion functions. Here we take the ferromagnetic inserts as
scatterers, the central normal-metal layer as a node, and the
outer normal metals L �left� and R �right� as large reservoirs.
The reservoirs are in thermal equilibrium, and hence charac-
terized by Fermi-Dirac distribution functions fL= f�E−
L�
and fR= f�E−
R�, where 
L and 
R are the respective chemi-
cal potentials. Depending on the relative orientation of the
magnetization vectors m1 and m2, there can be a nonequilib-
rium accumulation of spins on the normal-metal node, thus
characterized by a scalar �charge� distribution function fcN,
and a vector spin distribution function fsN. fcN and fsN form

the distribution matrix f̂N=1̂fcN+ �̂ · fsN in 2�2 spin space.
As before, the ferromagnets are thicker than �c but thin
enough such that spin-flip processes can be disregarded. We
also assume that spin flip in the central normal-metal node is

negligible. We are in the diffuse scattering regime so f̂N is
isotropic and constant in space.

Referring back to Eq. �12�, we now need quantum statis-
tical averages �aAm	

† �E�aBn��E���=�AB�mn��E−E��fA
�	�E�,

where aBn� is the annihilation operator for electrons moving
in normal metal A �A=L ,R, or N� toward one of the ferro-
magnets, and fA

�	 is the �	 component of the 2�2 semiclas-

F1

Is,1RIs,1L

L F2 RN

Is,2L Is,2R

m1 m2

z

x

y

FIG. 2. A spin valve with two ferromagnets F1 and F2 with unit
magnetization vectors m1 and m2 are here shown in the parallel �P�
configuration m1=m2=z. The magnetization of F2 is fixed. The
currents in the system are evaluated by magnetoelectronic circuit
theory on the normal side of the interfaces, with positive directions
defined by the arrows.
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sical distribution matrix f̂A in spin space. For the reservoirs
�A=L or R�, we simply have fA

�	=��	f�E−
A�. In contrast,
in the central node the spin accumulation is not necessarily
parallel to the spin-quantization axis in either of the ferro-
magnets, meaning that nondiagonal ���	� terms in the dis-
tribution matrix do not vanish. The average charge current
flowing from the right into ferromagnet F1 can then be ex-
pressed by the generalized LB expressions38,40

�Ic,1R� =
e

h
� dE�g1

↑�fcN + fsN · m1 − fL�

+ g1
↓�fcN − fsN · m1 − fL�� , �31�

whereas the average spin current reads

�Is,1R� =
1

4�
� dE�m1�g1

↑�fcN + fsN · m1 − fL�

− g1
↓�fcN − fsN · m1 − fL��

+ 2 Re g1R
↑↓m1 � �fsN � m1� + 2 Im g1R

↑↓fsN � m1� .

�32�

Here g1
	 is the spin-dependent dimensionless conductance of

F1, and g1R
↑↓ is the mixing conductance of the interface be-

tween F1 and the middle normal metal. The average charge
current and the component of the spin current polarized
along the magnetization are conserved through the ferromag-
net. Hence �Ic,1L�=−�Ic,1R� and �Is,1L� ·m1=−�Is,1R� ·m1. The
transverse spin current is absorbed in the ferromagnet, lead-
ing to

�Is,1L� =
1

4�
� dE m1�g1

↑�fL − fcN − fsN · m1�

− g1
↓�fL − fcN + fsN · m1�� . �33�

Similar expressions hold for the currents evaluated on the
left and right sides of F2. In order to keep the expressions
simple we adopt from now on the parameters g1

	=g2
	=g	,

and g1L
↑↓ =g1R

↑↓ =g2L
↑↓ =g2R

↑↓ =g↑↓.
Since spin-flip processes are disregarded, both charge and

spin are conserved on the middle normal-metal node:

�Ic,1R� + �Ic,2L� = 0, �34�

�Is,1R� + �Is,2L� = 0. �35�

Equations �31�–�35� come down to four equations for the

four unknown components of the distribution matrix f̂N as
a function of the angle �=cos−1�m1 ·m2� and the applied
voltage U= �
L−
R� /e. Equation �31� then yields �Ic,1L�
=−�Ic,1R�= �Ic,2L�=−�Ic,2R�� Ic=GvU, where38

Gv =
e2g

2h

1 − P2 1 − cos �

1 − cos � + � + � cos �
� �36�

is the spin-valve conductance with material parameters g
=g↑+g↓, P= �g↑−g↓� /g, and �=2g↑↓ /g.

