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We introduce information-theoretic definitions for noise and disturbance in quantum measure-
ments and prove a state-independent noise-disturbance tradeoff relation that these quantities have
to satisfy in any conceivable setup. Contrary to previous approaches, the information-theoretic
quantities we define are invariant under relabelling of outcomes and allow for the possibility of us-
ing quantum or classical operations to ‘correct’ for the disturbance. We also show how our bound
implies strong tradeoff relations for mean square deviations.

Heisenberg’s Uncertainty Principle (HUP) states,
loosely speaking, that in quantum theory a measurement
process cannot measure one observable accurately, such
as the position, without causing a measurable distur-
bance to another incompatible observable, such as the
momentum. Notwithstanding the crucial role played by
Heisenberg’s principle in modern science, it took a long
time between its first exposition [1, 2] and its rigorous
formalisation in terms of noise and disturbance opera-
tors [3–5]. The statistical spreads of these operators are
measurable quantities, and hence tradeoff relations satis-
fied by these spreads yield precise mathematical transla-
tions of Heisenberg’s intuition [3, 6, 7], that have recently
been experimentally tested in a number of scenarios [8–
14]. The use of noise and disturbance operators allows for
a detailed, state-dependent formulation of HUP, able to
capture the idea of ‘how accurate’ a measurement is with
respect to one dynamical variable and ‘how delicate’ the
same measurement is with respect to another dynamical
variable.

In this paper, we will explore a different approach to
HUP, focused not on the change per se in a system’s
dynamical variables, but on the loss of correlation intro-
duced by this change. In doing so, we will make use of
ideas from information theory such as a ‘guessing strat-
egy’ and error correction, and our definitions will be given
in terms of information-theoretic quantities like entropies
and conditional entropies. While we focus on the noise-
disturbance context here, our approach also yields trade-
off relations for joint measurements.

In order to understand the difference between the
present approach and the previous one, let us consider,
for example, the case of noise. While the noise, in its
conventional form of root-mean-square deviation, is a sta-
tistical measure of the distance between a given system
observable and the quantity actually measured [6, 15],
here we will only be interested in how well one can infer
(i.e., guess) the value of a system observable from a given
measurement outcome. That is to say, we will look only
at the degree of correlation between the measurement

and the observable, irrespective of how the correspond-
ing outcomes and values are numerically labelled.

Analogously, when characterising the disturbance, we
will consider the measurement process as a source of noise
for the system, and the degree to which such noise can
be corrected (for a given observable) will give us our def-
inition of disturbance.

Our measures of noise and disturbance will therefore
quantify the unavoidable loss of correlations, i.e., the ir-
reversible components of noise and disturbance. In par-
ticular, our definitions and results are invariant under re-
versible operations, such as relabelling of outcomes and
unitary time evolutions. In contrast, the conventional ap-
proach using root-mean-square deviations is not invari-
ant, as such operations can change numerical values and
indeed the system observables of interest.

Information-theoretic approaches to HUP-like ques-
tions have already been proposed in a variety of
forms [16–19]. However, these focus on the disturbance of
the system state per se, with tradeoff relations which are
functions only of the initial state of the system and the
measuring apparatus. In contrast, we define noise and
disturbance with respect to two system observables, and
our tradeoff relation depends on the degree to which such
observables are compatible, in the spirit of the original
HUP. Moreover, our definitions are functions only of the
two observables and the measuring apparatus, leading to
a state-independent tradeoff relation.

We note that a state-independent noise-disturbance re-
lation has recently been given, for the case of position
and momentum observables, in the conventional context
of root-mean-square noise and disturbance [20]. In con-
trast, our information-theoretic relation applies to arbi-
trary observables and leads to stronger results.

Our proposal.—For simplicity, consider two nondegen-
erate observables X and Z of a finite-dimensional quan-
tum system S, with corresponding sets of eigenstates
{|ψx〉} and {|ϕz〉}, respectively. The system is sub-
jected to a measuring apparatus M. Our aim is to
introduce an operational context for what it means for
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‘M to measure X accurately,’ and for ‘M to disturb a
subsequent measurement of Z.’ This will lead to sensi-
ble information-theoretic definitions of noise and distur-
bance, N(M, X) and D(M, Z), in terms of operational
measurement statistics, which satisfy:

Theorem 1. For any measuring apparatus M and any
non-degenerate observables X and Z, the following trade-
off between noise N(M, X) and disturbance D(M, Z)
holds

N(M, X) + D(M, Z) > − log c, (1)

where c := maxx,z |〈ψx|ϕz〉|2 and the log is in base 2.

Theorem 1 clearly expresses the idea that, whenever
observables X and Z are not compatible (i.e., c < 1), it
is impossible to accurately measure one of them without
at the same time disturbing the other. Significant gen-
eralizations and applications of this result will be given
further below.

In order to proceed, we imagine two corresponding cor-
relation experiments that can be performed withM. The
first experiment consists of a source producing eigen-
states |ψx〉 of X at random; feeding these states into
the apparatus M; and determining how correlated the
observed outcomes m are with the eigenvalues ξx of X
(Fig. 1). If it is possible, from m, to guess ξx perfectly,
then there is perfect correlation, and we say thatM can
measure X accurately, by making the corresponding op-
timal guess [21]. Hence, the noise N(M, X) will be zero.
In general, the noise will increase as the probability of
correctly guessing ξx decreases. The experiment thus as-
sesses the average performance of the apparatus in dis-
criminating between different values of X.

S'

|ψx⟩x M f x

Guessing

function

Estimation

FIG. 1. Noise with respect to X is measured by the ability to
guess correctly, from the measurement outcome M = m, in
which eigenstate |ψx〉 of X the system was initially prepared.
The guessed value, x̂, will in general be some function f(m)
of the measurement outcome. Optimisation over f is allowed.