B. Current noise

We combine spin and charge current fluctuations, e.g.,
�Ic,1R�t� and �Is,1R�t�, respectively, on the right side of F1,
into a 2�2 matrix in spin space:

�Î1R�t� = 1̂�Ic,1R�t� − �2e/
��̂ · �Is,1R�t� . �37�

Since we focus on the zero-frequency noise, instantaneous
charge and spin conservation in the central node may be
assumed, i.e.,

�Î1R�t� + �Î2L�t� = 0, �38�

which requires that the distribution matrix in the node fluc-
tuates. The current fluctuations can then be written as

�Î1R�2L��t� = �Î1R�2L��t� +
��Î1R�2L��

� f̂N

� f̂N�t� , �39�

where � f̂N�t� are the fluctuations of the distribution matrix,

and �Î1R�2L��t� are the intrinsic fluctuations �when � f̂N�t�=0�,
coinciding with the fluctuations calculated for single ferro-
magnets in the previous section. Expression �39� applies also
to the current fluctuations evaluated on the left side of ferro-
magnet F1 and the right side of ferromagnet F2. In the fol-
lowing, we focus on thermal current noise, recalling from
Sec. IV D that, for typical voltage drops in spin valves, shot
noise is only important at low temperatures.

From Eqs. �31�, �32�, �38�, and �39�, and results from
Sec. III, we can evaluate the charge and spin-current fluctua-
tions in the spin valve. The correlator Sc�0�=�d�t
− t����Ic�t��Ic�t��� of the charge current fluctuations is sim-
ply related to conductance �36� by the following
configuration-dependent FDT:

Sc�� = 0;�� = 2kBTGv��� . �40�

In the low-frequency regime considered here, charge current
noise is the same anywhere in the spin valve. Gv can vary
easily by a factor of two as a function of �, which corre-
sponds to the same variation in noise power. Resistance
noise via magnetization fluctuations is an additional source
of electric noise that is treated below

The spin-current correlator ��Isi,A
�t��Isj,B

�t���, where i
and j denote Cartesian components and A�B�=1L ,1R ,2L, or
2R, can be found analogously. Since spin current is not con-
served at the ferromagnetic interfaces, the spin-current cor-
relator depends on the location in the spin valve and is not
directly observable. We therefore proceed to evaluate the
magnetization fluctuations caused by the spin-current noise
in the next subsection.

C. Magnetization noise and damping

The current-induced stochastic field acting on F1 follows
from the spin-current fluctuations as explained in Sec. III D.
Here we discuss this field and, by using the FDT, the corre-
sponding Gilbert damping enhancement in spin valves. In
order to keep the algebra manageable, we focus on the most
relevant parallel, antiparallel, and perpendicular configura-
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tions �cos �=0, �1�. The mixing conductances are taken to
be identical for all four F 	N interfaces. In the semiclassical
approach, intrinsic current fluctuations are not correlated
across the node, implying that ��Isi,1R�t��Isj,2L�t���=0.

1. Parallel configuration

For the parallel �P� magnetic configuration, m1 ·m2=1,
the thermal spin-current-induced stochastic magnetic field in
ferromagnet F1 reads

�hi
�th��t�hj

�th��t���P = 2kBT
	sv

�0MsV
�ij��t − t�� , �41�

where i , j label vector components perpendicular to the mag-
netization, and

	sv =
3�0
 Re g↑↓

8�MsV
. �42�

By the FDT, 	sv is identical to the spin-pumping enhance-
ment of the Gilbert damping of the F1 magnetization. This
can be checked by following the steps outlined for a single
ferromagnet, Eqs. �3�–�5�. A possible exchange coupling be-
tween the ferromagnets modifies the dynamics via Heff in the
LLG equation but does not affect the stochastic field and
Gilbert damping.

The field correlator and damping for the parallel configu-
ration is reduced by a factor of 3/4 compared with Eq. �10�
for the single ferromagnet sandwiched by normal metals.
This result may be found also in a more direct way: using
Eqs. �7� and �32� we can compute the net spin angular mo-
mentum leaving each of the ferromagnets when the magne-
tizations are slightly out of equilibrium, and by conservation
of angular momentum, infer the corresponding enhancement
of the Gilbert damping constant. The factor of 3/4 follows
from the diffuse/chaotic nature of the node: half of the spin
current that is pumped into the node is reflected back and
reabsorbed by F1.

One subtle point needs to be noted in this discussion:
when the F-N interfaces are nearly transparent, the interfa-
cial conductance parameters from scattering theory should be
corrected for spurious so-called Sharvin conductances �see
Sec. IIB of Ref. 30�. In practice, this will correct Eq. �42�
only by a numerical prefactor close to one.

2. Antiparallel configuration

For the antiparallel �AP� configuration �m1 ·m2=−1�,

�hi
�th��t�hj

�th��t���AP = �hi
�th��t�hj

�th��t���P, �43�

i.e., the current-induced noise and damping is the same as in
the P configuration. This result holds only when the imagi-
nary part of the mixing conductance is negligibly small.

3. Perpendicular configuration

When the F2 magnetization is pinned along the x direction
and m1 points along the z axis

�hx
�th��t�hx

�th��t���� = 2kBT
	xx�

�0MsV
��t − t�� , �44�

�hy
�th��t�hy

�th��t���� = 2kBT
	yy�

�0MsV
��t − t�� , �45�

where the subscript � emphasizes that this is valid for the
perpendicular configuration, and, according to the FDT,

	xx� =
3�0
 Re g↑↓

8�MsV
,

	yy� =
�0
 Re g↑↓

4�MsV
�2 −

��2 − P2 + 2��
2�1 + ���1 − P2 + ��� �46�

is the spin-pumping-induced enhancement of the Gilbert
damping. The cross correlators �hx

�th��t�hy
�th��t����

= �hy
�th��t�hx

�th��t����=0. In noncollinear spin valves, the noise
correlators and the Gilbert damping are therefore tensors.
This can be accommodated by the LLG equation for m1 by a
damping torque m1�	Jdm1 /dt, where the Gilbert damping
tensor �in the plane perpendicular to the magnetization� reads

	J = 
	0 + 	xx� 0

0 	0 + 	yy�
� . �47�

Note that the damping tensor must be written inside the cross
product in the damping torque to ensure that the LLG equa-
tion preserves the length of the unit magnetization vector.

In our evaluation of the Gilbert damping �Eq. �46��, we
have assumed that the outer left and right reservoirs have a
fixed chemical potential which allows charge current fluctua-
tions into the reservoirs. This is valid when the reservoirs are
connected to external circuit elements with sufficiently long
RC times compared to the ferromagnetic resonance �FMR�
precession period. In the opposite limit, when the reservoirs
are fully decoupled from other circuit elements, charge cur-
rent into the reservoirs must vanish at any time, and the
chemical potentials fluctuate. This regime was considered in
Ref. 49 with the result

	xx� =
3�0
 Re g↑↓

8�MsV
,

	yy� =
�0
 Re g↑↓

4�MsV
�2 −

�

1 − P2 + �
� . �48�

D. Resistance noise

The fluctuations of the magnetization vector can be cal-
culated by the LLG equation that incorporates the stochastic
fields. Fluctuations in the magnetic configuration affect the
electrical resistance that depends on the dot product m1 ·m2.
Resistance noise is an important issue for application of spin-
valve read heads.43 Covington et al.42 measured resistance
noise in current-perpendicular-to-the-plane �CPP� spin
valves, which are considered as an alternative for the con-
ventional current-in-the-plane spin-valve read heads. We fo-
cus here on the zero-frequency resistance noise
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SR�� = 0� =� d�t − t����R�t��R�t��� , �49�

where �R�t� is the time-dependent deviation of the resistance
from the time-averaged value.