In the second experiment, we imagine the source in-
stead producing eigenstates |ϕz〉 of Z at random, and
feeding these states through the apparatus M (Fig. 2).
The task is then to guess, as accurately as possible, the
eigenvalue ζz of the input state |ϕz〉. We first permit an
arbitrary operation E , on both the classical outcome m
and the ‘disturbed’ output quantum system S′, to allow

S'

|φz⟩z M z

Correction

operation

Estimation

FIG. 2. Disturbance with respect to Z is measured by the
ability to guess correctly, from the outcome variable M and
the ‘disturbed’ output quantum system S′, in which eigen-
state |ϕz〉 of Z the system was initially prepared. It is per-
mitted to apply a quantum operation E to attempt to correct
or minimise any disturbance, prior to a measurement of Z
(with outcome ẑ). Optimisation over E is allowed.

for the possibility of ‘correcting’ any reversible distur-
bance by M, before making a guess ẑ corresponding to
the outcome of a measurement of Z. If it is possible to
guess perfectly, then there is perfect correlation between
ẑ and the input eigenvalue ζz, and we say that M does
not disturb Z. Hence, the disturbance D(M, Z) will be
zero. In general the disturbance will increase as the cor-
relation decreases.

The main difference between the first and the second
correlation experiments is that, in the second one, we
are allowed to use both the classical outcome observed
and the output quantum system S′. This is because ‘dis-
turbance’ can only be meaningfully defined with respect
to a measurement of Z that happens after the measure-
ment process described by M has occurred. Thus one is
allowed to base a guess on all of the data that emerges
from the measuring apparatus. Alternatively, the second
experiment can be understood in terms of ‘error correc-
tion’: before guessing z, one tries to ‘undo,’ as accurately
as possible, the action of the apparatus, seen as a noisy
channel with both quantum and classical outputs.

The notion of disturbance we consider is, therefore,
related to the ‘irreversible’ character of a quantum mea-
surement: any reversible dynamical evolution is automat-
ically corrected during the correction stage. It therefore
captures the idea of ‘unavoidable’ disturbance, in strong
contrast to the conventional formulation in terms of root-
mean-square deviations, where any change in the value
of a system’s dynamical variables is considered as a non-
trivial disturbance.

Quantifying noise.—As discussed above, we require the
information-theoretic noise, N(M, X), to represent the
quality of the correlation between which eigenstate of X
was input and the measurement outcome m. For a given
input |ψx〉, this correlation is determined by the con-
ditional probability distribution p(m|ψx), which can be
measured via the experimental setup in Fig. 1. Since we
are interested in the average noise performance, we have
to introduce an a priori distribution on the eigenstates
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|ψx〉. By fixing the prior to be the uniform one, i.e.,
p(x) = 1/d where d denotes the dimension of the Hilbert
space of the system, we obtain the joint input-output
probability distribution

p(m,x) = p(x) p(m|ψx) = 1
d
p(m|ψx). (2)

This characterises the correlation between X and M , and
leads to:

Definition 1 (Information-Theoretic Noise). The
information-theoretic noise of the instrument M as a
measurement of X is defined as N(M, X) := H(X|M),
where H(X|M) denotes the conditional entropy computed
from the joint probability distribution p(m,x) in Eq. (2).

Note that N(M, X) can be interpreted as the average
uncertainty as to which eigenvalue of X was input, given
the outcome of the measurement. Our definition can
be further justified, in the precise sense that the noise
N(M, X) is small if and only if the outcome m identi-
fies the eigenvalues of X accurately. In fact, as we show
in the Supplemental Material [22], standard arguments
in information theory [23–26] imply that, given a guess-
ing function x̂ = f(m) with its total error probability
pe := Pr{X̂ , X} =

∑
x

∑
x̂,x p(x̂, x), it holds that

N(M, X)→ 0 iff min
f
pe → 0. (3)

Quantifying disturbance.—Let us now consider a sec-
ond nondegenerate observable Z =

∑
z ζz|ϕz〉〈ϕz| of sys-

tem S. While the noise depends only on the measurement
outcome, the disturbance can depend in principle on both
the classical outcome (M) and the quantum output sys-
tem (S′) of M. However, the conceptual framework is
analogous to that for noise: we imagine that eigenstates
of Z are acted upon by the measurement process M.
We then require the information-theoretic disturbance to
quantify the extent to which the action of M reduces
the information about which eigenstate |ϕz〉 was initially
selected.

However, if we want to quantify truly unavoidable dis-
turbance, we have to allow any possible action aimed at
recovering this information, after the measurement pro-
cess M has taken place. We therefore allow an opti-
misation over all possible correction procedures, before
any attempt to estimate z is conducted. A general cor-
rection procedure is modelled by a completely-positive
trace-preserving (CPTP) map E , reconstructing the ini-
tial system S from the output system S′ and the measure-
ment record M (Fig. 2). The final estimation of z can
then be performed via a standard (i.e., von Neumann)
measurement of Z, since any additional optimisation can
be incorporated into the correction channel E , and no
more than d outcomes are needed to discriminate be-
tween the input eigenstates. The information-theoretic

disturbance will therefore depend on the joint probabil-
ity distribution given by

p(ẑ, z) := p(z) p(ẑ|ϕz) = 1
d
p(ẑ|ϕz), (4)

which characterises the correlation between z and ẑ. In
the above equation, as we did before for the case of noise,
we are selecting the eigenstates of Z uniformly at ran-
dom.

We can now formalise the above discussion as follows:

Definition 2 (Information-Theoretic Disturbance). The
information-theoretic disturbance that the apparatus M
introduces on any subsequent attempt to measure the
observable Z, is defined as D(M, Z) := minE H(Z|Ẑ),
where the conditional entropy H(Z|Ẑ) is computed from
the joint probability distribution p(ẑ, z) in Eq. (4), and
the minimum is taken over all possible CPTP maps E.