Resistance noise can be measured, e.g., as voltage noise
for constant current bias or as current noise for a constant
voltage bias. The resistance noise comes on top of the
Johnson-Nyquist noise discussed in Sec IV B and in Ref. 45.
It has been shown to be a useful instrument to measure mag-
netization dynamics in tunnel junctions �“thermal FMR”�.50

Current densities at which magnetization-induced noise start
to dominate Johnson-Nyquist noise do not yet excite magne-
tization dynamics or correspond to appreciable shot-noise
levels.

In the following, we derive the resistance noise in the
parallel, antiparallel, and perpendicular configurations. Re-
call that the magnetization in ferromagnet F2 is assumed
pinned. The analysis of resistance noise in the case of two
fluctuating magnetizations is left for the next section.

1. Parallel configuration

The total stochastic field in F1 causes fluctuations
�m1�t�=m1�t�− �m1� relative to its time-averaged equilib-
rium value �m1�. For the parallel configuration �m1�=m2,
such that the dot product of the magnetizations is cos �
=m1 ·m2=1−�m1

2 /2, with � as the angle between the mag-
netization directions. For small fluctuations we can expand
the resistance to first order in �m1

2

R�m1 · m2� 
 R�1� −
1

2
�m1

2 �R�1�
� cos �

, �50�

such that the resistance noise correlator becomes

��R�t��R�t���P = �R�t�R�t���P − �R�t��P�R�t���P

=
1

4

 �R�1�

� cos �
�2

���m1
2�t��m1

2�t���P

− ��m1
2�t��P��m1

2�t���P� , �51�

where the brackets denote statistical averaging around the
parallel configuration. Assuming that the stochastic fields are
Gaussian distributed, then so are the fluctuations of the mag-
netization vectors since the magnetization is a linear function
of the stochastic fields. We may then employ Wick’s
theorem,51 according to which fourth-order moments of the
fluctuations can be expressed in terms of the sum of products
of second-order moments. We then arrive at

��R�t��R�t���P =
1

2

 �R�1�

� cos �
�2

�
ij

��m1,i�t��m1,j�t���P
2 ,

�52�

where i and j denote Cartesian components. From Eq. �36�
we find

�R�1�
� cos �

= −
hP2

e2g�
. �53�

Since the magnetization fluctuations are small, we may dis-
regard their longitudinal component, whereas the correlator
of the transverse fluctuations can be computed by the LLG
equation.

We use the coordinate system in Fig. 2 with interfaces in
the xz plane. The LLG equation reads

dm1

dt
= − �0m1 � �Heff + h�t�� + �	0 + 	sv�m1 �

dm1

dt
,

�54�

where the total stochastic field h�t�=h�0��t�+h�th��t� includes
both the intrinsic field h�0��t� �see Sec. III� and the current-
induced field h�th��t� from the previous section. 	0 and 	sv
are the corresponding Gilbert damping parameters. The ef-
fective field Heff=H0+Ha+Hd+He contains the external
field H0, the in-plane anisotropy field Ha, the out-of-plane
demagnetizing field Hd, and the sum of dipolar and exchange
fields He. The external and anisotropy fields are both taken
along the z axis. We parametrize these fields by �0 and �a as
�H0=�0z and �Ha=�a�m1 ·z�z. The demagnetizing field is
directed normal to the plane, i.e., along the y axis, such that
�Hd=−�d�m1 ·y�y thereby introducing the parameter �d.
The dipolar and exchange couplings are described in terms
of a Heisenberg coupling −Jm1 ·m2, which favors a parallel
magnetic configuration for J�0 and an antiparallel one for
J�0. This translates into the field �He=�em2, where �e
=�J /Msd.

In the P configuration �m1� is aligned with the pinned m2
in the +z direction, which can always be enforced by a suf-
ficiently strong external field. Linearizing the LLG equation
in the amplitude of the transverse fluctuations �m�t�

�mx�t�x+�my�t�y, we find the magnetization noise cor-
relator

��mi�t��mj�t���P =
�0kBT	

�MsV
� d�e−i��t−t��Uij , �55�

by using the correlators of the stochastic fields. Here

Uxx =
��2 + ��t + �d�2�

��2 − �t��t + �d��2 + �2	2�2�t + �d�2 , �56�

Uxy =
− i��2�t + �d�

��2 − �t��t + �d��2 + �2	2�2�t + �d�2 , �57�

Uyy =
��2 + �t

2�
��2 − �t��t + �d��2 + �2	2�2�t + �d�2 , �58�

Uyx = − Uxy , �59�

with 	=	0+	sv and �t=�0+�a+�e. The above expressions
hold for small damping, i.e., 	0

2 ,	sv
2 �1. The zero-frequency

resistance noise SP�0�=�d�t− t����R�t��R�t���P is obtained
by inserting Eq. �55� into Eq. �52�:
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SP�0� =
1

�

 hP2

e2g�
�2
�0kBT	

MsV
�2� d��Uxx

2 + Uyy
2 − 2Uxy

2 � .

�60�

To gain insight into this rather complicated expression, it is
convenient to make some simplifications. Although the de-
magnetizing field, which serves to stabilize the magnetiza-
tion in the plane of the film, is important to get the right
magnitude of the noise, we can gain physical understanding
by disregarding it. Setting �d=0, we find

SP�0� = 
�0kBT

MsV
�2
 hP2

e2g�
�2 1

�t
3	

. �61�

Obviously, the resistance noise strongly depends on the pa-
rameter �t. The external and anisotropy fields stabilize the
magnetization, hence lowering the noise. The dipolar and
exchange fields either stabilize or destabilize the magnetiza-
tion, depending on the sign of the coupling constant J. We
observe that the Gilbert damping also strongly affects the
resistance noise. The resistance noise decreases with increas-
ing damping because the suppression of the magnetic sus-
ceptibility by a large alpha turns out to be more important
than the FDT-motivated increase in the stochastic field noise.
Since 	sv can be of the same order as 	0,30 the importance of
spin-current noise and spin pumping is evident.

When a constant voltage bias is applied, the resistance
noise causes current noise. At sufficiently small bias, the
Johnson-Nyquist current noise �Sec. IV B� always wins.
However, at relatively high current densities, the effects of
the resistance noise are very significant. That noise may be
important for the next generation magnetoresistive spin valve
read heads.43 For a quantitative comparison, which depends
on many material parameters, it is important to use Eq. �60�
and not Eq. �61� since the demagnetizing field has a large
effect on the magnitude of the magnetization-induced noise.
The magnetization-induced noise is most prominent for
small structures since the ratio of Johnson-Nyquist noise to
magnetization-induced noise scales with the volume of the
ferromagnet.