As for the information-theoretic noise above, this mea-
sure quantifies the average uncertainty of Z, given the
outcome of the estimate. Eq. (3) can similarly be applied
to justify our definition. In fact, besides Eq. (3), the no-
tion of disturbance we have introduced can be given an al-
ternative interpretation, directly related to the idea that
the measurement process irreversibly disturbs the mea-
sured system. Defining the probability of error as pe =∑
z

∑
ẑ,z p(ẑ, z), the probability of guessing correctly,

1 − pe, is nothing but the average fidelity of correction,
i.e., 1 − pe = d−1∑

z F
{

(E ◦M)(|ϕz〉〈ϕz|) , |ϕz〉〈ϕz|
}

,
where F{ρ, σ} := Tr

[√√
ρσ
√
ρ
]2 is the fidelity between

states ρ and σ [27, 28].
Information-theoretic noise-disturbance relation.—

Defs. 1 and 2 lead to the noise-disturbance relation (1),
as shown in the Supplemental Material [22]. The proof
is based on a mapping of the statistics of the two
estimation procedures in Figs. 1 and 2 (which require
separate inputs of eigenstates of X and Z), to the mea-
surement statistics of a single maximally-entangled state,
and applying the Maassen-Uffink entropic uncertainty
relation [29] to this state.

Useful quantum lower bound on disturbance.—Given
an apparatusM and two observables X and Z, both the
noise N(M, X) and disturbance D(M, Z) can in principle
be computed. However, while the noise can be computed
directly from the data, the definition of disturbance in-
volves an optimisation over all possible correction proce-
dures. Such an optimisation can in general be very hard
to perform. Such a problem can however be encompassed
simply by noticing that any correction followed by an es-
timation of Z is nothing but a post-processing of systems
S′ and M into the estimated variable Ẑ. We can there-
fore apply the quantum data-processing inequality [30–
32] to arrive at the lower bound D(M, Z) > H(Z|S′M)
for the disturbance, where the conditional quantum en-
tropy H(A|B) is defined as the difference of the von Neu-
mann entropies corresponding to the combined system
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AB and system B. As we prove in the Supplemental
Material [22], it is also possible to refine the bound of
Theorem 1 to

N(M, X) +H(Z|S′M) > − log c. (5)

The idea is that one can use the Stinespring representa-
tion theorem [33] to purify the action of the measurement
channelM to an isometry V : HS → HS′ ⊗HM ⊗HE ⊗
HM̄ , where the additional systems E and M̄ represent
the environment and the environment’s redundant copy
of M , respectively, and then apply the recently discov-
ered complementarity relations in the presence of quan-
tum memory [34, 35].

Generalisations.—Since the proof of the tradeoff rela-
tion (1) only requires that X̂ and Ẑ are joint estimates of
X and Z [22], it follows as an immediate corollary that

N(M, X) + N(M, Z) > − log c (6)

for any joint estimate of X and Z via measure-
ment apparatus M. This information-theoretic joint-
measurement tradeoff relation may be contrasted to the
joint-measurement information exclusion relation of Hall
[36]. In particular, contrarily to the latter, Eq. (6) is
state independent, i.e, it constrains the inherent degree
to which the measurement apparatus can simultaneously
perform as an X-measuring device and a Z-measuring
device.

Moreover, we can generalise the tradeoff relation in
the theorem to degenerate observables X and Z. One
can use essentially the same arguments as in the non-
degenerate case, with a suitable entropic uncertainty re-
lation [37], to replace the constant c in Theorem 1 with
c′ = maxx,z ‖XxZz‖2∞, where Xx and Zz are the spectral
projectors corresponding to distinct eigenvalues of X and
Z, respectively (see Supplemental Material [22]).

Our information-theoretic approach also yields trade-
off relations for root-mean-square deviations. In par-
ticular, for the joint probability distribution p(m,x) in
Eq. (2), consider the alternative measure of noise defined
by V XN :=

∑
m,x p(m,x)[x̂ − ξx]2, where x̂ = f(m) is

the estimate of x from measurement outcome m. Thus,
this measure is just the mean square deviation (MSD) of
the estimate of the input eigenvalue from its true value.
One may similarly define a measure of disturbance by
the MSD V ZD :=

∑
ẑ,z p(ẑ, z)[ẑ − ζz]2. As shown in the

Supplemental Material [22], these quantities are equal to
squares of the noise and disturbance measures defined by
Ozawa [3], for the particular case of a maximally-mixed
system state ρS = d−11S . If the spacing between eigen-
values of X (Z) is a multiple of some value sX (sZ), then
the tradeoff relation[

V XN + (sX)2

12

] [
V ZD + (sZ)2

12

]
>
(sXsZ

2πe c

)2
, (7)

follows as a corollary to Theorem 1 (see Supplemental
Material [22]). It follows, for example, that if X and Z

are the Pauli spin operators for a qubit system, then V XN
and V ZD cannot both vanish. This cannot, in contrast,
be concluded from known noise-disturbance tradeoff re-
lations for the maximally-mixed state [3, 7].