2. Antiparallel configuration

When J�0, the dipolar and exchange couplings favor an
AP configuration ��m1�=−m2� at zero external magnetic
field. Following the recipe of the previous subsection, we
find a resistance noise

��R�t��R�t���AP =
1

2

 �R�− 1�

� cos �
�2

�
ij

��m1,i�t��m1,j�t���AP
2 ,

�62�

where the sensitivity of the resistance to the fluctuations is

�R�− 1�
� cos �

= −
hP2�

e2g�1 − P2�2 . �63�

Using the magnetization noise correlators from the linearized
equation �54�, the zero-frequency resistance noise becomes

SAP�0� =� d�t − t����R�t��R�t���AP

=
1

�

 hP2�

e2g�1 − P2�2�2
�0kBT	

MsV
�2

�� d��Vxx
2 + Vyy

2 − 2Vxy
2 � , �64�

where Vij =Uij��t→�s� with �s=�a−�e �recall that �e�0�.
Again disregarding the demagnetizing field strongly simpli-
fies the expression:

SAP�0� = 
�0kBT

MsV
�2
 hP2�

e2g�1 − P2�2�2 1

�s
3	

. �65�

As expected, the resistance noise decreases with increasing
�s. The anisotropy, dipolar, and exchange fields stabilize the
magnetization, playing a role similar to that of the external
field in the P configuration. The Gilbert damping enters in
the same way as for the P configuration.

Except for the prefactor that reflects the sensitivity of the
resistance to the magnetization fluctuations, SP�0� and SAP�0�
are very similar. For the special case �t=�s,

SP

SAP
=

�1 − P2�4

�4 . �66�

For, e.g., P=0.7 and �=1, this becomes SP /SAP
6% show-
ing that the difference in noise level between the P and AP
configurations can be substantial.

This asymmetry in the noise level between the P and AP
configurations is consistent with the experimental results of
Covington et al. on nearly cylindrical multilayer pillars.52 In
these experiments the magnetizations were aligned parallel
when the external magnetic field reached about 1500 Oe.
Although we treat spin valves with two ferromagnetic films
and Covington et al. dealt with multilayers of 4–15 magnetic
films, it is likely that the difference between the noise prop-
erties of bilayers and multilayers is small, as the only local
structural difference is the number of neighboring ferromag-
nets. This assertion is supported by the experiments of Cov-
ington et al. that did not reveal strong differences for nano-
pillars ranging from 4–15 layers.

3. Perpendicular configuration

We now investigate the perpendicular state �m1� ·m2=0,
assuming that m2 now has been pinned in the x direction,
whereas m1 is on average parallel to the z axis, as before. In
the following we assume that the interlayer exchange and
dipolar couplings are negligibly small since otherwise the
algebra and expressions become awkward.

Expanding the resistance to first order in the fluctuations
�m1, we find in this case

��R�t��R�t���� = 
 �R�0�
� cos �

�2

��m1x�t��m1x�t��� . �67�
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The magnetization fluctuations affect the resistance noise in
the perpendicular configuration to second order, unlike for
the P and AP configurations, in which the leading term was
of fourth order. The sensitivity of the resistance for this con-
figuration is according to Eq. �36�

�R�0�
� cos �

= −
4hP2�

e2g�1 + � − P2�2 . �68�

Linearizing Eq. �54� and using the correlators �Eqs. �44� and
�45�� for the stochastic field, we find

��m1x�t��m1x�t��� =
�0kBT

�MsV
� d�e−i��t−t�� �2�	0 + 	yy� � + ��p + �d�2�	0 + 	xx� �

��2 − �p��p + �d��2 + �2��p�2	0 + 	xx� + 	yy� � + �d�	0 + 	xx� ��2 , �69�

where �p=�0+�c. We then arrive at the zero-frequency re-
sistance noise

S��0� =
2�0kBT

MsV

 4hP2�

e2g�1 + � − P2�2�2	0 + 	xx�

�p
2 , �70�

quite different from that in the collinear configurations. In
particular, the damping appears here in the numerator and
there is no dependence on the demagnetizing field. Notice
that since S� is quadratic in magnetic fluctuations �see Eq.
�67��, it becomes linear in temperature, unlike SP and SAP.