A generalisation to continuous observables is not
straightforward operationally, as the corresponding
eigenkets are not physical states. However, as described
in the Supplemental Material [22], it is possible to for-
mally take limits to obtain the tradeoff relation

N(M, Q) + D(M, P ) > log πe~ (8)

for position Q and momentum P . Moreover, defining
MSDs V QN and V PD as above, this bound further implies
the Heisenberg-type noise-disturbance relation V QN V PD >
~2/4, in the same way that the usual Heisenberg uncer-
tainty relation follows from the entropic uncertainty rela-
tion for Q and P [38]. Note this is similar in form to, but
stronger than, the relation recently obtained by Busch
et al. [20], as the latter is for the product of the maxi-
mum possible deviations, rather than for the product of
the mean deviations. In both cases, however, the mea-
sures of noise and disturbance for position and momen-
tum are purely formal, with no operational counterparts.
Hence it appears that state-dependent noise-disturbance
and joint-measurement relations [3, 6, 7, 10, 15, 36, 39]
may be preferable for continuous observables.

Finally, while Theorem 1 relies on the entropic un-
certainty relation due to Maassen and Uffink, any such
relation, such as those recently obtained by Puchala et
al. [40] and Coles et al. [41], will similarly lead to a cor-
responding tradeoff relation for the information-theoretic
noise and disturbance.

Conclusion.—We have obtained an information-
theoretic characterisation of Heisenberg’s Uncertainty
Principle, which for the first time characterises the in-
herent degree to which a given measurement apparatus
must disturb one observable to gain information about
another observable, independently of the state of the sys-
tem undergoing measurement. Our proposed measures
of noise and disturbance quantify the irreversible loss of
correlations introduced by the measurement apparatus,
and are invariant under operations such as relabelling of
outcomes and invertible evolutions. Further, in the case
of discrete observables, they can be operationally deter-
mined, as per Figs. 1 and 2. Our main theorem has a
number of generalisations, including extensions to trade-
off relations for joint measurements, degenerate observ-
ables, root-mean-square deviations and continuous ob-
servables, and yields stronger constraints than previous
results in the literature.

We believe the above fundamental results will have di-
verse applications in quantum information theory and
quantum metrology, for example, and will also motivate
experimental confirmation of the strong information-
theoretic form of the Heisenberg Uncertainty Principle
presented here.
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Notation and quantum instruments

In what follows, we restrict all classical random variables (X, Z, M , etc) to have finite ranges (X = {x}, Z = {z},
M = {m}, etc), and we restrict all quantum systems (S, E, etc) to be associated with finite-dimensional Hilbert
spaces (HS , HE , etc).

The apparatus M may in general be represented by a quantum instrument [42–44]. Recall that a quantum instru-
ment is a collection {Mm}m∈M of completely positive (CP) maps Mm, each mapping linear operators on the input
space HS into linear operators on the output space HS′ , and such that the sum map,

∑
mMm, is trace-preserving

(TP), i.e., a channel. The interpretation of a quantum instrument as a measurement process goes as follows: given
the initial state ρ of the system S undergoing the measurement, the mth outcome is observed with probability
p(m) = Tr[Mm(ρS)], in which case the measuring apparatus will return an output quantum system S′ in state
σmS′ =Mm(ρS)/p(m). Any measurement process can be accommodated in the quantum instrument formalism [44].

A convenient way to study quantum instruments from an information-theoretic viewpoint is to represent the col-
lection {Mm}m∈M as a single CPTP map, also denoted by M, acting as follows:

M(ρS) =
∑
m

Mm
S (ρS)⊗ |m〉〈m|M , (S.1)

where M is now an additional quantum system encoding the classical measurement outcome on orthonormal (and,
therefore, perfectly distinguishable) ‘flag’ states |m〉〈m|. In what follows, therefore, the symbol M will be used to
denote both the apparatus and the channel in (S.1).

The conditional input-output probability distribution p(m|ψx) for measurement outcome m given input eigenstate
|ψx〉 is independent of the quantum output S′, and is given by p(m|ψx) := Tr[Mm(|ψx〉〈ψx|)]. Hence the joint
probability distribution p(x,m) in Eq. (2) of the main text is given by

p(m,x) = 1
d

Tr[Mm(|ψx〉〈ψx|)]. (S.2)

Moreover, the joint probability distribution p(x,m) in Eq. (4) of the main text is given by

p(ẑ, z) = 1
d
〈ϕẑ|(E ◦M)(|ϕz〉〈ϕz|)|ϕẑ〉. (S.3)

Formalisation of Eq. (3)

Here we formalise the content of Eq. (3) as follows:

Proposition 1. There exists a guessing function f : M → X̂ such that

pe 6
1
2N(M, X),

where

pe := Pr{X̂ , X} =
∑
x

∑
x̂,x

p(x̂, x)

is the total error probability. On the other hand, for any guessing function f : M → X̂,

N(M, X) 6 h(pe) + pe log(|X| − 1),

where h(pe) = −pe log pe − (1− pe) log(1− pe) is the binary entropy computed from pe. Therefore

N(M, X)→ 0 ⇐⇒ pmin
e := min

f
Pr{X̂ , X} → 0.

Proof. For the first relation, see Gallager [24], Hellman [25], or Ho and Verdú [26]. The second relation is Fano’s
inequality [23].
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Proof of Theorem 1

Both noise N(M, X) and disturbance D(M, Z) are defined in terms of optimal guessing strategies: for the noise,
we check how well one can guess the value of X from the measurement outcome M , while for the disturbance, we
look instead at how well one can guess the value of Z from M and S′ together. As these tasks can be performed
simultaneously, since we can copy the classical random variable M , we can actually reformulate our two correlation
experiments as a joint estimation of two observables, X and Z, by means of a single observation. As a consequence,
we can directly apply known entropic uncertainty relations [29, 37, 38, 40, 41, 45] and find a lower bound on the sum
of N(M, X) and D(M, Z), as anticipated by Theorem 1.

Proof. First, we introduce an auxiliary quantum system R (i.e., a reference copy), with a Hilbert space isomorphic
to that of the input system S, i.e., HR � HS . We then fix orthonormal basis sets {|i〉S} and {|i〉R}, for HS and HR
respectively, and define the maximally entangled state

|Φ+
RS〉 := 1√

d

d∑
i=1
|iR〉 ⊗ |iS〉.

By direct inspection, it is easy to check that, for any linear operator X ∈ L(HR),

TrR[(XR ⊗ 1S) |Φ+
RS〉〈Φ

+
RS |] = 1

d
XT
S ,

where the exponent T denotes the transposition made with respect to the chosen basis {|iS〉}. Therefore, we have the
so-called ‘ricochet’ property

1
d
|ψxS〉〈ψxS | = TrR[(|ψxR〉〈ψxR|T ⊗ 1S) |Φ+

RS〉〈Φ
+
RS |],

and analogously for |ϕzS〉〈ϕzS |, relating observables on S to their transpositions on R.
We then notice that (as anticipated above) the two correlation experiments defining noise and disturbance can be

viewed as a single estimation producing a pair of random variables U = (W,W ′). Here, we may takeW to be just a copy
of M , while W ′ is the best possible estimate Ẑ for Z (corresponding to an optimal correction operation E in Fig. 2).
Let therefore {Πu}u∈U be the POVM corresponding to the estimation of U , so that p(u, x) = 1

d Tr[Πu |ψxS〉〈ψxS |]
and p(u, z) = 1

d Tr[Πu |ϕzS〉〈ϕzS |]. Notice that the POVM {Πu}u∈U incorporates any and all preceding correction
procedures (i.e., the action of the correction channel E and optimal guessing function). Exploiting the ‘ricochet’
property explained above, we therefore arrive at

p(u, x) = Tr[(|ψxR〉〈ψxR|T ⊗Πu
S) |Φ+

RS〉〈Φ
+
RS |],

and

p(u, z) = Tr[(|ϕzR〉〈ϕzR|T ⊗Πu
S) |Φ+

RS〉〈Φ
+
RS |].

Note this property also implies that the operational joint distribution p(m,x), used to define the information-theoretic
noise in Definition 1, may alternatively be obtained by measuring XT on the reference R and M on the system S
(and similarly for the information-theoretic disturbance).

Now, by defining the ensemble of reference states U ≡ {ρuR; p(u)} via

p(u)ρuR := TrS [(1R ⊗Πu
S) |Φ+

RS〉〈Φ
+
RS |],

we have p(u, x) = p(u) Tr[|ψxR〉〈ψxR|T ρuR] and p(u, z) = p(u) Tr[|ϕzR〉〈ϕzR|T ρuR]. We then find, using the Maassen-Uffink
entropic uncertainty relation [29], that

H(X|U) +H(Z|U) =
∑
u

p(u)
[
Hρu

R
(XT ) +Hρu

R
(ZT )

]
> − log c′,

where Hρ(A) is the entropy of observable A for state ρ, and c′ := maxx,z Tr[|ψxR〉〈ψxR|T |ϕzR〉〈ϕzR|T ]. Using invariance
of the trace under transposition of its argument, c′ = c, and the (classical) data-processing inequality, i.e., H(X|U) =
H(X|MẐ) 6 H(X|M) = N(M, X) and H(Z|U) = H(Z|MẐ) 6 H(Z|Ẑ) = D(M, Z), we finally obtain Eq. (1).
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Proof of Eq. (5)

As said above, in what follows we will describe quantum measurement processes as channels (i.e., CPTP maps)
M : L(HS)→ L(HS′)⊗ L(HM ).

A fundamental tool to study channels from an information-theoretic viewpoint is provided by the so-called Stine-
spring isometric dilation, that is, an ancillary system together with an isometry V (i.e., such that V †V = 1), in terms
of which the given channel can be obtained as an open evolution by tracing over the ancillary degrees of freedom [33].
It is known that, whenever the output of a channel contains a classical register, like the system M in Eq. (S.1), the
ancillary system holds a perfectly correlated copy of such a register. Therefore, in our case, the Stinespring isometric
dilation will be an operator V : HS → HS′ ⊗HM ⊗HE ⊗HM̄ , where the ancillary systems E and M̄ play the roles,
respectively, of the environment (which can be thought of as comprising also the probe’s degrees of freedom, according
to the indirect measurement model [6]) and of the environment’s perfect copy of M .

Output

Vρ
|m⟩	m|⟩

|m⟩	m|⟩

m(ρ)

m(ρ) Environment

FIG. 3. Stinespring isometric dilation: the environment gets full information about the output classical random variable. The
CP maps M̄m denote the quantum output to the environment.

The proof proceeds as follows: as already done in proving Theorem 1, we introduce an auxiliary reference system
R, with HR � HS , and define the maximally entangled state

|Φ+
RS〉 = 1√

d

∑
i

|iR〉 ⊗ |iS〉.

Then, the Stinespring isometry V : HS → HS′ ⊗HM ⊗HE ⊗HM̄ providing a dilation of the channel M is applied
on HS alone, resulting in

|ΩRS′MEM̄ 〉 := (1R ⊗ VS)|Φ+
RS〉.

Notice that, by definition of Stinespring isometry, TrEM̄ [|ΩRS′MEM̄ 〉〈ΩRS′MEM̄ |] = (idR ⊗MS)(|Φ+
RS〉〈Φ

+
RS |), i.e.

the state |ΩRS′MEM̄ 〉 is a purification of the mixed state

ωRS′M :=
∑
m

(idR ⊗Mm
S )(|Φ+

RS〉〈Φ
+
RS |)⊗ |m〉〈m|M .