E. Two identical ferromagnets

We now investigate spin valves in which the ferromagnets
are identical and hence equally susceptible to fluctuations,37

focusing now only on the P and AP configurations. The fluc-
tuations of F1 are �m1�t�=m1�t�− �m1� and those of F2 are
�m2�t�=m2�t�− �m2�. As before, we choose the z axis so that
the time-averaged equilibrium values are �m1�= �m2�=z for
the parallel configuration, and �m1�=−�m2�=z for the anti-
parallel. The dot product of the magnetizations is m1 ·m2
= �1� ��m��2 /2, where the upper �lower� sign holds for
the P �AP� orientation and �m�=�m1��m2. For small fluc-
tuations, we can expand the resistance to first order in
��m��2, finding

R�m1 · m2� 
 R� � � �
1

2
��m��2�R��1�

� cos �
. �71�

The resistance noise is then

��R�t��R�t���P/AP = �R�t�R�t���P/AP − �R�t��P/AP�R�t���P/AP

=
1

4

 �R��1�

� cos �
�2

����m��2��m��2�P/AP

− ���m��2�P/AP���m��2�P/AP� , �72�

which by employing Wick’s theorem becomes

��R�t��R�t���P/AP =
1

2

 �R��1�

� cos �
�2

�
ij

��mi
��t��mj

��t���P/AP
2 .

�73�

Letting the subscripts k and l refer to ferromagnet 1 or 2,
the LLG equation in this case reads

dmk

dt
= − �0mk � �Heff + hk�t�� + �	0 + 	sv�mk �

dmk

dt

+
	sv

3
ml �

dml

dt
, �74�

where the effective field Heff is now taken to be equal for
both ferromagnets. Due to current conservation, the ferro-
magnets’ respective current-induced stochastic fields are not
independent of each other. With the spin-current noise calcu-
lated in Sec. IV B, and following the recipe in Sec. III D, we
find

�h1,i
�th��t�h2,j

�th��t���P = − 2kBT
	sv/3

�0MsV
�ij��t − t�� �75�

for the P configuration, and

�h1,i
�th��t�h2,j

�th��t���AP = 2kBT
	sv/3

�0MsV
�ij��t − t�� �76�

for the AP configuration �as before i , j label components per-
pendicular to the magnetization direction�. 	sv is defined in
Eq. �42�. Naturally, the bulk fields h1

�0� and h2
�0� are uncorre-

lated. The last term in the LLG �Eq. �74�� represent the dy-
namic spin-exchange coupling:30,53 It is the spin current
pumped from ferromagnet l �see Sec. III� that is transmitted
to and subsequently absorbed by ferromagnet k. Since the
normal-metal node is chaotic, this amounts to one third of
the net total spin current pumped out of ferromagnet l. This
dynamic coupling was not present in spin valves in which
one magnetization is not moving at all.

By linearizing Eq. �74� in �mk�t� we can evaluate the
desired magnetization noise correlators that are to be inserted
in Eq. �73�. The zero-frequency resistance noise for the P and
AP configurations then, respectively, reads

SP�0� =
1

�

 hP2

e2g�
�2
2�0kBT

MsV
�2� d��Zxx

2 + Zyy
2 − 2Zxy

2 � ,

�77�

and
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SAP�0� =
1

�

 hP2�

e2g�1 − P2�2�2
2�0kBT

MsV
�2� d��Xx

2 + Xy
2� .

�78�

Here

Zxx =
	t��2 + ��i + �d�2�

��2 − �i��i + �d��2 + �2	t
2�2�i + �d�2 , �79�

Zxy =
− i�	t�2�i + �d�

��2 − �i��i + �d��2 + �2	t
2�2�i + �d�2 , �80�

Zyy =
	t��2 + �i

2�
��2 − �i��i + �d��2 + �2	t

2�2�i + �d�2 , �81�

and

Xx =
�2	s + ��c + �d�2	t

��2 + ��c + �d��2�e − �c��2 + �2�2�x	s − 2�c	 − �d	t�2 , �82�

Xy =
�2	s + �c

2	t

��2 + �c�2�e − �c − �d��2 + �2�2�x	s − 2�c	 − �d	s�2 . �83�

For convenience, we defined 	s=	0+2	sv /3, 	t=	0

+4	sv /3, 	=	0+	sv �note the difference between 	, 	s, and
	t�, and �i=�0+�a+2�x. The above expressions hold for
small damping, i.e., 	0

2 ,	sv
2 �1.