Then, while the system E purifies systems R and S′, the system M̄ purifies the ‘classical outcome’ system M , i.e. the
joint pure state |ΩRS′MEM̄ 〉 can always be thought of as being in the following form:

|ΩRS′MEM̄ 〉 =
∑
m

|ΩmRS′E〉 ⊗ |mM 〉 ⊗ |mM̄ 〉,

where TrE [|ΩmRS′E〉〈ΩmRS′E |] = (idR⊗Mm
S )(|Φ+

RS〉〈Φ
+
RS |) for all m. From the above equation it is also clear the reason

why the additional system M̄ is automatically perfectly correlated with M . (In fact, there is an extra unitary degree
of freedom on the purifying systems E and M̄ ; however, since we are interested in entropic quantities that are unitarily
invariant, we can, without loss of generality, work with the particular Stinespring isometry given above.)

We now apply the entropic uncertainty relation in the presence of quantum memory [34] for pair of observables X
and Z, replacing the tripartition A− B − E appearing in Corollary 2, Supplementary Information of Ref. [34], with
the tripartition R− S′M − EM̄ we have here; doing so, we directly obtain the following relation:

H(Z|S′M) +H(X|EM̄) > − log c (S.4)
(see also Corollary 5 of Ref. [35] for a related result). Notice that in the formula above both H(Z|S′M) and H(X|EM̄)
are conditional quantum entropies. Eq. (5) is finally recovered from (S.4) by quantum data-processing inequality, i.e.
H(X|EM̄) 6 H(X|M̄) = H(X|M), where the last equality holds because M and M̄ are perfectly correlated.
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Case of degenerate observables

As anticipated in the main text, we can easily generalise the tradeoff relation of Theorem 1 to degenerate observables
X and Z. However, in this case, the correlation experiments need to be slightly modified as follows. First, an eigenvalue
ξx of X is drawn at random according to the a priori distribution p(x) = dx/d, where dx is the degeneracy of ξx. This
means that eigenvalues with larger degeneracy are more likely to be chosen: this is a very natural requirement if we
want to give a state-independent characterisation of a given measuring apparatus. Then, conditional on the eigenvalue
chosen, a pure state |ψx〉 is drawn at random, according to the uniform (Haar) distribution on the corresponding
eigenspace. This is also a very natural assumption for us, since we are interested in evaluating the average performance
of the measuring apparatus. This means that, in the presence of degeneracy, the effective state input through M
in Fig. 1 is represented by Xx/dx, where Xx denotes the orthogonal projector onto the eigenspace corresponding to
eigenvalue ξx. For operational purposes, it is also worth remarking that the same effective input state, for eigenvalue
x, is obtained by transmitting any of a set of mutually orthogonal pure eigenstates with equal prior probabilities.

Similarly, if eigenvalue ζz of Z has degeneracy d′z, then the protocol in Fig. 2 is modified to input states Zz/d′z with
prior probability d′z/d, where Zz denotes the orthogonal projector onto the eigenspace corresponding to eigenvalue ζz.

The proof of Theorem 1 may now be followed as before, but using the Krishna and Parthasarathy entropic uncer-
tainty relation for degenerate observables [37], to give the tradeoff relation (1) with c generalised to

c′ = max
x,z
‖XxZz‖2∞,

whereXx and Zz denote the projection operators onto the eigenspaces ofX and Z for eigenvalues ξx and ζz respectively.
We recall here that, for any linear operator A, its infinity norm ‖A‖∞ is defined as the largest of its singular values.
The infinity norm therefore coincides with the standard operator norm defined as ‖A‖ = maxv:‖v‖=1 ‖Av‖. Moreover,
in the case Xx = |ψx〉〈ψx| and Zz = |ϕz〉〈ϕz|, one has ‖XxZz‖2∞ = |〈ψx|ϕz〉|2, i.e., the non-degenerate case is
recovered.

As a final remark, we notice that, in the presence of degeneracy, the interpretation of disturbance in terms of average
fidelity of correction (as we presented it after Definition 2) becomes problematic. It is however still true that our
measure of disturbance quantifies how much information about eigenvalue ζz is left available after the measurement
M has been performed.

Noise and disturbance relations for mean square deviations

Here the noise-disturbance relation (7) for mean square deviations

V XN :=
∑
m,x

p(m,x)[x̂− ξx]2, V ZD :=
∑
ẑ,z

p(ẑ, z)[ẑ − ζz]2 (S.5)

is derived, and it is shown that these quantities are equal to the conventional, root-mean-square based notions of noise
and disturbance for the case of a maximally mixed system state.

First, notice that if a random variable N takes integer values, then the entropy of N may be bounded in terms of
its variance by [46]

H(N) 6 1
2 log

{
2πe

[
VarN + 1

12

]}
.

Hence, if the spacing between eigenvalues of X is a multiple of sX , i.e., ξx = ξ + sXnx for some fixed ξ and integer
nx, then it immediately follows that

H(X) 6 1
2 log

{
2πe

[
1
s2
X

VarX + 1
12

]}
(S.6)

using H(X) = H(N) and VarX = s2
XVarN , where N ranges over the nx.
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It follows, writing the estimate of X as x̂ = f(m) (see main text), and defining x̄m :=
∑
x x p(x|m), that

V XN + s2
X

12 :=
∑
m,x

p(m,x) [f(m)− x]2 + s2
X

12

=
∑
m

p(m)
∑
x

p(x|m)[f(m)− x]2 + s2
X

12

>
∑
m

p(m)
∑
x

p(x|m)(x− x̄m)2 + s2
X

12

=
∑
m

p(m)
[
VarmX + s2

X

12

]
>
s2
X

2πe
∑
m

p(m) 22Hm(X)

>
s2
X

2πe2[2
∑

m
p(m)Hm(X)]

= s2
X

2πe22H(X|M)

where VarmX and Hm(X) denote the variance and entropy of X for a fixed value of m, and the property 〈(A−α)2〉 >
VarA for any random variable A and the convexity of 2x have been used.

In precisely the same manner, one also has the inequality

V ZD + s2
Z

12 >
s2
Z

2πe22H(Z|Ẑ),

when the spacing between the eigenvalues of Z is a multiple of sZ . Combining this with the above inequality then
gives [

V XN + s2
X

12

] [
V ZD + s2

Z

12

]
>
(sXsZ

2πe

)2
22H(X|M)+2H(Z|Ẑ)

>
(sXsZ

2πe c

)2
, (S.7)

as claimed in Eq. (7), where the last line follows as per the proof of the theorem in the main text.
For example, take X and Z to be the usual qubit polarisation observables corresponding to Pauli operators σX and

σZ . Then sX = sZ = 2 and c = 1/2, yielding[
V XN + 1

3

] [
V ZD + 1

3

]
>

16
π2e2 ≈ 0.219. (S.8)

Hence, the noise and disturbance, as characterised by V XN and V ZD , can never both vanish, since 1/9 ≈ 0.111. Even
stronger relations are possible in this regard. For example, V XN = 0 implies that p(m,x) = p(m)δx,f(m), and hence
that H(X|M) = 0. Since H(Z|Ẑ) 6 log 2 = 1 for qubit observables, the information-theoretic noise-disturbance
relation of Theorem 1 then implies that H(Z|Ẑ) = 1, which is turn is only possible if p(ẑ, z) = p(ẑ)/2. It follows that
the MSD disturbance V ZD takes its maximum possible value, i.e.,

V ZD = 2 for V XN = 0. (S.9)

The above tradeoff relations are quite strong in comparison to related tradeoff relations in [3, 7]. To see this, note
first that the root-mean-square deviations correspond to the conventional definitions of noise and disturbance for the
case of a maximally-mixed system state. In particular, the POVM {Em} corresponding to the measurement outcomes
of the apparatus M follows from

p(m) = Tr[Mm(ρS)] = Tr[ρS(Mm)∗(1S)] = Tr[ρSEm]

as Em = (Mm)∗(1S), where φ∗ denotes the dual of linear map φ. It follows that p(x,m) in Definition 1 of the main
text can be rewritten as

p(m,x) = 1
d

Tr[Mm(|ψx〉〈ψx|)] = 1
d

Tr[|ψx〉〈ψx|(Mm)∗(1S) = 1
d

Tr[|ψx〉〈ψx|Em].
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Hence, one has

V XN =
∑
m,x

p(m,x)[x̂− ξx]2 =
∑
m,x

1
d

Tr[Em|ψx〉〈ψx|[(f(m)− ξx)]2

= 1
d

∑
m

Tr[Em[f(m)−X]2] = ε(X, d−11S)2, (S.10)

where ε(X, ρS) is the measure of noise proposed by Ozawa [3, 6]. Similarly, it may be shown that

V ZD = η(Z, d−11S)2, (S.11)

where η(Z, ρS) is the measure of disturbance proposed by Ozawa. (We note that, even though these quantities are
equivalent in this particular case, their physical interpretations remain different.)

It follows from the above results that, for example, for qubit polarisations X and Z

η(Z, d−11S) =
√

2 for ε(X, d−11S) = 0. (S.12)

In contrast, known disturbance relations for ε(X, ρS) and η(Z, ρS) place no restrictions on these quantities for the
maximally mixed state ρS = d−11S .

Position-Momentum case

Here we show how to derive the noise-disturbance uncertainty relations

N(M, Q) + D(M, P ) > log πe~, V QN V PD > ~
2/4 (S.13)

in the main text, for conjugate position and momentum observables Q and P . The joint-measurement uncertainty
relations

N(M, Q) + N(M, P ) > log πe~, V QN V PN > ~
2/4,

analogous to Eq. (6) of the main text, can be similarly derived for any joint measurement M of Q and P .
We first define an information-theoretic noise, N (M, Q), via a modification of the experiment in Fig. 1 of the main

text. In particular, a Gaussian state |ψq〉, with mean position 〈Q〉 = q and fixed position variance (∆Q)2 = v, is input
to the measuring apparatus M with prior probability density ℘(q) (specified below). As v → 0 these input states
approach eigenkets of Q, and so a perfect measurement of Q by the apparatus can perfectly distinguish the input
states in this limit. Let ℘(m|ψq) denote the conditional probability density for outcome m given input state |ψq〉.
Hence, the corresponding information-theoretic noise is suitably quantified by the limiting conditional differential
entropy

N(M, Q) := lim
v→0

H(Q|M) = lim
v→0

H(QM)−H(M), (S.14)

generalising Definition 1 of the main text. In particular, N(M, Q) is a measure of the average uncertainty of Q,
given the outcome of the estimate, and approaches its minimum possible value (−∞) in the limit thatM is a perfect
position measurement. Note that the corresponding entropic length, 2N(M,Q), is a more direct measure of the residual
uncertainty of Q, having units of position and a minimum value of 0 in the limit of a perfect position measurement
[47]. Note also that the above definition is operational to the extent that for a ‘binned’ position measurement M,
with resolution δq, we have N(M, Q) ≈ H(Q|M) ≈ log δq for finite v � δq.