Compared to the results in the previous section, we see
that Eq. �77� is similar to Eq. �60�, whereas Eq. �78� differs
considerably from Eq. �64�. This is due to the static dipolar
and exchange couplings, and the dynamic spin-exchange
coupling, whose effects on the noise are modified by the
presence of the second fluctuating ferromagnet. In particular,
the latter coupling causes the Gilbert damping constant to
enter Eqs. �77� and �78� differently. Equation �77� decreases
with the external field, and Eq. �78� decreases with the dipo-
lar and exchange couplings, as expected, and as shown in

Figs. 3 and 4. The noise level is in general higher when both
ferromagnets fluctuate than when only one does.

The resistance noise is governed by a number of material
parameters. Depending on these parameters, the noise level
in the P configuration can differ substantially from that in the
AP configuration. Note that Eq. �78� reduces to that of Ref.
37 when the demagnetizing field is disregarded, i.e., when
�d→0, whereas Eq. �77� does when �a→0 and �d→−�a
since the external field in our earlier work was perpendicular
to the anisotropy field. The considerable difference between
SP�0� and SAP�0� in typical experimental spin-valve setups
can partly be explained by the dynamic exchange coupling.37

However, also the sensitivity of the resistance to magnetic
configuration changes can be important, as shown in the pre-

FIG. 3. The resistance noise in the P configuration as a function
of the externally applied magnetic field, given in units of
�10−7 /���hP2 /e2g��2�2�0kBT /MsV�2. The parameters used are 	0

=	sv=0.01, �c /�0=�d /�0=100 Oe, and J=−0.10 erg /cm2.

FIG. 4. The resistance noise in the AP configuration as a
function of the dipolar and exchange couplings between the
ferromagnets, given in units of �10−7 /���hP2� /e2g�1
− P2�2�2�2�0kBT /MsV�2. The parameters used are 	0=	sv=0.01,
�c /�0=�d /�0=100 Oe, and H0=0.
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vious section. The demagnetizing field also significantly af-
fects the numerical result for the noise level since it stabilizes
the magnetization, in both the P and AP configurations.

V. CONCLUSIONS

In magnetoelectronic circuits, there are coupled current
and magnetization fluctuations associated with dissipation
and out-of-equilibrium properties. Current and magnetization
dynamics interact via the reciprocal effects of spin-transfer
torque and spin pumping affecting not only the time aver-
aged but also the noise properties. Via the fluctuation-
dissipation theorem this is also manifested as a cross-talk of
current and magnetization dissipations. Using scattering and
magnetoelectronic circuit theories, we explicitly demonstrate
the effect of spin-current fluctuations on the magnetization in
ferromagnetic multilayers. Via a fluctuating spin-transfer
torque, the current noise causes enhanced magnetization
noise. Both thermal equilibrium �Johnson-Nyquist� current
noise and nonequilibrium shot noise are taken into account.
Taking advantage of the fluctuation-dissipation theorem, we

relate the equilibrium electric �current and voltage� and mag-
netic �magnetization and field� noises to the corresponding
dissipation of energy.

In spin valves, in which one of the ferromagnets is
pinned, magnetization noise and damping associated with the
free layers are tensors that depend on the magnetic configu-
ration. The magnetization fluctuations in spin valves induce
resistance noise, which is identified as a prominent source of
electric noise at relatively high current densities, and is ex-
perimentally detectable. The resistance noise is shown to
vary considerably with the magnetic configuration, partly
due to the angular dependence of the GMR. The contribution
from spin-current noise to resistance noise is considerable,
and may be an issue for the next generation magnetoresistive
spin-valve read heads and memory applications.
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