For N(M, Q) to be uniquely defined, the prior density ℘(q) must be specified to allow calculation of H(Q|M).
To characterise the performance of the measurement over all possible values of Q, without bias, this density should
become uniform in a suitable limit (analogously to the uniform distribution over eigenstates in Definition 1). We
therefore choose

℘(q) := (2πv̄)−1/2e−q
2/2v̄ (S.15)

where v̄ is specified further below and approaches ∞ in the limit of interest.
The information-theoretic disturbance, D(M, P ), is similarly defined via a modification of the experiment in Fig. 2

of the main text. In particular, a Gaussian state |φp〉, with mean momentum p and fixed momentum variance
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(∆P )2 = w, is input to the apparatus with prior probability density ℘̃(p); subjected to an error correction process;
and estimated via an ideal measurement of P . Denoting the optimal estimate by P̂ , the corresponding information-
theoretic disturbance is then

D(M, P ) := lim
w→0

H(P |P̂ ). (S.16)

This measure quantifies the residual uncertainty of the momentum following the estimate, analogously to Eq. (S.14),
and clearly generalises Definition 2 of the main text. A suitable prior density ℘̃(p) is

℘̃(p) := (2πw̄)−1/2e−p
2/2w̄, (S.17)

where w̄ is specified further below and approaches∞ in the limit of interest (v, w → 0), ensuring a uniform distribution
in this limit.

It is of interest to note that the two experiments above could be carried out simultaneously if the values of v and
w were such that vw = ~2/4, as in this case one could use minimum-uncertainty Gaussian states as input states,
having position and momentum variances v and w respectively. They could also be carried out simultaneously for
vw > ~2/4, by using suitable mixed Gaussian input states rather than pure states. Hence, the two experiments will
be ‘complementary’ whenever

v w <
~2

4 , (S.18)

and in particular in the limit of interest, v, w → 0. This limit may be interpreted as corresponding to the input of
uniform distributions of eigenkets of Q and P , in direct analogy to the discrete case.

To obtain the noise-disturbance uncertainty relations (S.13), we follow a procedure similar to the earlier proof of
the main Theorem. The main differences are that (i) the joint state |Φ+

RS〉 is replaced by a two-particle Gaussian
state, that approaches an Einstein-Podolsky-Rosen state as v, w → 0 (i.e., an eigenket of relative position and total
momentum); and (ii) the Maassen-Uffink relation is replaced by a suitable entropic uncertainty relation for position
and momentum.

In particular, introducing an auxilary reference system R, consider the two-system Gaussian state |ΨRS〉 with
position representation

ΨRS(x, y) := Ke−
(x−y)2

4f e−
g(x+y)2

4~2

for some f, g > 0 (to be specifed below), where K is a normalisation constant. This state satisfies

〈QR −QS〉 = 0 = 〈PR + PS〉, Var(QR −QS) = f, Var(PR + PS) = g,

and so approaches an eigenstate of relative position and total momentum in the limit f, g → 0. It is straighforward
to calculate that jointly measuring M on S and Q? := αQR on R, with

α :=
1 + fg

~2

1− fg
~2

,

yields the same joint probability density, for outcomes M = m and Q? = q, as the first experiment above, i.e.,

pΨRS
(m, q) = ℘(m, q) := ℘(q)℘(m|ψq), (S.19)

provided that f , g and v̄ are chosen to satisfy

v = f

1 + fg
~2

, v̄ = α2 ~
2

g

[
1 + fg

~2

]
. (S.20)

Similarly, jointly measuring Ẑ on S and P ? := −αPR on R yields the same joint probability density for outcomes
P̂ = p̂ and P ? = p as the second experiment above, i.e.,

pΨRS
(p̂, p) = ℘(p̂, p) := ℘̃(p)℘(p̂|φp), (S.21)
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provided that f , g and w̄ are chosen such that

w = g

1 + fg
~2

, w̄ = α2 ~
2

2f

[
1 + fg

~2

]
. (S.22)

The observables Q? and P ? defined above will play roles similar to that of XT and ZT in the proof of Theorem 1.
Equations (S.20) and (S.22) can be explicitly solved to give v̄, w̄, f , g and α in terms of v and w, providing that

vw ≤ ~2/2 (which of course holds in the limits of interest, v, w → 0, and is also guaranteed for finite v and w if the
experiments are ‘complementary’ in the sense of Eq. (S.18)). As can already be seen from these equations, one finds
f, g → 0, v̄, w̄ →∞ and α→ 1 in the limit v, w → 0. Explicitly, one has, for example,

f = v√
1− vw/~2

, g = w√
1− vw/~2

, α = 1
1− 2vw/~2 , v̄ = ~

2

w
(1− 2vw/~2)−2(1− vw/~2)−1/2.

Similarly to the proof of Theorem 1,M and P̂ correspond to a simultaneous measurement of some joint observable
U on the system, with outcome u ≡ (m, p̂) and POVM {Πu}. Hence, defining an ensemble of reference states
U ≡ {ρuR;℘(u)} as before (with |Φ+

RS〉 replaced by |ΨRS〉), we have the corresponding chain

H(Q?|U) +H(P ?|U) = H(αQR|U) +H(−αPR|U) = logα2 +H(QR|U) +H(PR|U) ≥ logα2πe~,

using the usual entropic uncertainty for position and momentum [38]. But from Eqs. (S.19) and (S.21) and the
classical data-processing inequality, one also has H(Q?|U) = H(Q?|M, P̂ ) ≤ H(Q?|M) = H(Q|M) and H(P ?|U) =
H(P ?|M, P̂ ) ≤ H(P ?|P̂ ) = H(P |P̂ ). Hence,

H(Q|M) +H(P |P̂ ) ≥ logα2πe~. (S.23)

Recalling that α→ 1 in the limit v, w → 0, we immediately obtain the first relation in Eq. (S.13) via definitions (S.14)
and (S.16), as desired.

Finally, the second relation in Eq. (S.13) is obtained by following essentially the same steps used in the proof
of Eq. (S.7) above (see also the derivation of the Heisenberg inequality in Ref. [38]), to show that 〈(q̂ − q)2〉 ≥
(2πe)−122H(Q|M) and 〈(p̂− p)2〉 ≥ (2πe)−122H(P |P̂ ), and again using Eq. (S.23) in the limit v, w → 0.
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